JPS60123825A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPS60123825A
JPS60123825A JP58232963A JP23296383A JPS60123825A JP S60123825 A JPS60123825 A JP S60123825A JP 58232963 A JP58232963 A JP 58232963A JP 23296383 A JP23296383 A JP 23296383A JP S60123825 A JPS60123825 A JP S60123825A
Authority
JP
Japan
Prior art keywords
liquid crystal
lighting
voltage
crystal display
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58232963A
Other languages
Japanese (ja)
Inventor
Takamasa Harada
隆正 原田
Masaaki Taguchi
田口 雅明
Koji Iwasa
浩二 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP58232963A priority Critical patent/JPS60123825A/en
Priority to AU36078/84A priority patent/AU584867B2/en
Priority to CA000469455A priority patent/CA1264190A/en
Priority to EP84308546A priority patent/EP0149899B2/en
Priority to DE8484308546T priority patent/DE3485244D1/en
Priority to KR1019840007882A priority patent/KR960005738B1/en
Publication of JPS60123825A publication Critical patent/JPS60123825A/en
Priority to US07/954,290 priority patent/USRE37333E1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3692Details of drivers for data electrodes suitable for passive matrices only
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13781Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering using smectic liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • G09G3/3629Control of matrices with row and column drivers using a passive matrix using liquid crystals having memory effects, e.g. ferroelectric liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3681Details of drivers for scan electrodes suitable for passive matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To actualize a multidivision display having a range which can not be realized with biaxial TN liquid crystal by utilizing smectic liquid crystal which is ferroelectric and performing time-division drive. CONSTITUTION:The gap of a panel is reduced to about 2mum. One of two polarizing plates have the direction of polarization coincident with the molecular axis direction of molecules in either of states + or -theta wherein molecules can be oriented. When this panel is applied with a sufficiently high DC voltage to place molecules in either of states + or -theta and then an alternating current is applied, variation in optical transmittivity converges into an intermediate state while oscillating as shown in a figure. When the alternating current has a high frequency and the voltage is low, the variation in transmittivity becomes less. Consequently, an excellent display is obtained by PVA rubbing orientation. Molecules on a selected scanning electrode move almost to (a) and (a') when a high voltage is applied or to positions (b) and (b') when an AC voltage is applied.

Description

【発明の詳細な説明】 本発明に、カイラルスメクチック液晶を用いた液晶表示
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid crystal display element using chiral smectic liquid crystal.

液晶は、色々のティスプレィに使われており、パネルが
小剣で薄く、さらに消費電力が少ない等の優ねた特性に
より、時計や計算器の表示に多く使われている。これら
のディスプレイに利用されている液晶に、サーモトロピ
ック液晶であり、ある温琴廊囲で各種の液晶相をとる。
Liquid crystals are used in a variety of displays, and due to their excellent characteristics such as thin panels and low power consumption, they are often used to display clocks and calculators. The liquid crystals used in these displays are thermotropic liquid crystals, which take on various liquid crystal phases in a certain temperature range.

この液晶相に部構造の有無で、層をもたないネマチック
(Htmと略す)と層をもつスメクチック(以下Smと
いう)に大別される。Rm[さらに−軸性のスメクチッ
クA(smA)と二軸性のスメクチックC(s m O
,)に分類される。
Depending on the presence or absence of a partial structure in this liquid crystal phase, it can be broadly classified into nematic (abbreviated as Htm), which does not have a layer, and smectic (hereinafter, referred to as Sm), which has a layer. Rm [further -axial smectic A (smA) and biaxial smectic C (s m O
,)are categorized.

第1図に、N、8mA、SmGの分子配列を模式的に示
した。PLf″:JN 、bIasmA 、cuBmc
を示す。
FIG. 1 schematically shows the molecular arrangements of N, 8mA, and SmG. PLf'': JN, bIasmA, cuBmc
shows.

さらに、液晶分子が不斉炭素をもちラセミ体でなければ
、液晶相は捩れ構造をとるようになる。
Furthermore, if the liquid crystal molecules have an asymmetric carbon and are not racemic, the liquid crystal phase will have a twisted structure.

Nで汀、カイラルネマチック(N’)であQ、8111
0でにカイラルスメクチックn(F3InC*)である
N is T, chiral nematic (N') is Q, 8111
0 and chiral smectic n (F3InC*).

一般にFl m 、(’! *l’ff 1捩れ構造′
をとるだけで々く、分子軸に垂直な方向にダイポールモ
ーメントを持ち、強誘電性を示す。
In general, Fl m , ('! *l'ff 1 twisted structure'
It has a dipole moment in the direction perpendicular to the molecular axis and exhibits ferroelectricity.

存在が証明された。そのとき合成された液晶に通称DC
)BAMBC(2−メチルブチルp−1”(p−n−f
シロキシベンジリデン)アミノ〕)と呼ばれ、現在でも
強誘電性液晶の研究に盛んに使われている。
existence has been proven. The liquid crystal synthesized at that time is commonly known as DC.
) BAMBC (2-methylbutyl p-1” (p-n-f
It is called siloxybenzylidene)amino] and is still actively used in research on ferroelectric liquid crystals.

SmO*の分子配列は、第2図のように模式的に示す事
ができる。
The molecular arrangement of SmO* can be schematically shown as shown in FIG.

分子軸に、層の法線方向と角度θだけ傾き、この角度は
どの層でも一定である。
The molecular axis is inclined at an angle θ with respect to the normal direction of the layer, and this angle is constant in all layers.

しかし、方位角ψに、層により少しづつ変化し、分子配
向はらせん構造を生じている。
However, the azimuth angle ψ changes little by little depending on the layer, and the molecular orientation has a helical structure.

このらせんのピッチに、液晶によって異なるが通常数μ
慴程度が多い。 ′ Rm C! を、1μm程肝0薄いセルに注入すると、
らせん構造が消失し、セル基板に層が垂直になったF3
mCの構造をとるようになる。
The pitch of this helix varies depending on the liquid crystal, but is usually several μ.
There are many levels of interest. ' Rm C! When injected into a cell about 1 μm thin,
F3 where the helical structure has disappeared and the layer is perpendicular to the cell substrate
It takes on the structure of mC.

smo*液晶は、分子軸に垂直な電気双極子モーメント
を持つので、薄いセルの中では層に平行に双極子モーメ
ントが揃う事になる。ここに、電場を上向き、下向きに
印加すると、分子に、層の法線に対して、十〇傾いた位
置をとる。
Since smo* liquid crystals have an electric dipole moment perpendicular to the molecular axis, the dipole moments are aligned parallel to the layers in a thin cell. When an electric field is applied upward and downward, the molecules assume a position inclined by 10 degrees with respect to the normal to the layer.

複屈折性を利用すれば、十〇の2つの状態を明暗に対応
させ、ディスプレイとして使う事ができる。
By utilizing birefringence, the two states of 10 can be made to correspond to light and dark, and can be used as a display.

第3図に、2枚の偏光板を用いた従来の表示袋筒の模式
図を示す。
FIG. 3 shows a schematic diagram of a conventional display tube using two polarizing plates.

この表示原理U、(’31or−にとLa+yer w
all(A、npl 。
This display principle U, ('31 or- La+year w
all(A, npl.

Phys TIetl、 、56.899 、1980
 ) により、発表された。
Phys TI etl, , 56.899, 1980
) was published by.

彼らは、さらにこの表示原理に、次のような特徴を持つ
と主張した。
They further claimed that this display principle has the following characteristics.

すなわち、 1+l μ嘘オーダの高速応答 r2+ メモリー性 − +31 望ましいしきい値特性 これらの特性のうち高速応答に、我々の観測においても
、μ沁オーダの応答を示している◇また、電場を印加し
て十〇いずれかの状態にした後、電場を切ってもその状
態を維持するメモリーに、彼らの主張通り存在している
In other words, 1+l Fast response of the order of µm r2+ Memory property - +31 Desired threshold characteristics Of these characteristics, our observations show a response of the order of µm ◇ Also, when applying an electric field, As they claim, it exists in memory that maintains that state even if the electric field is turned off after it is brought to one of the 10 states.

しかし、望ましいしきい値特性に我々の観測でに得られ
なかった。
However, the desired threshold properties were not obtained in our observations.

我々のデータによると、Vth 、 Vsatにvth
 =、500 (m V ) vPat= 5(v ) のような値を示した。
According to our data, Vth, Vsat and vth
=, 500 (mV) vPat=5(v).

