JPS62118326A - Driving method for liquid crystal element - Google Patents

Driving method for liquid crystal element

Info

Publication number
JPS62118326A
JPS62118326A JP25784485A JP25784485A JPS62118326A JP S62118326 A JPS62118326 A JP S62118326A JP 25784485 A JP25784485 A JP 25784485A JP 25784485 A JP25784485 A JP 25784485A JP S62118326 A JPS62118326 A JP S62118326A
Authority
JP
Japan
Prior art keywords
liquid crystal
scanning
circuit
signal
clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25784485A
Other languages
Japanese (ja)
Inventor
Masahiko Enari
正彦 江成
Akira Tsuboyama
明 坪山
Osamu Taniguchi
修 谷口
Shinjiro Okada
伸二郎 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25784485A priority Critical patent/JPS62118326A/en
Publication of JPS62118326A publication Critical patent/JPS62118326A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform temperature compensation and to obtain proper display and drive characteristics by imposing modulation on the voltage value and pulse width of inverted driving pulses corresponding to variation in external temperature. CONSTITUTION:A liquid crystal display panel 1 consists of signal lines and scanning lines in a matrix and is equipped with a signal line driving circuit 2 as a driver, its signal latch circuit 3, and a signal shift register on the signal line side and also with a scanning line driving circuit 5 and its scanning shift register 6 on the scanning-line side. The signal line driving circuit 2 and scanning line driving circuit 5 are supplied source electric power outputs (b) and (e) from a voltage supply circuit 7. A signal input (d) to the signal shift register 4 and a scanning input (f) to the scanning shift register 6 are shifted with a signal clock h1 and a scanning clock h2 generated by a clock circuit 8, but this clock circuit 8 inputs a basic clock (i) from an oscillation circuit 9. The voltage supply circuit 7 and oscillation circuit 9 are controlled on the basis of temperature information (j) from a temperature sensor 10.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液晶表示素子や液晶−光シヤツター7レイ等
の液晶素子に関し、更に詳しくは、液晶素子に温度補償
能力を備えることにより、表示及び駆動特性を改善した
液晶素子の駆動法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to liquid crystal elements such as liquid crystal display elements and liquid crystal-optical shutter 7-rays, and more specifically, the present invention relates to liquid crystal elements such as liquid crystal display elements and liquid crystal-optical shutter 7-rays. and a method for driving a liquid crystal element with improved driving characteristics.

[開示の概要] 本明細書及び図面は、液晶表示素子や液晶−光シヤツタ
ー7レイ等に使用される液晶素子の駆動法において1反
転駆動パルスの電圧値とパルス幅とを外部温度の変化に
対応させて変調することにより1表示及び駆動特性を改
善するようにしたものである。
[Summary of the Disclosure] This specification and drawings describe how to change the voltage value and pulse width of a single inversion drive pulse depending on changes in external temperature in a method of driving a liquid crystal element used in a liquid crystal display element, a liquid crystal-optical shutter 7-ray, etc. The display and drive characteristics are improved by corresponding modulation.

