JPS62215241A - Ferroelectric liquid crystal electrooptic device - Google Patents

Ferroelectric liquid crystal electrooptic device

Info

Publication number
JPS62215241A
JPS62215241A JP5859386A JP5859386A JPS62215241A JP S62215241 A JPS62215241 A JP S62215241A JP 5859386 A JP5859386 A JP 5859386A JP 5859386 A JP5859386 A JP 5859386A JP S62215241 A JPS62215241 A JP S62215241A
Authority
JP
Japan
Prior art keywords
liquid crystal
temperature
thermistor
ferroelectric liquid
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5859386A
Other languages
Japanese (ja)
Other versions
JP2881303B2 (en
Inventor
Sadayuki Shimoda
貞之 下田
Takamasa Harada
隆正 原田
Masaaki Taguchi
田口 雅明
Kokichi Ito
伊藤 耕吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP61058593A priority Critical patent/JP2881303B2/en
Publication of JPS62215241A publication Critical patent/JPS62215241A/en
Application granted granted Critical
Publication of JP2881303B2 publication Critical patent/JP2881303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell

Abstract

PURPOSE:To set inverted pulse width to a proper value all the time and to stably drive liquid crystal over a wide operating temperature range by adjusting a reference clock within a specific range for the compensation of the switching temperature dependency of a ferroelectric liquid crystal cell. CONSTITUTION:Temperature compensation is so performed that the inverted pulse width tau is set in an area determined by an upper-limit line and a lower- limit line; and the oscillator of a variable frequency oscillator 11 is a multivibrator composed of two inverters, one capacitor C, and one thermistor R17 and its oscillation frequency (f) is 1/2.2CR. When the thermistor 17 has negative temperature characteristics, (f) becomes smaller and smaller as the temperature is lower and lower. When (f) decreases, the frequency of CL2 also decreases and inverted pulses which are in inverse proportion to it increase in tau. The thermistor varies in R according to an exponential function, so (f), therefore, taualso varies according to an exponential function. The temperature dependency of a switching speed varies according to an exponential function, so the temperature compensation which uses the thermmistor sets tau within a preferable area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強誘電性液晶電気光学装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a ferroelectric liquid crystal electro-optical device.

特に強誘電性液晶の温度依存性を補償する駆動回路の改
良に関する。
In particular, it relates to improvements in drive circuits that compensate for the temperature dependence of ferroelectric liquid crystals.

〔発明の概要〕[Summary of the invention]

本発明は強誘電性液晶電気光学装置において、駆動回路
を温度応答性周波数可変発振回路及び該発振回路からの
出力基準クロック信号を一定の率で分周し波形成形して
制御信号を出力するタイミング発生回路さらに該制御信
号に応答して所定のパルス幅の駆動パルスを供給するド
ライバよりなる構成としたので、温度依存性のある強誘
電性液晶に対して動作温度範囲の全域に渡って、液晶分
子が電気的に応答可能のパルス幅を有する駆動パルスを
印加することができる。
The present invention provides a ferroelectric liquid crystal electro-optical device in which a drive circuit is configured as a temperature-responsive frequency variable oscillation circuit, and a timing for dividing the frequency of an output reference clock signal from the oscillation circuit at a constant rate, shaping the waveform, and outputting a control signal. Since the generator circuit is configured to include a driver that supplies drive pulses with a predetermined pulse width in response to the control signal, it is possible to control temperature-dependent ferroelectric liquid crystals over the entire operating temperature range. A driving pulse can be applied that has a pulse width to which the molecules are electrically responsive.

〔従来の技術〕[Conventional technology]

従来から強誘電性液晶例えばカイラルメクチソク液晶(
以下SmC”という)分子の双安定状態を相互に電気的
に切り換えて(以下スイッチングという)駆動する強誘
電性液晶セル(以下単に液晶セルという)及びその駆動
回路は知られていた。
Ferroelectric liquid crystals have traditionally been used, such as chiral liquid crystals (
A ferroelectric liquid crystal cell (hereinafter simply referred to as a liquid crystal cell) and its driving circuit, which is driven by electrically switching (hereinafter referred to as switching) the bistable state of molecules (hereinafter referred to as "SmC"), has been known.

さらに温度依存性を有する液晶セルの動作を補償するた
めに、スイッチングに要する印加パルス(以下反転パル
スという)のパルス幅を調節することも知られていた(
例えば特開昭61−18931号公報参照)。
Furthermore, it has been known to adjust the pulse width of the applied pulse (hereinafter referred to as inversion pulse) required for switching in order to compensate for the temperature-dependent operation of liquid crystal cells (
For example, see Japanese Patent Application Laid-open No. 18931/1983).