電圧平均化法等の駆動でrrVsat = 5 Vの電
圧が選択点にかかり、非ゼ択点には5 G O、(m 
V )以下の電圧が加わるように、時分割駆動する事に
不可能である。
A voltage of rrVsat = 5 V is applied to the selected point by driving using the voltage averaging method, etc., and a voltage of 5 G O, (m
It is impossible to perform time-division driving so that voltages below V) are applied.

本発明の目的H18ff11”!”を利用した時分割駆
動する新しい表示原理と型動方法を示し、TN液晶では
実現できない範囲の多分割表示を可能にする事にある。
OBJECTS OF THE INVENTION It is an object of the present invention to present a new display principle and type movement method for time-division driving using H18ff11"!", and to enable multi-segment display in a range that cannot be achieved with TN liquid crystals.

1−J、下実施例を示し、本発明の詳細について説明す
る。
1-J, the following examples are shown to explain the details of the present invention.

第4図に、Rmρ′を利用したノくネルの断面図の一実
施例を示す。
FIG. 4 shows an embodiment of a cross-sectional view of a nozzle using Rmρ'.

通常のパネル構浩と比較して、ギヤ・ンブニ、2μm位
であり、極めて薄い。
Compared to normal panel construction, the gear width is approximately 2 μm, which is extremely thin.

寸た、二枚の偏光板のうち一枚は、第3図のように、±
θどちらかの状Wにある分子の分子軸方向と偏光方向と
一致させ、もう一枚に同様に分子軸方向におくか、また
90°傾けて配置する。
As shown in Figure 3, one of the two polarizing plates is ±
θ is made to match the molecular axis direction of the molecule in shape W with the polarization direction, and placed on the other sheet in the same way in the molecular axis direction or at an angle of 90°.

このパネルに、充分高い直流電圧を加え、分子を十〇ど
ちらかの状態にした後、交流を液晶に印加した場合、光
学的透過率の変化vx、w6図のようになる。
When a sufficiently high DC voltage is applied to this panel to bring the molecules into one of the 10 states, and then AC is applied to the liquid crystal, the optical transmittance changes as shown in the diagrams vx and w6.

図からも明らかなように、交流を印加すると光学的透過
率に振動しながら中間状−に収束していく。第7図に示
したように交流の同波数が高く、かつ電圧が低いと光学
的透過率の変化に少ない傾向にある。言いかえれば、緩
和時間が長くなる。
As is clear from the figure, when alternating current is applied, the optical transmittance oscillates and converges to an intermediate state. As shown in FIG. 7, when the same wave number of alternating current is high and the voltage is low, there is a tendency for the optical transmittance to change less. In other words, the relaxation time becomes longer.

本発明に、直流電圧によって表示状態を変イヒ代せ、そ
の後交流電圧により上言已光学的変化の緩和時間が長く
々の、あたかも±θの状態に屏い所で停止トしたように
なる。これを利用して表示を行々おうとする物である。
In the present invention, the display state can be changed by DC voltage, and then by AC voltage, the relaxation time of the optical change is long, as if it had entered a ±θ state and stopped at a certain point. This is what we are trying to display using this.

すなわち交流電圧が印加された分子に、第5図のhまた
rLb′を中心に振動しなから止寸っていると考えられ
る。この状態を利用して表示を行う事が本発明の表示原
理である。
In other words, it is considered that the molecules to which an alternating current voltage is applied do not vibrate around h or rLb' in FIG. 5 but remain at rest. The display principle of the present invention is to perform display using this state.

この特性に、−軸配向処理をしたパネルでに、配向力が
強くすぐに初期配向状態に戻ってし捷うが、例外的にP
VAラビング(pvAとH、ボIIビニールアルコール
をいう)配向力が比較的弱く交流電圧により表示状態を
保持し良好な表示を得 ・た。
Due to this characteristic, the alignment force is strong for panels subjected to -axis alignment treatment, and they quickly return to the initial alignment state, but exceptionally, P
VA rubbing (pvA and H, refers to Bo II vinyl alcohol) The orientation force was relatively weak, and the display state was maintained by alternating current voltage, resulting in a good display.

実際の駆動では、液晶に印加される駆動波形の一実施例
fl*18図の8.bのようになる。
In actual driving, an example of the driving waveform applied to the liquid crystal is shown in 8 in Fig. fl*18. It will look like b.

これらの波形のうち選択された走査電極上の画素のうち
点灯(消灯か点灯に偏向板の偏向方向によって異なるが
、一応ここでは点灯する状態が第18図のa、 R形に
よって得られるとした。)する1Ifi−IJjに第1
8図のaの波形が印加される。どの時の液晶分子の動き
に、高い電圧)18pが印加された時、第5図のaまた
に8′の位置か、その位置に近い位#T壕で動き、その
後、正・負の等しい交流電圧で、h−4だニb′の位置
で振動すると考えられる。
Of these waveforms, the pixel on the scanning electrode selected is lit (unlit or lit, depending on the deflection direction of the deflection plate, but here we assume that the lit state is obtained by the a and R shapes in Figure 18). ) to 1Ifi-IJj.
The waveform a in Figure 8 is applied. When a high voltage (18p) is applied to the movement of the liquid crystal molecules, they move in the #T trench at the position a or 8' in Figure 5, or close to that position, and then the positive and negative are equal. It is thought that the AC voltage vibrates at the position of h-4 tick b'.

この場合、駆動波形の周波数を選ぶには高い電圧λ7n
pで液晶分子が8.a′の位置に充分ルt1きえるよう
に設定しなければならhい。
In this case, to select the frequency of the drive waveform, a high voltage λ7n
At p, the liquid crystal molecules are 8. It must be set so that a sufficient distance t1 can be placed at the position a'.

寸た、第8図に示した応答時間と電圧との関係が、線形
であるから、電圧を高くとれば周波数は高くとることが
できる。
In fact, since the relationship between response time and voltage shown in FIG. 8 is linear, the frequency can be increased by increasing the voltage.

駆動素子の種類、またに表示の種類(例えば、固定表示
か動画表示)の違いによって表示状態が悪く々らない範
囲で適当な駆動周波数及び駆動電圧Vりpを設定すれば
良い。
Depending on the type of drive element and the type of display (for example, fixed display or moving image display), an appropriate drive frequency and drive voltage Vrip may be set within a range that does not cause poor display conditions.

我々が実験に用いた駆動回路(グ(! M ’08であ
り2’OVの駆動電圧Vnpで駆動した。
The drive circuit we used in the experiment (G(!M'08) was driven at a drive voltage Vnp of 2'OV.

(’!MOSの他に、FKT、バイポーラトランジスタ
、TTIll VMOFI等の回路素子により駆動する
事ができる。
('!In addition to MOS, it can be driven by circuit elements such as FKT, bipolar transistor, TTIll VMOFI, etc.

第9図に、応答時間の温度変イtを示している。FIG. 9 shows the response time as a function of temperature.

応答時間に温間が上昇するにつれ却調減少する。The response time decreases as the temperature increases.

温度が上昇し応答時間が短くなった場合、駆動電圧また
に駆動周波数が低温の時の1まであると、チラッキの多
い表示状態どなる。
When the temperature rises and the response time becomes short, if the drive voltage or drive frequency is up to 1 at a low temperature, a display state with many flickers will occur.

よってこれを防ぐには、 ■ 電圧を温度の上昇とともに、下げる。Therefore, to prevent this, ■ Lower the voltage as the temperature rises.

■ 周波数を温度の上昇とともに上げる。■ Increase the frequency as the temperature rises.

G)電圧・周波数を両方適正に設定する。G) Set both voltage and frequency appropriately.

上記三通りの方法がある。There are three methods mentioned above.

従来TNルリの液晶表示装置でに液晶にかかる駆動波形
に、ゼロボルト領域を設け、その時間幅を7制御する方
法と■の電圧を制御する方法で温度補償を行なってきた
Conventionally, temperature compensation has been performed in a TN Lully liquid crystal display device by providing a zero volt region in the drive waveform applied to the liquid crystal, and controlling the time width of the zero volt region, and controlling the voltage (2).

一方、Sm、f7!*を利用した本発明による駆動方法
では、低温で充分表示するように駆動電圧及び駆動周波
数を設定し、温度が上昇する((っれて周波数を制御す
る事により温度補償ができる。
On the other hand, Sm, f7! In the driving method according to the present invention using *, the driving voltage and driving frequency are set so that the display is sufficiently performed at low temperatures, and the temperature rises ((Thus, temperature compensation can be achieved by controlling the frequency.