[従来の技術] 近年は、これまでのTN型液晶素子の改善型として、双
安定性を有する液晶素子の使用がクラーク(C1ark
)及びラガーウォール(Lagerwal1)の両者に
より特開昭58−107218号公報、米国特許第43
87!824号明細書等で提案されている。双安定性液
晶としては、一般に、カイラルスメクチックC相(Sa
cつ又はH相(S鱈つを有する強誘電性液晶が用いられ
る。この液晶は、電界に対して第1及び第2の光学的安
定状態からなる双安定状態を有し、従って前述のTN型
の液晶で用いられた光学変調素子とは異なり1例えば一
方の電界ベクトルに対して第1の光学的安定状態に液晶
が配向し、他方の電界ベクトルに対しては第2の光学的
安定状態に液晶が配向される。またこの型の液晶は、加
えられる電界に応答して、極めて速やかに上記2つの安
定状態のいずれかを取り、かつ電界の印加のないときは
その状態を維持する性質を有する。このような性質を利
用することにより、上述した従来のTN型素子の問題点
の多くに対して、かなり木質的な改善が得られる。
[Prior Art] In recent years, the use of bistable liquid crystal elements has been developed by Clark (C1ark) as an improved version of the conventional TN type liquid crystal elements.
) and Lagerwal 1, published in JP-A-58-107218 and U.S. Pat. No. 43
This method has been proposed in the specification of No. 87!824, etc. Bistable liquid crystals are generally chiral smectic C phase (Sa
A ferroelectric liquid crystal having a C phase or an H phase (S phase) is used. This liquid crystal has a bistable state consisting of a first and a second optically stable state with respect to an electric field, and thus has a TN Unlike optical modulators used in type liquid crystals, for example, the liquid crystal is oriented in a first optically stable state for one electric field vector and in a second optically stable state for the other electric field vector. This type of liquid crystal has the property of responding to an applied electric field to very quickly take one of the above two stable states, and maintain that state when no electric field is applied. By utilizing such properties, considerable improvements can be obtained in many of the problems of the conventional TN type elements mentioned above.

[発明が解決しようとする問題点] しかしながら、この双安定性を有する液晶を光学変調素
子に使用すると、その駆動特性は外部温度に対応して大
きく変動し、クロストークあるいはコントラスト低下の
原因となる。
[Problems to be solved by the invention] However, when this bistable liquid crystal is used in an optical modulation element, its driving characteristics vary greatly depending on the external temperature, causing crosstalk or a decrease in contrast. .

本発明の目的は、このような欠点を除去し、外部温度に
対して適正な駆動特性の得られる表示素子や液晶−光シ
ヤツターに好適な液晶素子の駆動法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate such drawbacks and provide a method for driving a liquid crystal element suitable for a display element or a liquid crystal light shutter, which can obtain driving characteristics appropriate for an external temperature.

L問題点を解決するための手段] 本発明は、透明電極を形成した2枚の基板の間に強誘電
液晶を挟持して成る液晶素子において、強誘電液晶が第
1の安定状態及び第2の安定状態の双安定性を有し、そ
れら2つの安定状態間の反転駆動パルスの電圧値とパル
ス幅とを外部温度の変化に対応させて変調することを特
徴とする液晶素子の駆動法である。
Means for Solving the L Problem] The present invention provides a liquid crystal element in which a ferroelectric liquid crystal is sandwiched between two substrates on which transparent electrodes are formed, in which the ferroelectric liquid crystal is in a first stable state and a second stable state. A driving method for a liquid crystal element, characterized in that the voltage value and pulse width of an inverted driving pulse between these two stable states are modulated in response to changes in external temperature. be.

本発明に使用される液晶材料として特に適したものは、
カイラルスメクチック液晶であって、強誘電性を有する
ものである。具体的には、カイチルスメクチックC相(
Sacつ又はH相(SmH”)を有する液晶が好適であ
る。
Particularly suitable liquid crystal materials for use in the present invention include:
It is a chiral smectic liquid crystal and has ferroelectricity. Specifically, the caitylsmectic C phase (
Liquid crystals having a Sac or H phase (SmH'') are preferred.

第5図は1強誘電性液晶の動作説明のために、セルの例
を模式的に描いたものである。21と。
FIG. 5 schematically depicts an example of a cell for explaining the operation of a ferroelectric liquid crystal. 21 and.