第2図に従来の液晶セルの斜視図を示す。■、1は対向
配置している一対の基板である。2.2は基板内平面に
設けられた一軸性又はランダムな水平配向膜である。3
は配向膜2.2によって挟まれたSmC”薄膜である。
FIG. 2 shows a perspective view of a conventional liquid crystal cell. (2) 1 is a pair of substrates placed opposite each other. 2.2 is a uniaxial or random horizontal alignment film provided on the inner plane of the substrate. 3
is a SmC'' thin film sandwiched between alignment films 2.2.

SmC”は本来ラセン層構造を有するが配向膜で挟んだ
薄膜にすると図に示すように液晶分子は層をなして水平
配向する。しかしながらSmC“薄膜3を上部からみる
と分子軸が層の法線4に対してθ傾いている。この位置
は二通りあり第1の安定状態5と第2の安定状態6であ
る。ところでSmC”分子の頭部は分子軸に直交する向
きに自発分極7を有する。自発分極7の方向は基板1に
垂直でありかつ、双安定状態間で逆極性となっている。
SmC" originally has a helical layer structure, but when it is made into a thin film sandwiched between alignment films, the liquid crystal molecules form layers and are horizontally aligned as shown in the figure. However, when looking at the SmC thin film 3 from above, the molecular axis is in the direction of the layer. It is tilted by θ with respect to line 4. There are two positions for this, a first stable state 5 and a second stable state 6. By the way, the head of the SmC'' molecule has a spontaneous polarization 7 in a direction perpendicular to the molecular axis. The direction of the spontaneous polarization 7 is perpendicular to the substrate 1 and has opposite polarity between bistable states.

従って所定の極性のパルスを印加することにより安定状
態を相互にスイッチングすることができる。8.8は互
いに直交する偏光軸を有する一対の偏光板であって、複
屈折により液晶分子の第1の安定状態ドメインと第2の
安定状態ドメインを光通過及び光遮断として識別する光
学変換部材である。9及び10は対向配置された電極で
ありSmC”に対して反転パルスを印加する。
It is therefore possible to switch between stable states by applying pulses of a predetermined polarity. 8.8 is a pair of polarizing plates having polarization axes orthogonal to each other, and is an optical conversion member that identifies the first stable state domain and the second stable state domain of liquid crystal molecules as light passing and light blocking by birefringence. It is. Electrodes 9 and 10 are placed opposite each other and apply an inversion pulse to SmC''.

第3図に電極構成を示す。9は走査電極であり10は信
号電極である。両電極でマトリクスを構成し周知の時分
割駆動が行われる。
Figure 3 shows the electrode configuration. 9 is a scanning electrode, and 10 is a signal electrode. A well-known time-division drive is performed by forming a matrix with both electrodes.

第4図は第3図に示すマトリクス画素の一つに印加され
る駆動波形の例である。まず最初の選択期間中閾値以上
の波高値■。P及びパルス幅τを有する交流パルスを−
サイクル加える。今前半パルスの極性が液晶分子を第1
の安定状態から第2の安定状態にスイッチングする方向
にあると仮定す6と、後半パルスの極性は逆方向のスイ
ッチング(第2の安定状態−第1の安定状態)を行う。
FIG. 4 is an example of a driving waveform applied to one of the matrix pixels shown in FIG. 3. First, the wave height value above the threshold during the first selection period■. An alternating current pulse with P and pulse width τ is −
Add cycle. The polarity of the first half pulse now makes the liquid crystal molecules first.
6, the polarity of the second half pulse performs switching in the opposite direction (second stable state - first stable state).

そして、結果的に前半パルスのスイッチングは保存され
ず後半パルスによるスイッチングが常に有効である。従
って後半パルスが反転パルスである。
As a result, the switching of the first half pulse is not preserved, and the switching of the second half pulse is always effective. Therefore, the second half pulse is an inverted pulse.

次に非選択期間中は閾値以下の波高値を有する交流パル
スが印加され先に得られた第1の安定状態が保存される
。さらに第2の選択期間中は最初の選択期間中印加され
たパルスと逆極性のパルスが印加される。よって後半パ
ルスによって第1の安定状態から第2の安定状態へのス
イッチングが行われる。以上を1フレーム走査として双
安定状態の相互切り換えが実行される。
Next, during the non-selection period, an AC pulse having a peak value below the threshold value is applied, and the previously obtained first stable state is preserved. Further, during the second selection period, a pulse having a polarity opposite to that applied during the first selection period is applied. Therefore, switching from the first stable state to the second stable state is performed by the second half pulse. Mutual switching of the bistable states is performed with the above as one frame scan.