もちろん、電圧による制御も可能である。しがし、セン
サーを回路内に設は自動的にWA2補償する場合に、ス
イッチング回路で駆動クロック信号を選択する方が容易
である。
Of course, control by voltage is also possible. However, it is easier to select the driving clock signal in the switching circuit when the sensor is installed in the circuit and automatically compensates for WA2.

この方法に従来の方法に比較して簡易であり、実用性に
富むと考えられる。
This method is considered to be simpler and more practical than conventional methods.

次に実際の駆動波形の実施例を示し、本発明をさらに詳
細に′説明する。
Next, examples of actual drive waveforms will be shown and the present invention will be explained in more detail.

第10図〜第13図に、本発明の、駆動波形の一実施例
である。
10 to 13 show an example of drive waveforms of the present invention.

非選択時に、±μVapの電圧が加わるように考慮され
ている。
It is considered that a voltage of ±μVap is applied when not selected.

また、図中、!及びdのサフィックスに、点灯及び非点
灯(偏光板の向きにより、ネガ及びポジどちらでも可)
に対応した記号である。
Also, in the figure! and d suffix indicates lighting and non-lighting (either negative or positive is possible depending on the orientation of the polarizing plate)
This symbol corresponds to

実際の駆動でに、点灯の走査と非点灯の走査を交互に繰
り返して表示し、第10図ないし第13図のどちらのg
才た汀dの波形を利用してもよい。
During actual driving, scanning of lighting and scanning of non-lighting are repeated and displayed alternately, and which g of Fig. 10 to Fig.
It is also possible to use the waveform of the current waveform.

よって、点灯と非点灯走査を含んだ駆動信号に、第15
図に示した。
Therefore, the 15th drive signal including lighting and non-lighting scanning is
Shown in the figure.

φY・・・コモン選択信号 7Y・・・コモン非選択信号 φX・・・セグメント選択信号 不X・・・セグメント非選択信号 同様に、$14図に示した駆動波形は、交情パルスによ
る駆動波形である。
φY...Common selection signal 7Y...Common non-selection signal φX...Segment selection signal Not be.

また、第15図a1点灯走査と非点灯走査を交互に行う
実際の、駆動信号を示している。
Further, FIG. 15 a1 shows an actual drive signal for alternately performing lighting scanning and non-lighting scanning.

第16図、第17図は、選択コモンの一つ先のコモンを
i¥点灯とし、選択コモンで点灯の場合には、反対極性
の信号を入力するかどうかで表示させる実施例である。
FIGS. 16 and 17 show an embodiment in which the common next to the selected common is lit up, and when the selected common is lit, it is displayed depending on whether a signal of the opposite polarity is input.

第16図の実施例に、選択コモンの一つ先のコモンを非
点灯とする場合、’l’xと不xの信号が印加されてい
る画素についてに、それぞれ% Vap及びVapの大
きさでそれぞれ非点灯となるような電圧の自営に印加さ
れる。
In the example of FIG. 16, when the common next to the selected common is not lit, the pixels to which the 'l' A voltage is applied to each of them to turn them off.

非点灯状態に充分々れるだけの電圧が、少なくともVa
p以下であるように設定する必要がある。
The voltage sufficient to maintain the non-lighting state is at least Va
It is necessary to set it so that it is less than or equal to p.

同様に、第17図〈よる実施例は非点1時に上記と逆に
φX、71XについてVap 、%Vapの電圧が非゛
点灯方向に印加されるように考案された例である。
Similarly, the embodiment shown in FIG. 17 is an example devised such that, contrary to the above, voltages Vap and %Vap are applied in the non-lighting direction for φX and 71X at the time of astigmatism 1.

第18図に、前記点灯と非点灯を交互に行う駆動法の場
合、実施の画素の両市極間の電位を示した図である。第
19図に示した箪−の信号の、ド1I2hとTJOWに
より点灯と非点灯を制御し、さらに第二の信号等のコモ
ン電極選択信号によりコモンを選択する。
FIG. 18 is a diagram showing the potential between the two city poles of the pixel in the case of the driving method in which lighting and non-lighting are alternately performed. Lighting and non-lighting are controlled by do1I2h and TJOW of the chest signals shown in FIG. 19, and the common is selected by a common electrode selection signal such as a second signal.

第19図の第二の信号がH1ghレベルの時に、点灯峻
び非点灯が選択される。
When the second signal in FIG. 19 is at H1gh level, dim lighting and non-lighting are selected.

第20図に、前記選択コモンの一つ先のコモン電極を非
点灯とする駆動法の画素に印加される電位の変化を示し
た図で牟る。
FIG. 20 is a diagram showing a change in the potential applied to a pixel in a driving method in which the common electrode one ahead of the selected common is turned off.

第21図に示した信号により、一つ前の走査電極の選択
及び走査電極選択を行う。また、この方法と逆に一つ先
の走査電極上の画素を全部点灯する駆動法も同様に考え
られる。
The previous scan electrode and the scan electrode are selected by the signals shown in FIG. 21. In addition, a driving method in which all pixels on the next scanning electrode are turned on is also conceivable, which is the opposite of this method.

第22図〜第27図に、それぞれ非選択時に選択時の印
加電圧VapOAの電圧が印加する場合の波形を示した
図である。
FIGS. 22 to 27 are diagrams showing waveforms when the applied voltage VapOA at the time of selection is applied in the non-selected state, respectively.

それぞれ、点灯に(51,非点灯にrzaのサフィック
スを添付した。実際の駆動でげ、点灯・非点灯信号列の
任意の組み合わせで駆動できる。しかし、この駆動でに
選択されたコモン上の画素のりち、点灯画素の場合に1
非点灯時に、讐た非点灯画素の場合に膚灯時に”AVa
pの電圧がかかる。
The suffixes ``51'' and ``rza'' are added to the lighting and non-lighting respectively.In actual driving, it can be driven with any combination of lighting and non-lighting signal sequences.However, in this drive, the pixel on the common selected by Norichi, 1 for lit pixels
In the case of non-lighting pixels, “AVa” is displayed when the skin light is on.
A voltage of p is applied.

第10図〜第27図の実施例に、非選択時にVapの±
14の正負の電圧が印加される駆動法のうち、a=3.
a==4についての実施例であり、一般に1/aの正負
の電圧が印加される駆動方法も同様に考えられる。(但
しai)任意の正の数)。
In the embodiments shown in FIGS. 10 to 27, ± of Vap when not selected is shown.
Among the driving methods in which 14 positive and negative voltages are applied, a=3.
This is an example in which a==4, and a driving method in which positive and negative voltages of 1/a are generally applied can be similarly considered. (However, ai) any positive number).

また、選択コモン電極の一つ先を消去する駆動拳 法についてもVapの’/aの正負の電圧が非選択時に
印加される駆動法は同様に考える事ができる。
Further, regarding the driving method of erasing the one ahead of the selected common electrode, a driving method in which positive and negative voltages of '/a of Vap are applied when not selected can be considered in the same way.

第28図に死Vapの正・負の電圧が非選択時にかかり
、かつ一つ先の走査電極上の画素を非点灯とする駆動法
の実施例である。
FIG. 28 shows an example of a driving method in which positive and negative voltages of Vap are applied when not selected, and the pixel on the next scanning electrode is not lit.

このような駆動法によQTN型のLCDでは実現できた
い多分割が可能になった。大容量液晶表示を簡易な単純
マ) 11ツクスで実現させ安価で高画質なディスプレ
イを、本発明により実現させる事ができる。
Such a driving method makes it possible to perform multiple divisions, which could not be achieved with a QTN type LCD. According to the present invention, a large-capacity liquid crystal display can be realized with a simple 11x display at low cost and with high image quality.

以上のような駆動波形によってSmC”を駆動した場合
、光学的透過率は第29図のようになる。
When SmC'' is driven with the driving waveform described above, the optical transmittance is as shown in FIG. 29.

走査電極のうち選択された電極上の画素に、正・狛のV
H2,pが印加されると、液晶分子は第5図のL3また
に8′の位置、もしくにその位置に近い所まで回転し、
光学的にも明・暗ともに最高のレベルに達する。
A positive and negative V is applied to the pixel on the selected electrode among the scanning electrodes.
When H2,p is applied, the liquid crystal molecules rotate to the position L3 or 8' in Figure 5, or to a position close to that position,
Optically, both brightness and darkness reach the highest level.

その後印加される正・負に等しく振動する交流パルスに
よって、光学的透過率に振【抽しながら減衰するが、減
衰に正・負の等しい交流パルスが印加された直後が最も
大きく、その後に11とんど変化がない。
The optical transmittance is then attenuated by the applied alternating current pulses, which oscillate equally in positive and negative directions, but the attenuation is greatest immediately after the alternating current pulses, which are equal in positive and negative directions, are applied, and after that, 11 There is almost no change.