21′は、Inz03.5n02あるいはITO(In
dium−Tin−Oxide)等の薄膜からなる透明
電極で被覆された基板(ガラス板)であり、その間に液
晶分子層22がガラス面に垂直になるよう配向したSm
C”相又はS■H”相の液晶が封入されている。太線で
示した線23が液晶分子を表わしており、この液晶分子
23はその分子に直交した方向に双極子モーメント(P
工)24を有している。基板21と21′上の電極間に
一定の閾値以上の電圧を印加すると、液晶分子23のら
せん構造がほどけ、双極子モーメント(P↓)24がす
べて電界方向に向くよう、液晶分子23は配向方向を変
えることができる。液晶分子23は、細長い形状を有し
ており、その長袖方向と短軸方向で屈折率異方性を示し
、従って例えばガラス面の上下に互いにクロスニコルの
偏光子を置けば、電圧印加極性によって光学特性が変わ
る液晶光学変調素子となることは、容易に理解される。
21' is Inz03.5n02 or ITO (In
A substrate (glass plate) coated with a transparent electrode made of a thin film such as dium-Tin-Oxide, between which a liquid crystal molecular layer 22 is oriented perpendicular to the glass surface.
C" phase or S■H" phase liquid crystal is sealed. A thick line 23 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment (P
Engineering) 24. When a voltage higher than a certain threshold is applied between the electrodes on the substrates 21 and 21', the helical structure of the liquid crystal molecules 23 is unraveled, and the liquid crystal molecules 23 are oriented so that all the dipole moments (P↓) 24 are directed in the direction of the electric field. You can change direction. The liquid crystal molecules 23 have an elongated shape and exhibit refractive index anisotropy in the long axis direction and the short axis direction. Therefore, for example, if crossed Nicol polarizers are placed above and below the glass surface, the polarity of the applied voltage changes. It is easily understood that this results in a liquid crystal optical modulation element whose optical properties change.

本発明の光学変調素子で好ましく用いられる液晶セルは
、その厚さを充分に薄く(例えば10=以下)すること
ができる、このように液晶層が薄くなるにしたがい、第
6図に示すように電界を印加していない状態でも液晶分
子のらせん構造がほどけ、非らせん構造となり、その双
極子モーメントPまたはP′は上向き(34)又は下向
き(34’)のどちらかの状態をとる。このようなセル
に、第6図に示す如く一定の閾値以上の極性の異る電界
E又はE′を電圧印加手段31と31’により付与する
と、双極子モーメントは電界E又はE′の電界ベクトル
に対応して上向き34又は下向き34′と向きを変え、
それに応じて液晶分子は、第1の安定状態33かあるい
は第2の安定状態33′の何れか二方に配向する。
The liquid crystal cell preferably used in the optical modulation element of the present invention can have a sufficiently thin thickness (for example, 10= or less).As the liquid crystal layer becomes thinner, as shown in FIG. Even when no electric field is applied, the helical structure of the liquid crystal molecules unwinds and becomes a non-helical structure, and the dipole moment P or P' is either upward (34) or downward (34'). When an electric field E or E' with a different polarity, which is equal to or higher than a certain threshold value, is applied to such a cell by the voltage applying means 31 and 31' as shown in FIG. The direction is changed to upward 34 or downward 34' in response to
Accordingly, the liquid crystal molecules are aligned in either the first stable state 33 or the second stable state 33'.

このような強誘電性液晶を光学変調素子として用いるこ
との利点は、先にも述べたが2つある。
As mentioned earlier, there are two advantages to using such a ferroelectric liquid crystal as an optical modulation element.

その第1は、応答速度が極めて速いことであり、第2は
液晶分子の配向が双安定性を有することである。第2の
点を、例えば第6図によって更に説明すると、電界Eを
印加すると液晶分子は第1の安定状態33に配向するが
、この状態は電界を切っても安定である。又、逆向きの
電界E′を印加すると、液晶分子は第2の安定状態33
′に配向してその分子の向きを変えるが、やはり電界を
切ってもこの状態にとどまっている。又、与える電界E
が一定の閾値を越えない限り、それぞれの配向状態にや
はり維持されている。このような応答速度の速さと、双
安定性が有効に実現されるにはセルとしては出来るだけ
薄い方が好ましい。
The first is that the response speed is extremely fast, and the second is that the alignment of liquid crystal molecules has bistability. To further explain the second point, for example, with reference to FIG. 6, when an electric field E is applied, the liquid crystal molecules are oriented in a first stable state 33, and this state remains stable even when the electric field is turned off. Furthermore, when an opposite electric field E' is applied, the liquid crystal molecules enter a second stable state 33.
', and changes the orientation of the molecule, but it remains in this state even when the electric field is turned off. Also, the electric field E
The respective orientation states are maintained as long as the values do not exceed a certain threshold. In order to effectively realize such fast response speed and bistability, it is preferable that the cell be as thin as possible.