ところで双安定状態のスイッチング速度には温度依存性
があり、温度が低(なるほど、応答速度は遅くなる。従
って第4図に示す反転パルス幅τを温度低下に連れて大
きクシ温度補償をする技術が先に述べた先行文献に開示
されている。
By the way, the switching speed in a bistable state has a temperature dependence, and as the temperature is low (I see, the response speed becomes slow. Therefore, as shown in Fig. 4, the technology for increasing the temperature compensation by increasing the inversion pulse width τ as the temperature decreases). is disclosed in the prior literature mentioned above.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら先行文献にはτを温度補正するための具体
的駆動回路が全く開示されていない。さらに反転パルス
幅τの適切値として各温度において下限のみならず上限
も存在することが明らかになった。従って完全な温度補
償を実現するためにはτ値を常に上限値と下限値の間に
保つ必要がある。しかるに従来この両者を考慮に入れた
温度補償はなされていなかったいう問題点があった。
However, the prior literature does not disclose any specific drive circuit for temperature-correcting τ. Furthermore, it has become clear that not only a lower limit but also an upper limit exists as an appropriate value for the inversion pulse width τ at each temperature. Therefore, in order to achieve complete temperature compensation, it is necessary to always maintain the τ value between the upper and lower limits. However, there has been a problem in that temperature compensation that takes both of these factors into consideration has not been done in the past.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の技術の問題点を解決することを目的とし
、液晶セルの全動作温度範囲に渡って、反転パルス幅τ
を各温度毎の」二限値及び下限値の間に設定するもので
ある。特に駆動回路の基準クロックパルス周波数制御を
利用するものである。
The present invention aims to solve the problems of the prior art, and provides an inversion pulse width τ over the entire operating temperature range of a liquid crystal cell.
is set between the two limit values and the lower limit value for each temperature. In particular, it utilizes reference clock pulse frequency control of the drive circuit.

すなわち、応答特性に温度依存性を有するSmC5の双
安定状態をスイッチングして動作する液晶セル及びその
駆動回路よりなる強誘電性液晶電気光学装置において、
駆動回路は、外部温度に応じて所定の周波数範囲に存在
する基準クロックを発生ずる可変発振回路と、該基準ク
ロックを一定の率で分周し制御信号を作るタイミング発
生回路と、該制御信号に応答して液晶が応答可能なパル
ス幅を有する反転パルスを電極に印加するトライバより
構成されるようにした。
That is, in a ferroelectric liquid crystal electro-optical device consisting of a liquid crystal cell and its driving circuit that operate by switching the bistable state of SmC5 whose response characteristics are temperature dependent,
The drive circuit includes a variable oscillation circuit that generates a reference clock that exists in a predetermined frequency range depending on the external temperature, a timing generation circuit that divides the frequency of the reference clock at a constant rate and generates a control signal, and a timing generator that generates a control signal. The device is constructed of a driver that applies an inverted pulse having a pulse width that allows the liquid crystal to respond to the electrodes.

〔作用〕[Effect]

第1図に液晶セル(第2図に示すセルに下記のSmC”
混合物を封入したもの)の反転パルス幅一温度依存性を
示す。駆動条件ば■。、=5Vの173バイアス法であ
る。
Figure 1 shows a liquid crystal cell (the cell shown in Figure 2 has the following SmC"
Figure 2 shows the dependence of the inversion pulse width on temperature for a encapsulated mixture. Driving conditions ■. , = 5V 173 bias method.

?113 CJ、、−C“−Czl140Q−わ0R82部冒・ CJ5− C”−C2I+ 400−1>ORz   
   3部?113 CJs−C”−Coo◎−7y 0R82部I 図から明らかなように下限値を示す直線より下の領域で
はτが小さすぎ液晶分子は応答しない。温度が下がるに
連れ応答は遅くなる。又上限値を示す直線より上の領域
では反転パルス幅τが大きすぎ過大なトルクが液晶分子
に加わってしまうのでスイッチングが不安定になり一旦
安定状態の切り換わった液晶分子が再び元の安定状態に
戻ってきてしまい結果的にスイッチングが行われないこ
とになってしまう。従って本発明においては反転パフ 
− ルス幅τが常に上限線と下限線で挟まれた領域に設定さ
れるよう温度補償を行うものである。
? 113 CJ,, -C"-Czl140Q-wa0R82 part expansion・CJ5-C"-C2I+ 400-1>ORz
Part 3? 113 CJs-C"-Coo◎-7y 0R82 Part I As is clear from the figure, in the region below the straight line indicating the lower limit value, τ is too small and the liquid crystal molecules do not respond. As the temperature decreases, the response becomes slower. In the region above the straight line that indicates the upper limit value, the inversion pulse width τ is too large and excessive torque is applied to the liquid crystal molecules, making switching unstable and causing the liquid crystal molecules, which have been in a stable state, to return to their original stable state. As a result, switching is not performed.Therefore, in the present invention, the inverted puff
- Temperature compensation is performed so that the pulse width τ is always set in the region between the upper limit line and the lower limit line.