分割数が多い場合は、走査電極が選択される時間は、短
くなり−、非選択の時間が大半を占める。
When the number of divisions is large, the time during which scanning electrodes are selected becomes short, and the non-selection time occupies most of the time.

例えば、分割数がnの場合、−走査時間がt。For example, if the number of divisions is n, -scanning time is t.

とすると走査電榛一本を選択する時間t、はt+ = 
”/n で表わされる。
Then, the time t for selecting one scanning line is t+ =
”/n.

また、選択されない時間t2は、 (N−1’)tn 2 である。In addition, the time t2 that is not selected is (N-1')tn 2 It is.

非選択時の交流パルスが印加されているときの光学的透
過率に、前述のように振動しているが、太きさげほとん
ど変什しない。
The optical transmittance when an AC pulse is applied in the non-selected state oscillates as described above, but there is almost no change in thickness.

この状態が、走査時間中のほとんどを占めているわけで
あるから、人間の眼にはこの状態の光学的透過率が画素
のコントラストとしてうつる。
Since this state occupies most of the scanning time, the optical transmittance of this state is perceived by the human eye as pixel contrast.

よって、分割数が多くても少なくても、コントラストに
一定になる。
Therefore, whether the number of divisions is large or small, the contrast remains constant.

我々の測定では、現在2560割が駆動可能庁パネルに
おいて、8分割〜256分割までコントラス8ハあまV
変化がなかった。
According to our measurements, 2560% of the panels are currently driveable, and the contrast is 8 to 256.
There was no change.

S[l]C*のこの現象1:I、TN型の液晶表示パネ
ルが分割数が多くなるにつれて選択点と非選択点の実効
電圧に差がなくなりコントラストが低下する事に比べて
、非常に多分割表示に適していると言える。
This phenomenon of S[l]C*1: I, compared to the fact that as the number of divisions of a TN-type liquid crystal display panel increases, there is no difference in effective voltage between selected points and non-selected points, and the contrast decreases. It can be said that it is suitable for multi-split display.

SmO”の応答が10μ(8)まで可能になるとすれは
分割数は 。−、Wnυす羨芒覧し=、soo 19にヵる。
If the response of "SmO" becomes possible up to 10μ(8), the number of divisions becomes 19.

10×2(μ式) 但1..30 rn冠Ll’X、−回の走査に必要な時
間である。捷た、分母の2に選択時間中に正・負の電圧
をとる事を示している。
10×2 (μ formula) However, 1. .. This is the time required for 30 rn crowns Ll'X, - scans. It shows that the denominator 2 takes positive and negative voltages during the selected time.

今まで世の中で得られた最高スピードで液晶が応答する
と、1500分割程変の7《ネルが駆動でき、また前述
のように1500分割と8分割でコントラストの差が出
ないようにする事が本発明の一駆蛎法で可能である。
If the liquid crystal responds at the highest speed ever achieved in the world, it will be possible to drive 7 channels that vary by about 1,500 divisions, and as mentioned above, it is important to ensure that there is no difference in contrast between 1,500 divisions and 8 divisions. This is possible with the invented method.

ここで、コントラストについて本発明のもう一つの優れ
た点について述べる。
Here, another advantage of the present invention regarding contrast will be described.

セルギーヤツブを1μm程度まそ薄くすると、BmC“
にらせん構造を消失し、層が)(ネルの基板に垂直にな
るように配列する。この事は、前にも述べた通りである
If Sergiyatsubu is made thinner by about 1μm, BmC"
The helical structure disappears and the layers are aligned perpendicular to the flannel substrate, as previously mentioned.

層が基板に垂直になるという事は、液晶分子が基板に対
して水平になるという事である。
The fact that the layers are perpendicular to the substrate means that the liquid crystal molecules are horizontal to the substrate.

この状態の分子に本発明による駆動方法で駆動した場合
、f4c5図の8.a′に近いす、p′の状態にあるか
ら、分子に近似的に基板に水平であると考えられる。
When the molecule in this state is driven by the driving method according to the present invention, 8. in the f4c5 diagram. Since it is in the state of p', which is close to a', it can be considered that the molecule is approximately parallel to the substrate.

との状態を色々の視角で見ても、分子が基板に対して水
平であるからコントラストの5変化にほとんどない。
Even when looking at the state from various viewing angles, there is almost no change in contrast because the molecules are horizontal to the substrate.

これは、TN型液晶表示パネルでは非点灯(ポジ表示の
場合)で液晶が完全に基板に対して水平にならず、視角
によっては立っているとみなす事ができ、クロストーク
が生じる。
This is because in a TN type liquid crystal display panel, when the liquid crystal is not lit (in the case of positive display), the liquid crystal is not completely horizontal to the substrate, and depending on the viewing angle, it can be considered to be standing, resulting in crosstalk.

これaいわゆる視角依存性として知られている。This is known as so-called visual angle dependence.

8111(’!*を用いた本発明による表示は、視角依
存性がない。多分割が今までの常識を一変させたのと同
様に、コントラストに関しても視角依存性がなく分割数
によりコントラストが変化しない等画期的特性を本発明
によるBmC”を用いた表示素子に持っていると言える
The display according to the present invention using 8111 ('!*) has no viewing angle dependence.Just as multi-segmentation has completely changed the conventional wisdom, the contrast also has no viewing angle dependence and the contrast changes depending on the number of partitions. It can be said that the display element using BmC" according to the present invention has groundbreaking characteristics such as:

さらに本発明による駆動波形の一実施例を第30図に示
す。
Furthermore, one embodiment of the drive waveform according to the present invention is shown in FIG.

この駆動波形に、前記i1!10図から第28図に示し
た1駆@波形等を、1回もしくに有限回走査をし表示さ
せた後、ハイインピーダンス状態にして表示を保持させ
た場合の液晶にかかる電圧変化である。
When this drive waveform is scanned once or a limited number of times and displayed, such as the 1 drive @ waveform shown in Figures i1!10 to Figure 28, the display is maintained in a high impedance state This is the voltage change applied to the liquid crystal.

紀30図でl’r、aが走査の部分を示し% biハイ
インピーダンス状態を示す。
In Figure 30, l'r and a indicate the scanning portion, and %bi indicates a high impedance state.

ハイインピーダンス状態にして第5図のす、b′の位置
に帯まる事は、光学的透過率がハイインピーダンスにし
てもほとんど変化しない事から明らかである。
It is clear that the optical transmittance remains almost unchanged even when the impedance is set to high impedance.

このメモリー性は充分長く、表示が変化する時にのみa
の走査を行えば良い。
This memory property is long enough, and only when the display changes
All you have to do is scan.

ハイインピーダンス状態における消費電力に、ゼロであ
り省エネルギー型の駆動であり、また固定表示等のあま
り表示内容が変イヒしない画像表示に最も適している。
It consumes zero power in a high impedance state and is an energy-saving type of drive, and is most suitable for image display where the display content does not change much, such as a fixed display.

この駆動と類似した駆動波形の一実施例を第31図に示
す。
An example of a drive waveform similar to this drive is shown in FIG. 31.

430図のハイインピーダンスを利用した駆動法と同様
に、1回もしくに有限回の走査を行なった後、駆動周波
数をあげて表示を保持させる。
Similar to the driving method using high impedance shown in FIG. 430, after scanning is performed once or a limited number of times, the driving frequency is increased to maintain the display.

ハイインピーダンスによりメモリするi30図に示した
駆動で汀、分子位置がハイインピーダンスとなって外部
規制力か々〈々っだ時点から徐々に初期配向状態に戻っ
てゆくのに比較して、メモ1ニー性にさらに良くがる。
Memory by high impedance i30 In contrast to the drive shown in Figure 30, where the molecular position becomes high impedance and gradually returns to the initial orientation state from the point at which the external regulating force is applied, Memo 1 It gets even better in terms of needs.

ハイインピーダンスにおける初期配向状態にもどる現象
に配向力が強い11と大きく、また渦電が高いほど大き
い。 “特に温間による影響が大きいので、第31図の
ように駆′@周波数をあげて表示を保持させる方が確実
である。
The phenomenon of returning to the initial orientation state at high impedance has a strong orientation force of 11, and the higher the eddy current, the greater it is. “Since the influence of warm temperatures is especially large, it is more reliable to maintain the display by increasing the driving frequency as shown in FIG. 31.