[作 用] 双安定性を有する液晶素子の駆動特性は、パルス幅と閾
値電圧とで特徴づけられる。第7図は、所望の液晶素子
におけるパルス幅ΔT(縦軸)と閾値電圧vth(横軸
)の関係の一例を温度毎に示す対数値曲線図で、(a)
は10℃、(b)は20℃、(C)は30℃の例を示す
。このvth−61曲線で、駆動特性の温度依存性は明
らかであり、高温になるほど低電圧あるいは短時間で反
転させることが可能になる。これは、液晶の粘性が温度
上昇とともに下るためと考えられ、例えば、パルス幅Δ
Tを1 tasecに設定した場合、閾値電圧vthの
値は14.2V (10℃) 、 9.OV (20℃
) 、 5.8 V(30℃)と大きく変化する。この
ΔT = 1 m5ecの場合、正常に液晶の配向が反
転するのは、各温度でVth−Vth+3Vの範囲で、
それ以上の高電界を与えると反転前の他方の安定状態に
戻る現象が観察され、コントラスト低下の原因となる。
[Function] The driving characteristics of a liquid crystal element having bistability are characterized by pulse width and threshold voltage. FIG. 7 is a logarithmic curve diagram showing an example of the relationship between the pulse width ΔT (vertical axis) and the threshold voltage vth (horizontal axis) in a desired liquid crystal element at each temperature;
shows an example at 10°C, (b) at 20°C, and (C) at 30°C. From this vth-61 curve, the temperature dependence of the drive characteristics is clear, and the higher the temperature, the more it becomes possible to reverse the voltage at a lower voltage or in a shorter time. This is thought to be because the viscosity of the liquid crystal decreases as the temperature rises, and for example, the pulse width Δ
When T is set to 1 tasec, the value of threshold voltage vth is 14.2V (10°C).9. OV (20℃
), 5.8 V (30°C), which varies greatly. In the case of ΔT = 1 m5ec, the orientation of the liquid crystal is normally reversed within the range of Vth-Vth+3V at each temperature.
If a higher electric field is applied, a phenomenon of returning to the other stable state before inversion is observed, which causes a decrease in contrast.

従って、温度によって第1の安定状態と第2の安定状態
の間の反転する電圧値の範囲が限定されるため、温度補
償をパルス電圧により行うわけである。
Therefore, since the range of voltage values that can be reversed between the first stable state and the second stable state is limited depending on the temperature, temperature compensation is performed using a pulse voltage.

さらに、上記のvth−61曲線から、電圧V及びパル
ス幅ΔTを同時に外部温度に対して変調することで、電
圧値の変化の幅を少なくすることも可能である0例えば
、第7図中x−x’のような直線に沿った(ΔT 、 
V)の変調を行う場合、電圧値Vは13〜17V、パル
ス幅ΔTは0.26〜0.5履SeCの間を変化させる
ことにより温度補償することが可能である。
Furthermore, from the above vth-61 curve, it is possible to reduce the width of change in the voltage value by simultaneously modulating the voltage V and the pulse width ΔT with respect to the external temperature. -x' along a straight line (ΔT,
When performing modulation of V), temperature compensation can be performed by varying the voltage value V between 13 and 17 V and the pulse width ΔT between 0.26 and 0.5 SeC.