〔実施例1〕 以下図面に従って本発明の好適な実施例を詳細に説明す
る。第5図は第1の実施例であるリニア温度補償付駆動
回路を示す。第6図のタイムチャート図と併せて説明す
る。11は正の温度応答性を有する周波数可変発振回路
である。後に詳述する。
[Embodiment 1] A preferred embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 5 shows a linear temperature compensated drive circuit according to the first embodiment. This will be explained in conjunction with the time chart shown in FIG. 11 is a variable frequency oscillation circuit having positive temperature responsiveness. Details will be explained later.

発振回路11の出力は所望により分周器12で分周され
基準クロックパルスCL2を与える。13はタイミング
発生回路であってCL2を入力し所定の分周比に従って
CL、を分周波形整形し、走査電極の駆動に必要な制御
信号FLM、CL、及びDFを作成する。FLMは走査
電極(以下コモンという。)選択信号であり、この期間
中一本のコモンが選択される。CL、はコモンシフト信
号でありFLMを各コモンに線順詩的に割り当てる。
The output of the oscillation circuit 11 is frequency-divided by a frequency divider 12 as desired to provide a reference clock pulse CL2. Reference numeral 13 denotes a timing generation circuit which inputs CL2 and shapes the divided waveform of CL according to a predetermined frequency division ratio, thereby creating control signals FLM, CL, and DF necessary for driving the scan electrodes. FLM is a scanning electrode (hereinafter referred to as common) selection signal, and one common is selected during this period. CL is a common shift signal that allocates FLM to each common line-wise.

DFは交流化信号でありコモンに印加される信号を1ザ
イクル分交流化する。第6図から判るように、反転パル
スのτはDFのパルス幅τ′に−−8= 致する。τ′はDFの周期の1/2である。DFはCL
□を分周して得られるからDFの周1υ]はCLzの周
波数により決まる。従ってC1,2の周波数を調節する
ことにより反転パルス(第4図参照)のパルス幅τを調
節できる。すなわちCL2の周波数と反転パルスのτは
反比例の関係にある。14はコモンドライバであって、
FLMXCL、及びDFを入力しコモン駆動電圧を合成
してl、Cセルのコモンに出力する。15はROMであ
って表示データをメモリする。CL2により読み出され
る。
DF is an alternating current signal and converts the signal applied to the common into alternating current for one cycle. As can be seen from FIG. 6, the inversion pulse .tau. matches the DF pulse width .tau.' by -8=. τ' is 1/2 of the period of DF. DF is CL
Since it is obtained by dividing □, the period 1υ of DF] is determined by the frequency of CLz. Therefore, by adjusting the frequencies of C1 and C2, the pulse width τ of the inversion pulse (see FIG. 4) can be adjusted. That is, the frequency of CL2 and τ of the inversion pulse are inversely proportional. 14 is a common driver,
It inputs FLMXCL and DF, synthesizes a common drive voltage, and outputs it to the common of cells I and C. 15 is a ROM that stores display data; It is read by CL2.

16は信号電極(以下セグメントという)を駆動するだ
めのセグメントドライバであってROM15からのDA
TAを入力し、これに応じて各セグメントにパラレルに
セグメント駆動電圧をCL 、に同期して出力する。な
お、L Cセルは第2図及び第3図に示すものを用いる
。SmC”材料は作用の項に示めしたものを用いる。又
駆動波形は第4図に示すものを用いる。
16 is a segment driver for driving signal electrodes (hereinafter referred to as segments), and is a segment driver for driving signal electrodes (hereinafter referred to as segments).
TA is input, and in response to this, segment drive voltages are output in parallel to each segment in synchronization with CL. Note that the LC cells shown in FIGS. 2 and 3 are used. The SmC" material shown in the section on operation is used. The drive waveform shown in FIG. 4 is used.