第31図の1駆動の場合、走査に通常どうり行い駆動周
波数をあげるだけで良い。また表示電極側でに、表示デ
ータをその1捷出力するか、点灯捷たに非点灯のどち−
らかに定めておけば良い。
In the case of one drive as shown in FIG. 31, it is sufficient to carry out scanning as usual and simply increase the drive frequency. Also, on the display electrode side, whether the display data is output one time or whether it is turned on or off.
It is best to set it clearly.

次に第31図に類似した駆動の一実施例を第32図に示
す。
Next, FIG. 32 shows an embodiment of a drive similar to that shown in FIG. 31.

前述の第31図の駆動と異々る点は1回もしくは有限回
の走査後、非選択時に印加される正・負の電圧が等しい
交流パルスと同じか、または異彦つた正・負の電圧が等
しい交流パルスを印加する$により表示状態を保持させ
る点にある。
What is different from the drive shown in Fig. 31 described above is that after one or a finite number of scans, the positive and negative voltages applied during non-selection are the same as the AC pulse, or the positive and negative voltages are different. The point is that the display state is maintained by applying an alternating current pulse with equal values.

第32園でに、±IAVanの交流パルスがかかった駆
動波形を示している。
In the 32nd garden, a drive waveform to which an AC pulse of ±IAVan is applied is shown.

この実施例の場合、走査終了後走査電極及び表示電極に
印加される駆動波形に、第33図に示し庭ような位相の
異々る振幅の等しい波形となる。
In this embodiment, the driving waveforms applied to the scanning electrodes and the display electrodes after the scanning is completed have waveforms of equal amplitude and different phases as shown in FIG. 33.

この場合、走査電極の走査は行々わす、壕だ表データの
如何を問わず、第33図の一方の波形をi+=査電極電
極もう一方の波形を表示電極へ印加する0 次に、階調表示を得るための本発明による駆動方法の実
施例について述べる。
In this case, the scan electrode is scanned, regardless of the table data, one waveform of FIG. 33 is applied to the scan electrode and the other waveform is applied to the display electrode. An embodiment of the driving method according to the present invention for obtaining a tone display will be described.

階調表示するための基本的な方法げ、選択された走査電
極上の画素に加わる±v8pのパルス幅を変調して中間
調を作り出すという物である。
The basic method for grayscale display is to create halftones by modulating the pulse width of ±v8p applied to pixels on selected scanning electrodes.

第29図に示した駆動時の光学的透過率の変化に注目す
ると、選択電圧±Vapが加わった時、明・暗の最扁レ
ベルになる。その後減衰するが、減衰して充分時間が経
った後、減衰がほとんど無くなった時の光i的透過嘉は
、選択電圧士Va、Tが加わった時の光学的透過率の矢
きさに比例している律が観測された。
Paying attention to the change in optical transmittance during driving shown in FIG. 29, when the selection voltage ±Vap is applied, the lowest level of brightness and darkness is reached. After that, it attenuates, but after a sufficient period of time has elapsed, when the attenuation is almost gone, the optical transmission is proportional to the steepness of the optical transmittance when the selected voltages Va and T are added. A law was observed.

この現象を利用して、選択的の光学透過率を調節すれば
階調表示が可能である。
Utilizing this phenomenon, gradation display is possible by selectively adjusting the optical transmittance.

選択電圧士Va、pのパルス幅に比例した光学的透過率
が得られるから、この方法により階調表示を実現できる
Since an optical transmittance proportional to the pulse width of the selected voltage regulators Va and p can be obtained, a gradation display can be realized by this method.

駆動波形の実施例は、第34図〜第47図に示した。Examples of drive waveforms are shown in FIGS. 34 to 47.

各々について説明を行なう。Each will be explained below.

第34図は、第10図のサフィ゛ツクスEが添付した波
形、すなわち点灯走査に使われる波形を階調表示用に変
更した波形の実施例である。
FIG. 34 is an example of the waveform attached with the suffix E in FIG. 10, that is, the waveform used for lighting scanning, which has been modified for gradation display.

第34図と第10図で異なっているのは、セグメント選
択信号だけであり、他の信号は同一で良い0 実施例では、τmだけ位相をずらして選択電圧Va、p
を変調している。
The only difference between FIG. 34 and FIG. 10 is the segment selection signal, and the other signals may be the same.
is modulating.

選択電圧Vapがかかるパルス幅τapは、駆動周波数
をfとすると、 ′″F′p″′巧T1(1 となる。τmに中間[四レベルに応じて調節する事によ
り階調を行う。
The pulse width τap to which the selection voltage Vap is applied is, where f is the drive frequency, ``F'p'''T1 (1). Gradation is performed by adjusting τm according to the intermediate [four levels].

筆35図の信号から実際に液晶にかかる電圧の例を示し
たのが第36図である。
FIG. 36 shows an example of the voltage actually applied to the liquid crystal from the signal shown in FIG. 35.

第36図のaに、走査電極が選択され、かつ表示電極に
選択信号が加わった時に液晶にかかる波形であり、hに
走査電極が非選択でかつ表示電極に非選択信号がかかっ
た場合の波形である。cibとは逆に走査電極が非選択
でかつ表示電極に選択信号がかかった場合の波形である
In Figure 36, a shows the waveform applied to the liquid crystal when the scanning electrode is selected and a selection signal is applied to the display electrode, and h shows the waveform when the scanning electrode is not selected and a non-selection signal is applied to the display electrode. It is a waveform. Contrary to cib, this is a waveform when the scanning electrode is not selected and a selection signal is applied to the display electrode.

b、Qともに士% Vap fとる時間は、b、cの中
で等しくなるように考慮されている。
The time required for both b and Q is considered to be equal between b and c.

第37図も第35図と同様に、第11図の非点灯走1T
:を行う信号を階調表示のために変更した波形である。
Figure 37 is the same as Figure 35, and the non-lit run 1T in Figure 11 is also similar to Figure 35.
: This is the waveform of the signal that was modified for gradation display.

第35図と異なる点に、セグメント選択信号が階段状の
波形と々つている事である。液晶にかかる選択電圧−V
apに、τmだけパルス幅を狭げめられ、τmを中間調
レベルにあわせて調節する事に円す階調表示を行う。
The difference from FIG. 35 is that the segment selection signal has a stepped waveform. Selection voltage applied to liquid crystal -V
ap, the pulse width is narrowed by τm, and gradation display is performed by adjusting τm in accordance with the intermediate tone level.

尚、第38図は1.第36図と同様に液晶にかかる波形
を示している。図中、a、b、Oけ第36図と同じ状態
を示し、第36図の波形の極性を反転した波形となって
いる。
In addition, Fig. 38 shows 1. Similar to FIG. 36, it shows the waveform applied to the liquid crystal. In the figure, a, b, and O show the same state as in FIG. 36, and the waveform has a polarity inverted from that of the waveform in FIG. 36.

第39図〜第41図は、非選択時にJVapの振幅の交
流パルスが加わる駆動波形を、階調表示用に変更した実
施例である。
FIGS. 39 to 41 show examples in which the drive waveform to which an AC pulse with the amplitude of JVap is applied when not selected is changed for gradation display.

変更するのに、前述と同様にセグメント選択信号だけで
1い。
To change the segment selection signal, just the segment selection signal is required as described above.

変更するパターンに二通iに分かれている。The pattern to be changed is divided into two.

第39図及び第41図のように階段状になる場合と、第
40図のように位相をかえる場合の二辿りである。
There are two traces: a stepwise pattern as shown in FIGS. 39 and 41, and a phase change as shown in FIG. 40.

次に、非選択時に1/1vapの振幅の交流と々る駆動
波形を階調表示用に変更した実施例を第421図〜第4
7図に示す。
Next, an example in which the alternating current driving waveform with an amplitude of 1/1 vap is changed to a gradation display when not selected is shown in FIGS. 421 to 4.
It is shown in Figure 7.

前記の階調表示と同様に、階段状の波形と位相が異なっ
た波形の二通りの変更方法があり、それぞれ選択電圧±
Vapをτmだけ変調する事ができる。
Similar to the gradation display described above, there are two ways to change the waveform: a step-like waveform and a waveform with different phases.
Vap can be modulated by τm.

一般に階調表示を得るためにセグメント選択信会を変更
するのに、二通りの方法がある事を前に示した。
It was previously shown that there are generally two ways to change the segment selection signal to obtain a grayscale display.

すなわち、 (1)位相をずらす (2)階峻状波形とする (2)の階段状波形の実施例を第48図に一般の場合に
ついて示した。
That is, (1) the phase is shifted, and (2) the waveform is made into a stepwise waveform. An example of the stepwise waveform in (2) is shown in FIG. 48 in a general case.