[実施例] 以下、本発明の実施例を図面とともに詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の駆動法に用いられる液晶素子の駆動
回路の一構成例を示すブロック図であり、第2図の(イ
)及び(a)はその液晶素子に用いた液晶セルの平面図
及び縦断面図である。
FIG. 1 is a block diagram showing an example of the configuration of a driving circuit for a liquid crystal element used in the driving method of the present invention, and (a) and (a) in FIG. 2 are diagrams of a liquid crystal cell used in the liquid crystal element. FIG. 2 is a plan view and a vertical cross-sectional view.

まず、第2図において、ガラスもしくはプラスチックの
一対の基板11a及びllb上にストライプ状電極群1
2a及び12bをITO(Indium−Tin−Ow
ide)により100OAの膜厚で形成し、その上層に
ポリイミド被膜14a及び14bを100OAの膜厚で
形成した。さらにその上層に、液晶層厚を保持するため
、1ルのドツト状のボリイ°ミドのスペーサ群13を介
設した(第2図(a)には図示せず)、このスペーサ群
13により、液晶層15は広い範囲にわたって一定に保
たれる。2枚の基板11a及びllbをラビング処理し
たのちセル組みし、下記の化学構造この液晶の相転移は
下記のとおりである。
First, in FIG. 2, a striped electrode group 1 is placed on a pair of glass or plastic substrates 11a and llb.
2a and 12b are ITO (Indium-Tin-Ow
ide) to a thickness of 100 OA, and polyimide coatings 14a and 14b were formed thereon to a thickness of 100 OA. Furthermore, in order to maintain the thickness of the liquid crystal layer, a dot-shaped spacer group 13 made of bolyimide was interposed on the upper layer (not shown in FIG. 2(a)).With this spacer group 13, The liquid crystal layer 15 is kept constant over a wide range. After rubbing the two substrates 11a and llb, they were assembled into cells, and the chemical structure was as shown below.The phase transition of this liquid crystal was as follows.

(SmC中:カイラルスメクチックC相、 SmA” 
:スメクチックA相、 SmB” :スメクチックB相
、ch:コレステリック相) この液晶素子7の液晶層を等吉相の状態になるまで昇温
し、0.5℃ハrsの降温率で、Sac・相をとる温度
範囲まで徐冷し、配向させた。そして、第2図に示した
各電極12a及び12bに矩形パルスの電圧を印加する
ことにより、直交ニコル下におけるスイッチングを観察
し、その駆動特性を調べて得たものが、第7図に示した
vth−ΔT曲線図である。
(In SmC: chiral smectic C phase, SmA"
: smectic A phase, SmB" : smectic B phase, ch: cholesteric phase) The temperature of the liquid crystal layer of this liquid crystal element 7 is raised until it reaches the isotonic phase state, and at a cooling rate of 0.5 degrees Celsius, the Sac phase is formed. Then, by applying a rectangular pulse voltage to each electrode 12a and 12b shown in Fig. 2, the switching under crossed Nicols was observed, and its driving characteristics were determined. What was obtained from the investigation is the vth-ΔT curve diagram shown in FIG.