さて、周波数可変発振器11を詳しく述べる。この発振
器は2つのインバータ、1つの容量C及び1つのサーミ
スタR17より構成されるマルチバイブレークであって
発振周波数f=1/2.2CRである。ここで負の温度
特性を持ったサーミスタ17を使うと、温度の低下に従
ってRが大きくなり、よってfが小さくなる。fが小さ
くなるとCl3の周波数も小さくなりこれと反比例する
反転パルスのτは大きくなる。そしてサーミスタのRの
変化は指数関数的であるためf、従ってτも指数関数的
に変化する。第1図から判るように、スイッチング速度
の温度依存性も指数関数的であるため、サーミスタを用
いた温度補償はτを第1図に示す好ましい領域に設定す
ることができる。
Now, the variable frequency oscillator 11 will be described in detail. This oscillator is a multi-by-break composed of two inverters, one capacitor C, and one thermistor R17, and has an oscillation frequency f=1/2.2CR. If a thermistor 17 having negative temperature characteristics is used here, R will increase as the temperature decreases, and therefore f will decrease. As f becomes smaller, the frequency of Cl3 also becomes smaller, and τ of the inversion pulse, which is inversely proportional to this, becomes larger. Since the change in R of the thermistor is exponential, f and therefore τ also change exponentially. As can be seen from FIG. 1, since the temperature dependence of the switching speed is also exponential, temperature compensation using a thermistor can set τ in the preferable range shown in FIG.

〔実施例2〕 第7図にリニア温度補償は駆動回路の第2の実施例を示
す。周波数可変発振器11以外は第5図に示す実施例1
と同じである。
[Embodiment 2] FIG. 7 shows a second embodiment of the linear temperature compensation drive circuit. Embodiment 1 shown in FIG. 5 except for the variable frequency oscillator 11
is the same as

周波数可変発振器11は正の温度特性を有するサーミス
タ17に定電流源18で一定電流を流しサーミスタ17
の両端に発生する電圧を電圧制御発振器19(V CO
)に印加する構成となっている。ここで使うVCOは入
力電圧に比例して出力周波数が大きくなるものである(
第9図参照)。従って、温度が低くなるとサーミスタ1
7のRは正の温度特性を有するから小さくなる。よって
サーミスタ17の両端の電圧は小さくなる。よってvC
Oの出力fの周波数は小さくなり、これと反比例の関係
にある反転パルスのτは大きくなる。この傾向は第1図
に示す応答特性の傾向と一致しているため、τを常に第
1図に示す好ましい領域に設定する温度補償が可能であ
る。
The variable frequency oscillator 11 causes a constant current source 18 to supply a constant current to the thermistor 17 having positive temperature characteristics.
The voltage generated across the voltage controlled oscillator 19 (V CO
). The VCO used here has an output frequency that increases in proportion to the input voltage (
(See Figure 9). Therefore, when the temperature decreases, the thermistor 1
Since R of 7 has positive temperature characteristics, it becomes small. Therefore, the voltage across the thermistor 17 becomes small. Therefore vC
The frequency of the output f of O becomes smaller, and the inverse pulse τ, which is inversely proportional to this, becomes larger. Since this tendency matches the tendency of the response characteristics shown in FIG. 1, it is possible to perform temperature compensation in which τ is always set in the preferable region shown in FIG.

〔実施例3〕 第8図は離散的温度補償付駆動回路を示す第3の実施例
を表す図である。第7図に示す第2の実施例と異なると
ころは、サーミスタ17の両端の出力電圧■をデジタル
処理した後VCO19に入力する点であり、他は同様で
ある。
[Embodiment 3] FIG. 8 is a diagram showing a third embodiment of a drive circuit with discrete temperature compensation. The difference from the second embodiment shown in FIG. 7 is that the output voltage (2) across the thermistor 17 is digitally processed and then input to the VCO 19, and the rest is the same.

このデジタル処理は、第1図においてO℃〜10℃の範
囲でτを一定値40m5ecに、10℃〜20℃におい
てτを18m5ecに、21℃〜30℃においてτを9
m5ecに、31℃〜40′Cにおいてτを4m5ec
に又41℃〜50℃においてτを2m5ecに設定する
ために行う。すなわちτを階段状に第1図で示す好まし
い領域内に設定するものである。
This digital processing sets τ to a constant value of 40 m5ec in the range of 0°C to 10°C, 18 m5ec in the range of 10°C to 20°C, and 9 m5ec in the range of 21°C to 30°C in Fig. 1.
m5ec, τ at 31℃~40'C 4m5ec
It is also carried out to set τ to 2m5ec at 41°C to 50°C. That is, τ is set stepwise within the preferable region shown in FIG.