上の二つが点灯、下の二つが非点灯の場合の階段波形で
ある。
The top two are staircase waveforms when the lights are on, and the bottom two are when the lights are off.

”+ * vt はそれぞれ次のような電圧である。"+ *vt" are the following voltages.

V 、 : (1−(Vn、 )Vap)Vt=(’)
/ユ) Vap aa任意の数であり、非選択時に±(’/s、)Vap
の交流パルスが印加される。
V, : (1-(Vn, )Vap)Vt=(')
/yu) Vap aa Any number, ±('/s,)Vap when not selected
An alternating current pulse of is applied.

μ上のように、 Sm(’!*を利用した本発明による
表示素子は、従来の能動素子を用いないX−Yマトリッ
クス型の液晶表示素子の限界を打ち破る画期的な液晶表
示素子である。この素子を用いれば多分割表示が単純マ
トリクスで駆軸できドライバーTCO数を大幅に減少で
き、また、能動素子を用いない単純なパネルであるから
、安価な大容量液晶パネルを実現する事ができる。
As shown above, the display element according to the present invention using Sm('!* is an epoch-making liquid crystal display element that breaks the limitations of conventional X-Y matrix type liquid crystal display elements that do not use active elements. By using this element, a multi-segment display can be driven by a simple matrix, and the number of driver TCO can be greatly reduced.Also, since it is a simple panel that does not use active elements, it is possible to realize an inexpensive large-capacity liquid crystal panel. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1南μ、N 、SmA 、 SmCの分子配列の模式
図である。第2図B、BmC*のらせん軸の呼わりの分
子配列と中−分子一状態を模式的に示7した図である。 第3図に、基聚方向からみた分子状態と従来の表示原理
を示した模式図である。 第4図に、本発明による表示素子パネルの断面図である
。 第5図ぼ、本発明による表示素子における、分子状態を
示した模式図である。 第6図、第7図ぼ、直流電圧印加後ただちに交流パルス
電圧加えた場合の光学的透過率の変化を示している。 第8図に、応答時間と印加電圧との関係を示した図であ
る。第9図に応答時間と温疲との関係を示した図である
。 第10−図〜第13図は、非選択時に選択軍、圧Vap
の猶の正負の交流パルスがかかる場合の実施例である。 筆14図に、第10図〜第13図が極性が同じ波形であ
るのに対して信号が交流パルスで構成されている実施例
である。 i’@:j5図に、点灯走査・非点灯走査をまとめた実
際のφY、岡Y、φx、cbx信号を、第10図、第1
1図の絹み合わせと、第14図の場合において示した図
である。第16図〜第17図に、選択された走査電極よ
り一つ先の走査電極上の画素をすべて消去する駆動法の
うちs ’A Vapの正負の交流パルスが非選択時に
かかる実施例である。 第18図に、第10図〜第14図を用いた場合、実際に
液晶間(印加される電圧を示している。 第19図に、その制御信号を示した。 第20図は、第16図〜第17図の実施例を用いた場合
、実際に液晶間に印加される電圧を示している。 演21図は、その制御信号である。 第、2図〜Wg2;図は、非選択時K 1/1Vap 
(D 正角の交情パルスが力)力為る場合の実施例であ
る。 第28図に、選択された走査′Ri極より−っ先の走査
電極上の画素をすべて消去する駆動法のうち’A Va
pの正負の交流パルスが非選択時にががる実 。 流側である。第29図に、駆動した場合の光学的透過率
の変化を示している。 第30図〜第32図に、有限回数の走査後フローティン
グ及び周波数を高くする及び完全な交流パルスをかける
駆動法を用いた場合の液晶にかがる電圧の実施例である
。 第33図に、第32図の有限回数の走査後、コモン及び
セグメント電極に印加される波形を示している。 第34図に、有限回数走査数、ゼロボルトとする駆動法
を用いた場合の液晶にかかる電圧の実施例である。 第35図〜第41図は、選択電圧Va、pを変調して階
調を行い、また非選択時に1,4Vapの正負の交流パ
ルスがかかる場谷の駆動波形の実施例である。 第42図〜第47図に、非選択時に1/4Va、pの正
負の交流パルスがかかり、また選択電圧Va、pを変調
して階調表示を行なう駆動波形の実施例である。 第48図は、階調表示するために変更するセグメント選
択信号の前炉するパターンを示した。 1・・・双極子モーメント 2・・・液晶分子 3、d、5・・・偏向方向 6・・・電極 7・・・配向膜 8・・・液晶 9・・・シール剤 10・・・偏光板 11・・・液晶分子 以 上 出願人 セイコー電子工業株式会社 代理人 弁理士 最 上 務 第1図α第1図b 第1図C 第2図a 第3図 第6図 第7図 を 第8図 り lU ID A/ vaVv 第9図 第10図 一二一−−−−−−−−−−−−−−−−−−−−−−
。 −強硬 第15図<a> 第15図(b) 第16図 第■7図 第18図 第20図 第22図 □%vQp fYlr −−−−−−−−−−一一−−−−−−−−
−−−−0dpXp2−一−−−−−−0 第24図 菟 モ 第26図 第27図 第2S図 五 −−−−−−−−−−−−−−−−0 第30図 第311図 第33図 第34図 第35図 第360 第37図 ゛ +電←− 第40図 ん]」]」下「し「ヒ。 −fモ 、 十F−,Hゆ 石h fxt。 第45図 菟 ’hVap 泊vaρ 第46図 一一一−−−−−−−−−−− −−−−−−−−−0
第1已S図 ■p
FIG. 1 is a schematic diagram of the molecular arrangement of the first southern μ, N, SmA, and SmC. FIG. 2B is a diagram schematically showing the molecular arrangement called the helical axis of BmC* and the state of the middle molecule. FIG. 3 is a schematic diagram showing the molecular state and the conventional display principle viewed from the base direction. FIG. 4 is a sectional view of a display element panel according to the present invention. FIG. 5 is a schematic diagram showing the molecular state in the display element according to the present invention. FIGS. 6 and 7 show changes in optical transmittance when an AC pulse voltage is applied immediately after applying a DC voltage. FIG. 8 is a diagram showing the relationship between response time and applied voltage. FIG. 9 is a diagram showing the relationship between response time and thermal fatigue. Figures 10-13 show the selected army and pressure Vap when not selected.
This is an example in which positive and negative alternating current pulses are applied. 14 shows an example in which the signal is composed of alternating current pulses, whereas FIGS. 10 to 13 have waveforms with the same polarity. i'@:j5 Figures 10 and 1 show the actual φY, Oka Y, φx, and cbx signals that summarize lighting scans and non-lighting scans.
1 and the case of FIG. 14; FIG. Figures 16 and 17 show an example of a driving method in which positive and negative alternating current pulses of s'A Vap are applied when not selected, in a driving method that erases all pixels on the scanning electrode one ahead of the selected scanning electrode. . FIG. 18 shows the voltage that is actually applied between the liquid crystals when FIGS. 10 to 14 are used. FIG. 19 shows the control signal. When the embodiments shown in Figures to Figure 17 are used, the voltage actually applied between the liquid crystals is shown. Figure 21 shows the control signal. Figures 2 to Wg2; Time K 1/1Vap
(D) This is an example of a case where a positive love pulse is a force. FIG. 28 shows 'A Va' of the driving method for erasing all pixels on the scanning electrodes ahead of the selected scanning 'Ri pole.
The positive and negative alternating current pulses of p are distorted when not selected. It is on the flow side. FIG. 29 shows changes in optical transmittance when driven. FIGS. 30 to 32 show examples of the voltage applied to the liquid crystal when using the driving method of floating after a finite number of scans, increasing the frequency, and applying a complete alternating current pulse. FIG. 33 shows the waveforms applied to the common and segment electrodes after the finite number of scans of FIG. 32. FIG. 34 shows an example of the voltage applied to the liquid crystal when a driving method with a finite number of scans and zero volts is used. FIG. 35 to FIG. 41 are examples of driving waveforms of Batani, which perform gradation by modulating selection voltages Va and p, and apply positive and negative alternating current pulses of 1 and 4 Vap when not selected. 42 to 47 show examples of drive waveforms in which positive and negative alternating current pulses of 1/4 Va, p are applied when non-selected, and selection voltages Va, p are modulated to display gradation. FIG. 48 shows a pattern of segment selection signals that is changed for gradation display. 1...Dipole moment 2...Liquid crystal molecules 3, d, 5...Polarization direction 6...Electrode 7...Alignment film 8...Liquid crystal 9...Sealing agent 10...Polarized light Plate 11...Liquid crystal molecules and above Applicant Seiko Electronic Industries Co., Ltd. Agent Patent Attorney Mogami Affairs Figure 1 α Figure 1 b Figure 1 C Figure 2 a Figure 3 Figure 6 Figure 7 8 Diagram lU ID A/ vaVv Figure 9 Figure 10 Figure 121
. -Strong Figure 15 <a> Figure 15 (b) Figure 16 ■ Figure 7 Figure 18 Figure 20 Figure 22 %vQp fYlr ------
-----0dpXp2-1--------0 Figure 24 Figure 26 Figure 27 Figure 2S Figure 5 Figure 311 Figure 33 Figure 34 Figure 35 Figure 360 Figure 37 ゛+Electric←− fig. Figure 45 菟 'hVap Tomari vaρ Figure 46 111----------------0
1st tier S map ■p