第1図は、この液晶素子に温度補償を与える駆動回路の
ブロック図である0図中1は液晶表示パネルで、信号線
と走査線とでマトリクス構成されていて、信号線側はド
ライバである信号線駆動回路2と、その信号ラッチ回路
3と、信号シフトレジスタ4とを備え、走査線側はドラ
イバである走査線駆動回路5と、その走査シフトレジス
タ6とを備え、信号線駆動回路2及び走査線駆動回路5
には、電圧供給回路7から電源電力す及びeが供給され
ている。信号シフトレジスタ4への信号入力d及び走査
シフトレジスタ6への走査人力fはクロック回路8から
発生される信号クロックhl及び走査クロックh2によ
ってシフトされるが、そのクロック回路8は発振回路9
から基本クロッり+を入力されている0図中10は、液
晶表示バネル弄に近接して外部温度を検出するために取
付けられた温度センナで、前記電圧供給回路7及び前記
発振回路9は、この温度センサー0からの温度情報jに
基づいて制御される。
Figure 1 is a block diagram of a drive circuit that provides temperature compensation to this liquid crystal element. 1 in Figure 1 is a liquid crystal display panel, which is configured in a matrix of signal lines and scanning lines, and the signal line side is a driver. The signal line drive circuit 2 includes a signal line drive circuit 2, its signal latch circuit 3, and a signal shift register 4, and the scanning line side includes a scanning line drive circuit 5, which is a driver, and its scan shift register 6. and scanning line drive circuit 5
are supplied with power supplies S and e from a voltage supply circuit 7. The signal input d to the signal shift register 4 and the scanning input f to the scanning shift register 6 are shifted by the signal clock hl and scanning clock h2 generated from the clock circuit 8, which is generated by the oscillation circuit 9.
10 in the figure is a temperature sensor installed close to the liquid crystal display panel to detect the external temperature, and the voltage supply circuit 7 and the oscillation circuit 9 are Control is performed based on temperature information j from temperature sensor 0.

第3図は、上記液晶素子の駆動波形の1例を示す波形図
で、には走査波形、Lは信号波形、Mはそれらの信号が
交わって画素に加えられる電圧波形である。ここで、液
晶に加わる電圧の最大値をV、その時間をτとすると、
VはV′とV′との電圧差、すなわちv=v’−v′で
表わされ、第3図に示すに、L、Mの関係が成立する 
V /は前記電圧供給回路7から走査線駆動回路5へ供
給される電源電力eの電圧であり、V“は同様に信号線
駆動回路2へ供給される電源電力すの電圧であって、両
方共、温度センサーOから温度−電気変換されて送信さ
れる温度情報jに基づいて制御されることになる。第4
図(イ)は電圧供給回路7の入出力特性の一例を示すグ
ラフで、横軸に入力を温度Tの相当値で示し、縦軸に出
力電圧を示している。なお、実際にはこの入出力特性を
直接的に電源電力す及びeに適用する必要はなく、bも
しくはeのいずれか一方を一定値、他方を可変値として
もよいし、双方を可変値としてもよい。
FIG. 3 is a waveform diagram showing an example of the drive waveform of the liquid crystal element, where is a scanning waveform, L is a signal waveform, and M is a voltage waveform applied to a pixel when these signals intersect. Here, if the maximum value of the voltage applied to the liquid crystal is V and the time is τ, then
V is expressed as the voltage difference between V' and V', that is, v=v'-v', and as shown in Figure 3, the relationship between L and M holds true.
V/ is the voltage of the power supply power e supplied from the voltage supply circuit 7 to the scanning line drive circuit 5, and V'' is the voltage of the power supply power e supplied to the signal line drive circuit 2, and both Both are controlled based on the temperature information j transmitted from the temperature sensor O after temperature-electrical conversion.
Figure (a) is a graph showing an example of the input/output characteristics of the voltage supply circuit 7, in which the horizontal axis shows the input as a value equivalent to the temperature T, and the vertical axis shows the output voltage. Note that in reality, it is not necessary to directly apply this input/output characteristic to the power supplies b and e; either b or e may be set to a constant value and the other may be set to a variable value, or both may be set to a variable value. Good too.

同様に、第4図(0)は発振回路9の入出力特性の一例
を示すグラフで、横軸に入力を温度Tの相当値で示し、
縦軸にパルス幅τを示している。即ち、発振回路9の周
期も温度情報jに基づいて制御されるわけで、液晶表示
パネル1の駆動特性は電圧とパルス幅の双方から温度補
償が可能となる。なお、第3図の駆動波形は一例に過ぎ
ず、電圧値とパルス幅を制御できるものであれば、どの
ような駆動方式でも差支えない。
Similarly, FIG. 4(0) is a graph showing an example of the input/output characteristics of the oscillation circuit 9, where the horizontal axis shows the input as a value equivalent to the temperature T.
The vertical axis shows the pulse width τ. That is, the period of the oscillation circuit 9 is also controlled based on the temperature information j, and the drive characteristics of the liquid crystal display panel 1 can be temperature compensated from both the voltage and pulse width. Note that the drive waveform shown in FIG. 3 is only an example, and any drive method may be used as long as the voltage value and pulse width can be controlled.