20LtA/Dコンバータであってサーミスタ17のア
ナログ出力電圧■を上述した温度区分に従って5段階の
デジタルデータに変換する。従って出力は最低3ビツト
データでありば良い。21はROMであってVCOI9
の入力用電圧値をデジタル情報として記憶しである。A
/Dコンバータ20の3ビツト出力を受は入れこれをア
ドレスとして所定の電圧値デジタルデータを出力する。
It is a 20Lt A/D converter and converts the analog output voltage (2) of the thermistor 17 into five-stage digital data according to the above-mentioned temperature divisions. Therefore, the output only needs to be at least 3-bit data. 21 is a ROM with VCOI9
The input voltage value of is stored as digital information. A
It receives the 3-bit output of the /D converter 20 and uses this as an address to output predetermined voltage value digital data.

この電圧値デジタルデータはD/Aコンバータ22に入
力され所定の電圧がVCO19に印加される。さてこの
間のデジタル処理を下記の表により整理する。
This voltage value digital data is input to the D/A converter 22, and a predetermined voltage is applied to the VCO 19. Now, the digital processing during this time will be summarized in the table below.

まず5段階の温度範囲に応じてA/Dコンバータ20の
出力には(0,O,O)〜(1,O,O)の3ビツトデ
ータが出力する。これをアドレスとして換算ROMテー
ブル21により電圧値(0,26〜0.70)を読み出
しD/Aコンバータ22を介してVCO19に印加する
。第9図に示すVCO19の入力電圧−発振器角周波数
の特性曲線に従ってVCO出力(今仮にこれをそのまま
Cl3に用いるとする。)fCL2300 Hz〜60
00Hzを得る。
First, 3-bit data (0, O, O) to (1, O, O) is output from the A/D converter 20 in accordance with the five temperature ranges. Using this as an address, a voltage value (0.26 to 0.70) is read from the conversion ROM table 21 and applied to the VCO 19 via the D/A converter 22. According to the characteristic curve of input voltage vs. oscillator angular frequency of VCO 19 shown in FIG. 9, the VCO output (assuming this is used as it is for Cl3) fCL2300 Hz ~ 60
Get 00Hz.

さてfcL2とτの関係は、今セグメント電極の本数を
24本とすると fCL2 = (1/τX2)X24となる。
Now, the relationship between fcL2 and τ is fCL2 = (1/τX2)X24, assuming that the number of segment electrodes is 24.

すなわち、コモンスキャン周波数が1/τ×2(2倍し
であるのはτが半周期に相当するため)であるから、一
走査毎に24個のシリアルセグメントデータを処理する
ため、1/τ×2の24倍の速さの基準クロックCL、
が必要となるのである。
In other words, since the common scan frequency is 1/τ x 2 (doubling is because τ corresponds to a half period), 24 serial segment data are processed for each scan, so 1/τ A reference clock CL that is 24 times faster than ×2,
is necessary.

今この式によりf CL2の値からτを求めた結果が表
の右側に示されている。以」二に述べたように表からτ
の離散的温度補償を行っていることが理解される。
Now, the results of calculating τ from the value of f CL2 using this formula are shown on the right side of the table. From the table, τ
It is understood that discrete temperature compensation is performed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、強誘電性液晶セルの
スイッチング温度依存性を補償するために、基準クロッ
クを所定範囲内に調節することにより反転パルス幅を常
に適切な値に設定することができ、広い動作温度範囲で
安定な駆動ができるという効果がある。
As described above, according to the present invention, in order to compensate for the switching temperature dependence of a ferroelectric liquid crystal cell, the inversion pulse width can always be set to an appropriate value by adjusting the reference clock within a predetermined range. This has the effect of allowing stable driving over a wide operating temperature range.