Claims (1)

【特許請求の範囲】 fll 電極を有する少々くとも1枚が透明な2枚の基
板間に強誘電性液晶を挾持し、2枚の偏光板で構成され
た液晶表示素子において、基板に対して平行でない分子
状態により表示を行なう事を特徴とする液晶表示素子。 (2) 所望のパルス幅をもつ選択電圧士Vapにより
点灯、非点灯を選択し、該Vapよりも不なる正負の振
幅が等しい交流ノくルスにより基板に対して平行でない
分子状襲をとらしめる駆動方法を用いた事を特徴とする
特許請求の範囲第1項の液晶表示素子。 (3) 選択電圧が点灯または非点灯に対応した極付を
印加する走査と前期選択電圧と逆の極性の選択電圧を印
加する走査が交互に行う駆動方法を用いた事を特徴とす
る特徴請求の範囲第1項の液晶表示素子。 (4) 点灯また灯非点灯を選択走査線よりもH不先の
走査電極上の画素について点灯またに非点灯に対応した
所望の電圧を印加し、その後選択走査により該電圧と逆
極性の選択電圧の印加の有無で表示を行う駆動方法を用
いた事を特徴とする特許請求の範囲第1項の液晶表示素
子。 ・(5) 温間補償を駆動周波数により行う事を
特徴とする特許請求の範囲第1項の液晶表示素子。 (6) 点灯または非点灯状罪を実現する走査が有限回
数行なわれその後、フローティングまたは、駆動周波数
を高くする。または、正負の等しい交流パルスを印加す
る駆動方法を用いる事を特徴とする特許請求の範囲第1
項の液晶表示素子。 (7) 選択電圧のパルス幅を変調する事により階調表
示を行う駆動方法を用いる事を特徴とする特許請求の範
囲第一1項の液晶表示素子。 (8)温度補償を選択電圧Vapで行なう事を特徴とす
る特許請求の範囲第1項の液晶表示素子。
[Claims] In a liquid crystal display element composed of two polarizing plates, in which a ferroelectric liquid crystal is sandwiched between two substrates having electrodes and at least one of which is transparent, A liquid crystal display element characterized by displaying images using non-parallel molecular states. (2) Lighting or non-lighting is selected by a selected voltage regulator Vap having a desired pulse width, and a molecular attack that is not parallel to the substrate is detected by an alternating current current whose positive and negative amplitudes are equal and less than that of the Vap. A liquid crystal display element according to claim 1, characterized in that the driving method is used. (3) A driving method characterized by using a driving method in which the selection voltage alternates scanning in which a polarity corresponding to lighting or non-lighting is applied and scanning in which a selection voltage with a polarity opposite to the previous selection voltage is applied. Liquid crystal display element in range 1. (4) Select lighting or non-lighting Apply a desired voltage corresponding to lighting or non-lighting to the pixels on the scanning electrodes H ahead of the scanning line, and then select the opposite polarity of the voltage by selective scanning. A liquid crystal display element according to claim 1, characterized in that a driving method is used in which display is performed depending on whether or not a voltage is applied. (5) The liquid crystal display element according to claim 1, characterized in that warm compensation is performed by a driving frequency. (6) Scanning to realize lighting or non-lighting is performed a finite number of times, and then the floating or driving frequency is increased. Alternatively, the first claim is characterized in that a driving method is used in which alternating current pulses of equal positive and negative polarity are applied.
Liquid crystal display element. (7) The liquid crystal display element according to claim 11, characterized in that a driving method is used to display gradation by modulating the pulse width of the selection voltage. (8) The liquid crystal display element according to claim 1, wherein temperature compensation is performed using a selection voltage Vap.
JP58232963A 1983-12-09 1983-12-09 Liquid crystal display element Pending JPS60123825A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP58232963A JPS60123825A (en) 1983-12-09 1983-12-09 Liquid crystal display element
AU36078/84A AU584867B2 (en) 1983-12-09 1984-11-30 A liquid crystal display device
CA000469455A CA1264190A (en) 1983-12-09 1984-12-06 Liquid crystal display device
EP84308546A EP0149899B2 (en) 1983-12-09 1984-12-07 A liquid crystal display device
DE8484308546T DE3485244D1 (en) 1983-12-09 1984-12-07 LIQUID CRYSTAL DISPLAY DEVICE.
KR1019840007882A KR960005738B1 (en) 1983-12-09 1984-12-10 Liquid crystal display device
US07/954,290 USRE37333E1 (en) 1983-12-09 1992-09-30 Ferroelectric liquid crystal display device having an A.C. holding voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58232963A JPS60123825A (en) 1983-12-09 1983-12-09 Liquid crystal display element

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP63107174A Division JP2608455B2 (en) 1988-04-28 1988-04-28 Ferroelectric liquid crystal electro-optical device
JP10717388A Division JPS63294534A (en) 1988-04-28 1988-04-28 Electrooptic device formed of ferroelectric liquid crystal
JP63107171A Division JPH0656460B2 (en) 1988-04-28 1988-04-28 Ferroelectric liquid crystal electro-optical device

Publications (1)

Publication Number Publication Date
JPS60123825A true JPS60123825A (en) 1985-07-02

Family

ID=16947613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58232963A Pending JPS60123825A (en) 1983-12-09 1983-12-09 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS60123825A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156047A (en) * 1984-01-23 1985-08-16 Canon Inc Driving method of optical modulating element
JPS60176097A (en) * 1984-01-03 1985-09-10 トムソン−セ−エスエフ Electrically controlled memory information display unit
JPS6122325A (en) * 1984-07-10 1986-01-30 Canon Inc Driving method of optical modulating element
JPS6152630A (en) * 1984-08-22 1986-03-15 Hitachi Ltd Driving method of liquid crystal element
JPS61140924A (en) * 1984-12-13 1986-06-28 Canon Inc Driving method of optical modulation element
JPS629324A (en) * 1985-07-08 1987-01-17 Seiko Epson Corp Driving method for liquid crystal element
JPS6256935A (en) * 1985-09-06 1987-03-12 Matsushita Electric Ind Co Ltd Driving method for liquid crystal matrix panel
JPS62119521A (en) * 1985-11-19 1987-05-30 Canon Inc Optical modulating element and its driving method
JPS62164026A (en) * 1986-01-14 1987-07-20 Teikoku Chem Ind Corp Ltd Electrooptic device
EP0229647A2 (en) 1986-01-10 1987-07-22 Hitachi, Ltd. Liquid crystal matrix driving method
JPS62215241A (en) * 1986-03-17 1987-09-21 Seiko Instr & Electronics Ltd Ferroelectric liquid crystal electrooptic device
JPS62226133A (en) * 1986-03-28 1987-10-05 Hitachi Ltd Driving method for liquid crystal display device
US4709994A (en) * 1984-09-12 1987-12-01 Canon Kabushiki Kaisha Liquid crystal device using ferroelectric liquid crystal twisted in two stable states
JPS6365425A (en) * 1986-09-08 1988-03-24 Canon Inc Driving device
JPS63217329A (en) * 1987-03-05 1988-09-09 Canon Inc Liquid crystal device
JPS63249130A (en) * 1987-04-03 1988-10-17 Canon Inc Liquid crystal device
JPS63294535A (en) * 1988-04-28 1988-12-01 Seiko Instr & Electronics Ltd Electrooptic device formed of ferroelectric liquid crystal
JPS63314524A (en) * 1987-06-17 1988-12-22 Toppan Printing Co Ltd Matrix driving method for liquid crystal display element
JPS6426823A (en) * 1988-04-28 1989-01-30 Seiko Instr & Electronics Ferroelectric liquid crystal electro-optic device
US4898456A (en) * 1985-04-23 1990-02-06 Canon Kabushiki Kaisha Liquid crystal optical device
US4904064A (en) * 1985-10-14 1990-02-27 S.A.R.L. S T Lagerwall Electronic addressing of ferroelectric and flexoelectric liquid crystal devices
US5013137A (en) * 1985-09-04 1991-05-07 Canon Kabushiki Kaisha Ferroelectric liquid crystal device having increased tilt angle
US5026144A (en) * 1986-05-27 1991-06-25 Canon Kabushiki Kaisha Liquid crystal device, alignment control method therefor and driving method therefor
JPH075433A (en) * 1993-12-03 1995-01-10 Semiconductor Energy Lab Co Ltd Method for driving liquid crystal electrooptic device
US5381254A (en) * 1984-02-17 1995-01-10 Canon Kabushiki Kaisha Method for driving optical modulation device
JPH08101372A (en) * 1995-09-11 1996-04-16 Seiko Epson Corp Liquid crystal element driving method
JPH08110511A (en) * 1995-01-09 1996-04-30 Seiko Epson Corp Electrooptical device driving method
US5521727A (en) * 1992-12-24 1996-05-28 Canon Kabushiki Kaisha Method and apparatus for driving liquid crystal device whereby a single period of data signal is divided into plural pulses of varying pulse width and polarity
US5633652A (en) * 1984-02-17 1997-05-27 Canon Kabushiki Kaisha Method for driving optical modulation device
US6037920A (en) * 1997-03-13 2000-03-14 Canon Kabushiki Kaisha Liquid crystal apparatus and driving method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173781A (en) * 1982-04-07 1983-10-12 Canon Inc Cleaning device of picture forming device
JPS58173718A (en) * 1982-04-07 1983-10-12 Hitachi Ltd Optical modulating device of liquid crystal and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173781A (en) * 1982-04-07 1983-10-12 Canon Inc Cleaning device of picture forming device
JPS58173718A (en) * 1982-04-07 1983-10-12 Hitachi Ltd Optical modulating device of liquid crystal and its production