[発明の効果] 以上説明したとおり、本発明によれば、反転駆動パルス
の電圧値とパルス幅を外部温度の変化に対応させて変調
することにより温度補償を行うことができ、適正な表示
及び駆動特性が得られ、表示素子や液晶−光シヤツター
として好適な液晶素子の駆動法を提供することができる
[Effects of the Invention] As explained above, according to the present invention, temperature compensation can be performed by modulating the voltage value and pulse width of the inversion drive pulse in response to changes in external temperature, and proper display and It is possible to provide a method for driving a liquid crystal element that provides good driving characteristics and is suitable for use as a display element or a liquid crystal light shutter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の駆動回路図、第2図(イ)
及び(a)は一実施例の平面図及び縦断面図、第3図は
駆動波形図、第4図は電圧及びパルス幅の入出力特性の
グラフ、第5図及び第6図は液晶双安定性の模式図、第
7図は電圧/パルス幅の温度別グラフである。 1−・・液晶表示パネル、2・・・信号線駆動回路。 5・・・走査線駆動回路、7・・・電圧供給回路、8・
・・クロック回路、9・・・発振回路、10・・・温度
センサ。
Figure 1 is a drive circuit diagram of an embodiment of the present invention, Figure 2 (a)
and (a) are a plan view and a vertical cross-sectional view of one embodiment, FIG. 3 is a drive waveform diagram, FIG. 4 is a graph of input/output characteristics of voltage and pulse width, and FIGS. 5 and 6 are bistable liquid crystals. FIG. 7 is a graph of voltage/pulse width according to temperature. 1-...Liquid crystal display panel, 2...Signal line drive circuit. 5... Scanning line drive circuit, 7... Voltage supply circuit, 8.
... Clock circuit, 9... Oscillation circuit, 10... Temperature sensor.

Claims (1)

【特許請求の範囲】 1)透明電極を形成した2枚の基板間に強誘電性液晶を
挟持して成る液晶素子の駆動法において、強誘電性液晶
が第1と第2の安定状態を有し、それら2つの安定状態
の間の反転駆動パルスの電圧値とパルス幅とを外部温度
の変化に対応させて変調することを特徴とする液晶素子
の駆動法。 2)強誘電性液晶がスメクチック相を有する液晶である
ことを特徴とする特許請求の範囲第1項に記載の液晶素
子の駆動法。
[Claims] 1) In a method for driving a liquid crystal element in which a ferroelectric liquid crystal is sandwiched between two substrates on which transparent electrodes are formed, the ferroelectric liquid crystal has first and second stable states. A method for driving a liquid crystal element, characterized in that the voltage value and pulse width of an inverted drive pulse between these two stable states are modulated in response to changes in external temperature. 2) The method for driving a liquid crystal element according to claim 1, wherein the ferroelectric liquid crystal is a liquid crystal having a smectic phase.
JP25784485A 1985-11-19 1985-11-19 Driving method for liquid crystal element Pending JPS62118326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25784485A JPS62118326A (en) 1985-11-19 1985-11-19 Driving method for liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25784485A JPS62118326A (en) 1985-11-19 1985-11-19 Driving method for liquid crystal element

Publications (1)

Publication Number Publication Date
JPS62118326A true JPS62118326A (en) 1987-05-29

Family

ID=17311930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25784485A Pending JPS62118326A (en) 1985-11-19 1985-11-19 Driving method for liquid crystal element

Country Status (1)