又基準クロック調節であるので、駆動回路全体の動作を
各温度条件に合わせて、一括して制御するから効率が良
いという効果がある。
Furthermore, since the reference clock is adjusted, the operation of the entire drive circuit is controlled all at once in accordance with each temperature condition, resulting in good efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反転パルス幅の温度依存性を示す図、第2図は
従来の液晶セルの斜視図、第3図は従来の液晶セルの電
極配置図、第4図は従来の液晶セルの駆動波形図、第5
図及び第7図はリニア温度補償イ」駆動回路図、第6図
は回路動作説明用のタイムチャー1・、第8図は離散的
温度補償イ」駆動回路図、第9図はVCO発振周波数特
性圓である。 1.1・・・基板 2.2・・・配向膜 3・・・・カイラルスメクチック液晶薄膜8.8・・・
偏光板 9.10  ・・電極 11  ・・・周波数可変発振回路 13  ・・・タイミング発生回路 14  ・・・コモンドライバ 16  ・・・セグメントドライバ 以上 反軸、。、5□%、)2度依4.j、1    10゛
第1図 屡 @依 咲未の液晶セルC叫乎り図 第2図 第3図 II 乍を釆の刃徒晶セルの属区會カンタカ杉図第4図 離散白り温廐辛山1宵イ寸島匠重力回路図第8図 VCO査仮周シ朗朕符性図 第9図
Figure 1 is a diagram showing the temperature dependence of the inversion pulse width, Figure 2 is a perspective view of a conventional liquid crystal cell, Figure 3 is a diagram of the electrode arrangement of a conventional liquid crystal cell, and Figure 4 is a diagram of the drive of a conventional liquid crystal cell. Waveform diagram, 5th
Figure 7 and Figure 7 are linear temperature compensation drive circuit diagrams, Figure 6 is a time chart 1 for explaining circuit operation, Figure 8 is a discrete temperature compensation drive circuit diagram, and Figure 9 is VCO oscillation frequency. It is a characteristic circle. 1.1... Substrate 2.2... Alignment film 3... Chiral smectic liquid crystal thin film 8.8...
Polarizing plate 9.10... Electrode 11... Frequency variable oscillation circuit 13... Timing generation circuit 14... Common driver 16... Segment driver or more anti-axis. , 5□%,) 2 degrees dependent 4. j, 1 10゛Fig. 1@Isaki Mi's liquid crystal cell Rishinzan 1st Night Izushima Takumi Gravity Circuit Diagram Figure 8 VCO Inspection Temporary Shushiro My Signature Diagram Figure 9

Claims (4)

【特許請求の範囲】[Claims] (1)強誘電性液晶薄膜と、該薄膜を挟持する一対の基
板と、該薄膜の平面に接して液晶分子の双安定状態を与
える配向膜と、該薄膜を挟持し双安定状態を切り換える
所定のパルス幅の電圧を印加するための電極及び双安定
状態を光学的に識別する変換部材よりなる液晶セルと、
該電極に駆動電圧を印加する駆動回路よりなる強誘電性
液晶電気光学装置において、該駆動回路は外部温度に応
じて所定の周波数範囲内に存在する基準クロックを発生
する可変発振回路と、該基準クロックを一定の割合で分
周し制御信号を作るタイミング発生回路と該制御信号に
応答して液晶が応答可能なパルス幅を有する駆動パルス
を電極に印加するドライバよりなることを特徴とする強
誘電性液晶電気光学装置。
(1) A ferroelectric liquid crystal thin film, a pair of substrates that sandwich the thin film, an alignment film that is in contact with the plane of the thin film and provides a bistable state for liquid crystal molecules, and a predetermined film that sandwiches the thin film and switches the bistable state. a liquid crystal cell comprising an electrode for applying a voltage with a pulse width of and a conversion member for optically identifying a bistable state;
In a ferroelectric liquid crystal electro-optical device comprising a drive circuit that applies a drive voltage to the electrode, the drive circuit includes a variable oscillation circuit that generates a reference clock within a predetermined frequency range depending on external temperature; A ferroelectric device comprising a timing generation circuit that divides a clock at a constant rate to generate a control signal, and a driver that applies a driving pulse having a pulse width that allows the liquid crystal to respond to the control signal to an electrode in response to the control signal. liquid crystal electro-optical device.
(2)該可変発振回路はサーミスタを含むマルチバイブ
レータである特許請求の範囲第1項記載の強誘電性液晶
電気光学装置。
(2) The ferroelectric liquid crystal electro-optical device according to claim 1, wherein the variable oscillation circuit is a multivibrator including a thermistor.
(3)該発振回路はサーミスタの両端に生じる電圧を入
力にして制御される電圧一周波数変換器である特許請求
の範囲第1項記載の強誘電性液晶電気光学装置。
(3) The ferroelectric liquid crystal electro-optical device according to claim 1, wherein the oscillation circuit is a voltage-to-frequency converter controlled by inputting a voltage generated across a thermistor.
(4)該発振回路はサーミスタの両端に生じる電圧をデ
ジタル処理した後電圧一周波数変換器に入力する特許請
求の範囲第3項記載の強誘電性液晶電気光学装置。
(4) The ferroelectric liquid crystal electro-optical device according to claim 3, wherein the oscillation circuit digitally processes the voltage generated across the thermistor and then inputs it to the voltage-to-frequency converter.
JP61058593A 1986-03-17 1986-03-17 Ferroelectric liquid crystal electro-optical device Expired - Fee Related JP2881303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61058593A JP2881303B2 (en) 1986-03-17 1986-03-17 Ferroelectric liquid crystal electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61058593A JP2881303B2 (en) 1986-03-17 1986-03-17 Ferroelectric liquid crystal electro-optical device