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176097A (en) * 1984-01-03 1985-09-10 トムソン−セ−エスエフ Electrically controlled memory information display unit
JPS60156047A (en) * 1984-01-23 1985-08-16 Canon Inc Driving method of optical modulating element
JPS6249605B2 (en) * 1984-01-23 1987-10-20 Canon Kk
US5436743A (en) * 1984-02-17 1995-07-25 Canon Kabushiki Kaisha Method for driving optical modulation device
US5381254A (en) * 1984-02-17 1995-01-10 Canon Kabushiki Kaisha Method for driving optical modulation device
US5633652A (en) * 1984-02-17 1997-05-27 Canon Kabushiki Kaisha Method for driving optical modulation device
US5717419A (en) * 1984-02-17 1998-02-10 Canon Kabushiki Kaisha Method for driving optical modulation device
US5724059A (en) * 1984-02-17 1998-03-03 Canon Kabushiki Kaisha Method for driving optical modulation device
JPS6122325A (en) * 1984-07-10 1986-01-30 Canon Inc Driving method of optical modulating element
JPS6152630A (en) * 1984-08-22 1986-03-15 Hitachi Ltd Driving method of liquid crystal element
US4709994A (en) * 1984-09-12 1987-12-01 Canon Kabushiki Kaisha Liquid crystal device using ferroelectric liquid crystal twisted in two stable states
JPS6249606B2 (en) * 1984-12-13 1987-10-20 Canon Kk
JPS61140924A (en) * 1984-12-13 1986-06-28 Canon Inc Driving method of optical modulation element
US4898456A (en) * 1985-04-23 1990-02-06 Canon Kabushiki Kaisha Liquid crystal optical device
JPS629324A (en) * 1985-07-08 1987-01-17 Seiko Epson Corp Driving method for liquid crystal element
US5013137A (en) * 1985-09-04 1991-05-07 Canon Kabushiki Kaisha Ferroelectric liquid crystal device having increased tilt angle
JPS6256935A (en) * 1985-09-06 1987-03-12 Matsushita Electric Ind Co Ltd Driving method for liquid crystal matrix panel
US4904064A (en) * 1985-10-14 1990-02-27 S.A.R.L. S T Lagerwall Electronic addressing of ferroelectric and flexoelectric liquid crystal devices
JPS62119521A (en) * 1985-11-19 1987-05-30 Canon Inc Optical modulating element and its driving method
JPH0544009B2 (en) * 1985-11-19 1993-07-05 Canon Kk
EP0229647A2 (en) 1986-01-10 1987-07-22 Hitachi, Ltd. Liquid crystal matrix driving method
US4770502A (en) * 1986-01-10 1988-09-13 Hitachi, Ltd. Ferroelectric liquid crystal matrix driving apparatus and method
JPS62164026A (en) * 1986-01-14 1987-07-20 Teikoku Chem Ind Corp Ltd Electrooptic device
JPS62215241A (en) * 1986-03-17 1987-09-21 Seiko Instr & Electronics Ltd Ferroelectric liquid crystal electrooptic device
JPS62226133A (en) * 1986-03-28 1987-10-05 Hitachi Ltd Driving method for liquid crystal display device
US5026144A (en) * 1986-05-27 1991-06-25 Canon Kabushiki Kaisha Liquid crystal device, alignment control method therefor and driving method therefor
JPS6365425A (en) * 1986-09-08 1988-03-24 Canon Inc Driving device
JPS63217329A (en) * 1987-03-05 1988-09-09 Canon Inc Liquid crystal device
JPS63249130A (en) * 1987-04-03 1988-10-17 Canon Inc Liquid crystal device
JPS63314524A (en) * 1987-06-17 1988-12-22 Toppan Printing Co Ltd Matrix driving method for liquid crystal display element
JPS6426823A (en) * 1988-04-28 1989-01-30 Seiko Instr & Electronics Ferroelectric liquid crystal electro-optic device
JPH0474690B2 (en) * 1988-04-28 1992-11-26
JPS63294535A (en) * 1988-04-28 1988-12-01 Seiko Instr & Electronics Ltd Electrooptic device formed of ferroelectric liquid crystal
US5521727A (en) * 1992-12-24 1996-05-28 Canon Kabushiki Kaisha Method and apparatus for driving liquid crystal device whereby a single period of data signal is divided into plural pulses of varying pulse width and polarity
JPH075433A (en) * 1993-12-03 1995-01-10 Semiconductor Energy Lab Co Ltd Method for driving liquid crystal electrooptic device
JPH08110511A (en) * 1995-01-09 1996-04-30 Seiko Epson Corp Electrooptical device driving method
JPH08101372A (en) * 1995-09-11 1996-04-16 Seiko Epson Corp Liquid crystal element driving method
US6037920A (en) * 1997-03-13 2000-03-14 Canon Kabushiki Kaisha Liquid crystal apparatus and driving method therefor

Similar Documents

Publication Publication Date Title
JPS60123825A (en) Liquid crystal display element
US7019795B2 (en) Liquid crystal device operable in two modes and method of operating the same
US5631752A (en) Antiferroelectric liquid crystal display element exhibiting a precursor tilt phenomenon
US6535191B1 (en) Liquid crystal display device
JPH0466327B2 (en)
JPS6261931B2 (en)
US20040041766A1 (en) Ocb liquid crystal display with active matrix and supplemental capacitors and driving method for the same
JPH11153778A (en) Liquid crystal cell and its driving method
JPH10253944A (en) Liquid crystal device and its drive method
JPH0225834A (en) Liquid crystal device
JPH0434130B2 (en)
JPS63116128A (en) Driving method for optical modulating element
US6670937B1 (en) Liquid crystal display apparatus
JP2608455B2 (en) Ferroelectric liquid crystal electro-optical device
JPH028814A (en) Liquid crystal device
JP2637517B2 (en) Liquid crystal device
CN102208175B (en) The driving method of bistable liquid crystal display device
JP2977356B2 (en) Driving method of active matrix liquid crystal display device
JP5421658B2 (en) Driving method and driving device for bistable nematic dot matrix liquid crystal display panel
JP2517549B2 (en) Optical modulator
JP2505760B2 (en) Driving method of optical modulator
JP5701104B2 (en) Driving method of bistable liquid crystal display device
JPS63309927A (en) Ferroelectric liquid crystal electrooptic device
JPS63294534A (en) Electrooptic device formed of ferroelectric liquid crystal
JPH07140444A (en) Liquid crystal display device and driving method therefor