Country Link
JP (1) JPS62118326A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344636A (en) * 1986-08-13 1988-02-25 Seiko Epson Corp Driving method for liquid crystal element
EP0289144A2 (en) * 1987-03-31 1988-11-02 Canon Kabushiki Kaisha Display device
JPH01112222A (en) * 1987-10-26 1989-04-28 Canon Inc Driving device
WO1992022001A1 (en) * 1991-06-07 1992-12-10 Cambridge Research & Instrumentation, Inc. Optical retarder
JPH08101372A (en) * 1995-09-11 1996-04-16 Seiko Epson Corp Liquid crystal element driving method
US6037920A (en) * 1997-03-13 2000-03-14 Canon Kabushiki Kaisha Liquid crystal apparatus and driving method therefor
WO2003052499A1 (en) * 2001-12-18 2003-06-26 Sony Corporation Liquid crystal luminous quantity adjuster, method for driving liquid crystal luminous quantity adjuster, and camera comprising liquid crystal luminous quantity adjuster
US7042435B2 (en) 2002-12-24 2006-05-09 Minolta Co., Ltd. Liquid crystal display apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344636A (en) * 1986-08-13 1988-02-25 Seiko Epson Corp Driving method for liquid crystal element
EP0289144A2 (en) * 1987-03-31 1988-11-02 Canon Kabushiki Kaisha Display device
US4922241A (en) * 1987-03-31 1990-05-01 Canon Kabushiki Kaisha Display device for forming a frame on a display when the device operates in a block or line access mode
JPH01112222A (en) * 1987-10-26 1989-04-28 Canon Inc Driving device
WO1992022001A1 (en) * 1991-06-07 1992-12-10 Cambridge Research & Instrumentation, Inc. Optical retarder
US5247378A (en) * 1991-06-07 1993-09-21 Peter Miller Optical retarder having means for determining the retardance of the cell corresponding to the sensed capacitance thereof
JPH08101372A (en) * 1995-09-11 1996-04-16 Seiko Epson Corp Liquid crystal element driving method
US6037920A (en) * 1997-03-13 2000-03-14 Canon Kabushiki Kaisha Liquid crystal apparatus and driving method therefor
WO2003052499A1 (en) * 2001-12-18 2003-06-26 Sony Corporation Liquid crystal luminous quantity adjuster, method for driving liquid crystal luminous quantity adjuster, and camera comprising liquid crystal luminous quantity adjuster
US7394498B2 (en) 2001-12-18 2008-07-01 Sony Corporation Liquid-crystal light-amount adjusting device, method of driving liquid-crystal light-amount adjusting device, and camera including the liquid-crystal light-amount adjusting device
US7042435B2 (en) 2002-12-24 2006-05-09 Minolta Co., Ltd. Liquid crystal display apparatus

Similar Documents

Publication Publication Date Title
JP2592958B2 (en) Liquid crystal device
JPH0544009B2 (en)
JPS6261931B2 (en)
JPH0422496B2 (en)
JPH0827460B2 (en) Optical modulator
JPS62118326A (en) Driving method for liquid crystal element
JPS61249024A (en) Liquid crystal optical element
JPS62280824A (en) Driving method for liquid crystal display device
JPH0422491B2 (en)
JPS6031121A (en) Driving method of optical modulating element
JPH0431374B2 (en)
JPS60203920A (en) Driving method of liquid crystal optical element
JP2566149B2 (en) Optical modulator
JPH06100752B2 (en) Liquid crystal element
JPH0448367B2 (en)
JP2505744B2 (en) Method for manufacturing electrode substrate and optical modulation element
JPH0448366B2 (en)
JPH0823636B2 (en) Driving method of optical modulator
JP2628156B2 (en) Ferroelectric liquid crystal electro-optical device
JPS6360428A (en) Driving method for optical modulating element
JPS62150331A (en) Driving method for optical modulation element
JPS63226624A (en) Liquid crystal element
JPS6224228A (en) Driving method for liquid crystal display device
JPS6283727A (en) Driving method for ferroelectric liquid crystal element
JPS6371833A (en) Liquid crystal device