Publications (2)

Publication Number Publication Date
JPS62215241A true JPS62215241A (en) 1987-09-21
JP2881303B2 JP2881303B2 (en) 1999-04-12

Family

ID=13088789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61058593A Expired - Fee Related JP2881303B2 (en) 1986-03-17 1986-03-17 Ferroelectric liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JP2881303B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024715A1 (en) * 1994-03-07 1995-09-14 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Temperature compensation of ferroelectric liquid crystal displays
GB2301450A (en) * 1994-03-07 1996-12-04 Secr Defence Temperature compensation of ferroelectric liquid crystal displays
EP1098292A2 (en) * 1999-11-05 2001-05-09 Seiko Epson Corporation Driver IC for an electro-optical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046496A (en) * 1973-08-31 1975-04-25
JPS60123825A (en) * 1983-12-09 1985-07-02 Seiko Instr & Electronics Ltd Liquid crystal display element
JPS60188930A (en) * 1984-03-08 1985-09-26 Seiko Epson Corp Driving system of liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046496A (en) * 1973-08-31 1975-04-25
JPS60123825A (en) * 1983-12-09 1985-07-02 Seiko Instr & Electronics Ltd Liquid crystal display element
JPS60188930A (en) * 1984-03-08 1985-09-26 Seiko Epson Corp Driving system of liquid crystal display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024715A1 (en) * 1994-03-07 1995-09-14 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Temperature compensation of ferroelectric liquid crystal displays
GB2301450A (en) * 1994-03-07 1996-12-04 Secr Defence Temperature compensation of ferroelectric liquid crystal displays
GB2301450B (en) * 1994-03-07 1998-01-14 Secr Defence Temperature compensation of ferro-electric liquid crystal displays
US5825344A (en) * 1994-03-07 1998-10-20 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Temperature compensation of ferro-electric liquid crystal displays
EP1098292A2 (en) * 1999-11-05 2001-05-09 Seiko Epson Corporation Driver IC for an electro-optical device
EP1098292A3 (en) * 1999-11-05 2002-10-02 Seiko Epson Corporation Driver IC for an electro-optical device
US6806871B1 (en) 1999-11-05 2004-10-19 Seiko Epson Corporation Driver IC, electro-optical device and electronic equipment

Also Published As

Publication number Publication date
JP2881303B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
JP3074640B2 (en) Driving method of liquid crystal display device
JP3840856B2 (en) Liquid crystal panel driving method, liquid crystal device and electronic apparatus
JPH10253944A (en) Liquid crystal device and its drive method
JPH02239283A (en) Electrooptical modulating element, driving method and driving circuit for this element and electrooptical modulating device
KR930016811A (en) LCD and its driving method
US4917470A (en) Driving method for liquid crystal cell and liquid crystal apparatus
US4109241A (en) Liquid crystal displays
US4425027A (en) Liquid crystal display cell having capacitance compensation
JPH10282472A (en) Driving method of ferroelectric liquid crystal element and driving circuit therefor
WO1999046634A1 (en) Antiferroelectric liquid crystal display and method of driving
EP0238287B1 (en) Ferro-electric liquid crystal electro-optical device
JPS6118931A (en) Liquid-crystal display device
JPS62215241A (en) Ferroelectric liquid crystal electrooptic device
JP2000356976A (en) Electrooptical device, electronic equipment and driving method for electrooptical panel
US4896945A (en) Liquid crystal cell array and method for driving the same
US4370647A (en) System and method of driving a multiplexed liquid crystal display by varying the frequency of the drive voltage signal
JP3827756B2 (en) LCD drive device
JPS61249025A (en) Liquid crystal optical element
JP3171713B2 (en) Antiferroelectric liquid crystal display
JPS62118326A (en) Driving method for liquid crystal element
JPS60247622A (en) Liquid crystal display device
JPS60235121A (en) Driving method of liquid crystal element
JPS62134691A (en) Liquid crystal unit
JP2843861B2 (en) Driving method of liquid crystal electro-optical device
JPH01267619A (en) Method of driving liquid crystal display element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees