JPS62214912A - Manufacture of polyimide film - Google Patents

Manufacture of polyimide film

Info

Publication number
JPS62214912A
JPS62214912A JP5783486A JP5783486A JPS62214912A JP S62214912 A JPS62214912 A JP S62214912A JP 5783486 A JP5783486 A JP 5783486A JP 5783486 A JP5783486 A JP 5783486A JP S62214912 A JPS62214912 A JP S62214912A
Authority
JP
Japan
Prior art keywords
varnish
polyimide film
polyamic acid
base material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5783486A
Other languages
Japanese (ja)
Inventor
Takao Sugawara
菅原 隆男
Yasuhiro Hase
長谷 泰宏
Yutaka Yamaguchi
豊 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP5783486A priority Critical patent/JPS62214912A/en
Publication of JPS62214912A publication Critical patent/JPS62214912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To restrain the viscosity of polyamide varnish within a given width and permit continuous flow stretching by a method wherein aromatic acid 2-anhydride, dissolved in polar organic solvent, is mixed with the solution of aromatic diamine while the mixture is sent into a reaction vessel kept under a temperature lower than a specified temperature. CONSTITUTION:The solution A of aromatic acid 2-anhydride dissolved in organic solvent such as N,N-dimethylformamide, N,N-diethylforamide or the like is mixed with the solution B of aromatic diamine such as m-phenylenediamine, 4,4-diaminodiphenylpropane or the like in a vessel 3 while the mixture is sent by a liquid sending pump into a reaction vessel 6 kept under a temperature lower than 100 deg.C to effect mixing and polymerizing reaction. Continuously synthesized polyamide acid varnish is made to flow on a base material and is dried, thereafter, is separated from the base material and is dehydrated to make cycloimide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリイミドフィルムの製造法に関し、さらに詳
しくは、ポリアミド酸ワニスを連続合成し、さらにポリ
アミド酸ワニスの合成工程と流延工程とを連続工程とし
たポリイミドフィルムの製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a polyimide film, and more specifically, a method for continuously synthesizing a polyamic acid varnish, and further continuously performing a polyamic acid varnish synthesis step and a casting step. The present invention relates to a method for producing a polyimide film as a process.

〔従来の技術〕[Conventional technology]

ポリイミドフィルムは優れた耐熱性、電気絶縁性を利用
して電気、電子用絶縁材料として多用されている。そし
て近年、磁気蒸着テープ等の用途から、高度なフィルム
厚みの均一性、表面平滑性が要求されるようになった。
Polyimide films are widely used as electrical and electronic insulating materials due to their excellent heat resistance and electrical insulation properties. In recent years, applications such as magnetic vapor deposition tapes have required highly uniform film thickness and surface smoothness.

ポリイミドは溶剤に不溶であり、耐熱性が高く、融点と
分解温度が近似しているため、まず、合成釜でポリイミ
ドの前駆体であるポリアミド酸を合成する。この一旦合
成したポリアミド酸ワニスをTダイ、ロールコータ−、
ナイフコーター等の流延装置で金属製のベルトやドラム
上に一定厚みに流延し、溶剤を乾燥除去し、自己支持性
のあるフィルムとした後、ベルトやドラムから剥離する
Since polyimide is insoluble in solvents, has high heat resistance, and has a melting point and a similar decomposition temperature, polyamic acid, which is a precursor of polyimide, is first synthesized in a synthesis kettle. This polyamic acid varnish once synthesized is applied to a T-die, a roll coater,
The film is cast to a certain thickness onto a metal belt or drum using a casting device such as a knife coater, the solvent is dried and removed to form a self-supporting film, and the film is peeled off from the belt or drum.

次いでフィルムの両端をピンやクリ・ノブで固定し、高
温度の炉を通過させて残存溶媒の除去および脱水閉環イ
ミド化を行うことによりポリイミドフィルムが得られる
。この方法において、基材としては金属製のベルトやド
ラムが使用されるが、その他、例えば特開昭50−12
7959号公報では、プラスチックフィルムを基材とし
て流延する方法、特開昭56−103227号公報では
、キャリアフィルム上に流延し、乾燥後、キャリアフィ
ルムであるプラスチックフィルム、金属フィルム等を溶
剤あるいはエツチングにより除去する方法が提案されて
いる。
Next, both ends of the film are fixed with pins or chestnut knobs, and the film is passed through a high-temperature oven to remove residual solvent and undergo dehydration and ring-closing imidization to obtain a polyimide film. In this method, a metal belt or drum is used as the base material, but other materials are used, such as JP-A No. 50-12
No. 7959 discloses a method of casting using a plastic film as a base material, and JP-A-56-103227 discloses a method of casting on a carrier film, and after drying, the carrier film such as a plastic film or metal film is coated with a solvent or A method of removing it by etching has been proposed.

一方、合成したポリアミド酸ワニスは、これを保存中、
経時的にワニス粘度が上昇したりゲル化したりする場合
があり、保存安定性に難点があった。特公昭40−30
6号公報、特公昭48−17465号公報では、ポリア
ミド酸ワニス中に蟻酸、モノクロル酢酸、ベンズアルデ
ヒド、p−アミノフェノール、p−ニトロベンズアルデ
ヒド、芳香族モノ、ジカルボン酸等を添加し、ポリアミ
ド酸ワニスの粘度を安定化する方法を提案している。
On the other hand, while the synthesized polyamic acid varnish is being stored,
Varnish viscosity may increase or gelatinize over time, and storage stability is problematic. Special Public Service
6 and Japanese Patent Publication No. 48-17465, formic acid, monochloroacetic acid, benzaldehyde, p-aminophenol, p-nitrobenzaldehyde, aromatic mono- and dicarboxylic acids, etc. are added to polyamic acid varnish. A method to stabilize viscosity is proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ポリアミド酸ワニスの合成は芳香族酸二無水物と芳香族
ジアミンとを有機極性溶媒中で反応させて行われるが、
合成は付加反応であり、ワニス粘度の上昇が大きく、一
定精度で反応を停止させることは非常に困難である。粘
度が高くなりすぎたワニスに対しては、ワニス温度を高
め、加水分解して所望の粘度に調節するクツキングと称
される操作が行われている。この際、ワニス温度を高め
ると粘度低下が大きく、比較的短時間で所望の粘度付近
に達するが、粘度が低下しすぎてしまう場合が度々生じ
る。一方、ワニス温度を低くすると加水分解速度が遅く
、所望の粘度に調節することは容易となるが長時間を要
し、経済的でない。また、これらの方法を用いてもロフ
トごとにワニス粘度が変化することは避けられない。一
方、合成したワニスは保存安定性が悪く、常温付近で保
存した場合には、経時的に粘度変化を起こすので低温で
保存しなければならず、コスト高になる。
Polyamic acid varnish is synthesized by reacting aromatic acid dianhydride and aromatic diamine in an organic polar solvent.
Synthesis is an addition reaction, and the viscosity of the varnish increases significantly, making it extremely difficult to stop the reaction with constant accuracy. For varnishes whose viscosity has become too high, an operation called "chucking" is performed in which the varnish temperature is raised and the varnish is hydrolyzed to adjust the viscosity to a desired level. At this time, when the varnish temperature is increased, the viscosity decreases significantly, and although the desired viscosity is reached in a relatively short time, the viscosity often decreases too much. On the other hand, when the varnish temperature is lowered, the hydrolysis rate is slow, and although it is easier to adjust the viscosity to a desired level, it takes a long time and is not economical. Further, even if these methods are used, it is unavoidable that the varnish viscosity changes depending on the loft. On the other hand, synthesized varnishes have poor storage stability, and if stored near room temperature, their viscosity changes over time, so they must be stored at low temperatures, resulting in high costs.

また、合成したポリアミド酸ワニスはTダイ等で一定厚
みに賦形し、基材上に流延するのであるが、このときワ
ニス粘度が変化するとTダイのスリット方向でワニス流
量が変化し、得られるフィルムの厚みが変動するという
問題を生じる。
In addition, the synthesized polyamic acid varnish is shaped into a constant thickness using a T-die or the like and cast onto a base material. At this time, if the varnish viscosity changes, the varnish flow rate changes in the slit direction of the T-die, resulting in a The problem arises that the thickness of the film produced varies.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、粘度変化の少ないポリアミド酸ワニスを
使用し、フィルム厚みが均一で表面平滑性に優れたフィ
ルムを経済的に製造することを鋭意検討した結果、本発
明に達した。
The inventors of the present invention have arrived at the present invention as a result of extensive research into economically producing a film with uniform thickness and excellent surface smoothness using a polyamic acid varnish with little change in viscosity.

すなわち、本発明のポリイミドフィルムの製造法は、芳
香族酸二無水物と芳香族ジアミンより合成したポリアミ
ド酸ワニスを基材上に流延し乾燥した後、基材から剥離
し脱水閉環イミド化を行いポリイミドフィルムを製造す
る方法において、有機極性溶媒中に溶解した芳香族酸二
無水物の溶液と芳香族ジアミンの溶液とを混合し、送液
ポンプで100℃以下に保った反応容器に送り、混合お
よび重合反応を行わしめることによりポリアミド酸ワニ
スを連続合成し、かつ、ポリアミド酸ワニスの合成工程
と基材上への流延工程とを連続工程としたことを特徴と
する。
That is, the method for producing a polyimide film of the present invention involves casting a polyamic acid varnish synthesized from an aromatic acid dianhydride and an aromatic diamine onto a base material, drying it, peeling it off from the base material, and performing dehydration and ring-closing imidization. In the method for producing a polyimide film, a solution of an aromatic acid dianhydride dissolved in an organic polar solvent and a solution of an aromatic diamine are mixed, and the mixture is sent to a reaction vessel kept at 100° C. or lower using a liquid pump, The present invention is characterized in that a polyamic acid varnish is continuously synthesized by carrying out mixing and polymerization reactions, and that the process of synthesizing the polyamic acid varnish and the process of casting it onto a substrate are continuous processes.

本発明で用いられる有機極性溶媒としては、N2N〜ジ
メチルホルムアミド、N、N−ジエチルホルムアミド、
N、N−ジメチルアセトアミド、N。
Examples of the organic polar solvent used in the present invention include N2N-dimethylformamide, N,N-diethylformamide,
N, N-dimethylacetamide, N.

N−ジエチルアセトアミド、N−メチル−2−ピロリド
ン、N−メチルカプロラクタム、ジメチルスルホキシド
、ピリジン、N、N−ジメチルメトキシアセトアミド、
ヘキサメチルフォスホロアミド、ジメチルスルホン、テ
トラメチルスルホン等、通常公知のものが単独または2
種以上の混合物として用いられる。さらには、これら有
機極性溶媒をベンゼン、トルエン、キシレン、ベンゾニ
トリル、ジオキサン、シクロヘキサンなどの如き非溶媒
と適宜組み合わせて使用することもできる。
N-diethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, pyridine, N,N-dimethylmethoxyacetamide,
Usually known compounds such as hexamethylphosphoramide, dimethylsulfone, tetramethylsulfone, etc. are used singly or in combination.
Used as a mixture of more than one species. Furthermore, these organic polar solvents can be used in appropriate combination with nonsolvents such as benzene, toluene, xylene, benzonitrile, dioxane, cyclohexane, and the like.

本発明で用いられる芳香族酸二無水物としては芳香族テ
トラカルボン酸二無水物が用いられ、例えばピロメリッ
ト酸二無水物、2,3,6.7−ナフタレンテトラカル
ボン酸二無水物、3.3’。
As the aromatic acid dianhydride used in the present invention, aromatic tetracarboxylic dianhydride is used, such as pyromellitic dianhydride, 2,3,6.7-naphthalenetetracarboxylic dianhydride, 3 .3'.

4.4′−ジフェニルテトラカルボン酸二無水物、1.
2,5.6−ナフタレンテトラカルボン酸二無水物、2
.2’、3.3’−ジフェニルテトラカルボン酸二無水
物、2.2−ビス(3,4−ジカルボキシフェニル)ブ
ロバンニ無水物、ビス(3,4−ジカルボキシフェニル
)スルホンニ無水物、3.4,9.10−ペリレンテト
ラカルボン酸二無水物、ビス(3,4−ジカルボキシフ
ェニル)エタン二無水物、ナフタレン−1,2゜4.5
−テトラカルボン酸二無水物、ナフタレン−1,4,5
,8−テトラカルボン酸二無水物、2.2−ビス−(2
,3−ジカルボキシフェニル)プロパンニ無水物、1.
1−ビス(2,3−ジカルボキシフェニル)エタン二無
水物、1.1−ビス(3,4−ジカルボキシフェニル)
エタン二無水物、ビス(2,3−ジカルボキシフェニル
)エタン二無水物、ビス(3,4−ジカルボキシフェニ
ル)スルホンニ無水物、ベンゼン−1゜2、 3. 4
−テトラカルボン酸二無水物、3,4゜3’、4’−ベ
ンゾフェノンテトラカルボン酸二無水物などであるが、
ピロメリット酸二無水物、3.3’、4.4’−ジフェ
ニルテトラカルボン酸二無水物、3.4.3’、4’−
ベンゾフェノンテトラカルボン酸二無水物またはこれら
の2種以上の混合物が好ましく、なかでもピロメリット
酸二無水物が最も好ましい。
4.4'-diphenyltetracarboxylic dianhydride, 1.
2,5.6-naphthalenetetracarboxylic dianhydride, 2
.. 2',3.3'-diphenyltetracarboxylic dianhydride, 2.2-bis(3,4-dicarboxyphenyl)brobannihydride, bis(3,4-dicarboxyphenyl)sulfonic dianhydride, 3. 4,9.10-perylenetetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl)ethane dianhydride, naphthalene-1,2°4.5
-Tetracarboxylic dianhydride, naphthalene-1,4,5
, 8-tetracarboxylic dianhydride, 2.2-bis-(2
, 3-dicarboxyphenyl)propanihydride, 1.
1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)
Ethane dianhydride, bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, benzene-1°2, 3. 4
-tetracarboxylic dianhydride, 3,4°3',4'-benzophenone tetracarboxylic dianhydride, etc.
Pyromellitic dianhydride, 3.3',4.4'-diphenyltetracarboxylic dianhydride, 3.4.3',4'-
Benzophenone tetracarboxylic dianhydride or a mixture of two or more thereof is preferred, and pyromellitic dianhydride is most preferred.

本発明で用いられる芳香族ジアミンは、Hx N−R−
NH2の構造式で示され、Rは2価の芳香族基であり、
フェニレン基、ナルタレン基、ビフェニレン基および下
記の構造式で表される基から選ばれる。
The aromatic diamine used in the present invention is Hx N-R-
It is shown by the structural formula of NH2, R is a divalent aromatic group,
It is selected from a phenylene group, a natalene group, a biphenylene group, and a group represented by the following structural formula.

〔式中、 R′は1〜4の炭素原子を持つアルキレン基、−0−1
−S−1−3O□−5 R。
[In the formula, R' is an alkylene group having 1 to 4 carbon atoms, -0-1
-S-1-3O□-5R.

R10 R。R10 R.

−o−p−o−であり、 R+、Rzは脂肪族基または芳香族基である。-o-po-o-, R+ and Rz are aliphatic groups or aromatic groups.

〕 具体的な例として、m−フェニレンジアミン、p−フェ
ニレンジアミン、4,4′−ジアミノジフェニルプロパ
ン、4.4’−ジアミノジフェニルメタン、ベンジジン
、4,4′−ジアミノジフェニルスルフィド、4.4’
−ジアミノジフェニルスルホン、3.3’−ジアミノジ
フェニルスルホン、4.4′−ジアミノジフェニルエー
テル、2゜6−ジアミツビリジン、ビス(4−アミノフ
ェニル)ジエチルシラン、ビス(4−アミノフェニル)
ジフェニルシラン、3.3’−ジクロルベンジジン、ビ
ス(4−アミノフェニル)エチルフォスフインオキシド
、ビス(4−アミノフェニル)フェニルフォスフインオ
キシド、ビス(4−アミノフェニル)−N−フェニルア
ミン、ビス(4−アミノフェニル)−N−メチルアミン
、1.5−ジアミノナフタレン、3,3′−ジメチル−
4゜4′−ジアミノジフェニル、3.3′−ジメトキシ
ベンジジンなど、およびこれらの2種以上の混合物が挙
げられる。これらの芳香族ジアミンのうち好ましいもの
は、4.4′−ジアミノジフェニルエーテル、4.4’
−ジアミノジフェニルプロパン、4.4’−ジアミノジ
フェニルメタン、p−フェニレンジアミンおよびこれら
の2種以上の混合物であり、4.4′−ジアミノジフェ
ニルエーテル、p−フェニレンジアミンが最も好ましい
] Specific examples include m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, benzidine, 4,4'-diaminodiphenyl sulfide, 4.4'
-Diamino diphenyl sulfone, 3.3'-diaminodiphenylsulfone, 4.4'-diaminodiphenyl ether, 2゜6-diamitubiridine, bis(4-aminophenyl)diethylsilane, bis(4-aminophenyl)
Diphenylsilane, 3,3'-dichlorobenzidine, bis(4-aminophenyl)ethylphosphine oxide, bis(4-aminophenyl)phenylphosphine oxide, bis(4-aminophenyl)-N-phenylamine, bis (4-aminophenyl)-N-methylamine, 1,5-diaminonaphthalene, 3,3'-dimethyl-
Examples thereof include 4°4'-diaminodiphenyl, 3,3'-dimethoxybenzidine, and mixtures of two or more thereof. Preferred among these aromatic diamines are 4.4'-diaminodiphenyl ether, 4.4'
-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, p-phenylenediamine, and mixtures of two or more thereof, with 4,4'-diaminodiphenyl ether and p-phenylenediamine being most preferred.

芳香族酸二無水物および芳香族ジアミンの有機量%を越
えると粘度が高くなりすぎ取り扱い難くなる。最も好ま
しい範囲は10〜20重量%である。
If the organic content of aromatic acid dianhydride and aromatic diamine exceeds %, the viscosity becomes too high and it becomes difficult to handle. The most preferred range is 10-20% by weight.

打機極性溶媒にあらかじめ溶解した芳香族酸二無水物の
溶液と芳香族ジアミンの溶液の水分含有量は5000p
μm以下とすることが好ましい。
The moisture content of the solution of aromatic acid dianhydride and the solution of aromatic diamine pre-dissolved in the polar solvent of the batter is 5000p.
It is preferable to set it to below micrometer.

これは、水分含有量が5000pI)mを越えると酸無
水物が開環しアミンと反応せず、また、生成したポリア
ミド酸が加水分解を受は低分子量化するためワニス粘度
が増加せず、フィルム形成能が悪いポリアミド酸ワニス
しか得られないためである。さらに好ましくは、110
00pp以下がよい。
This is because when the water content exceeds 5000 pI)m, the acid anhydride opens its ring and does not react with the amine, and the generated polyamic acid undergoes hydrolysis and becomes lower in molecular weight, so the varnish viscosity does not increase. This is because only polyamic acid varnishes with poor film-forming ability can be obtained. More preferably, 110
00 pp or less is preferable.

有機極性溶媒中に溶解した芳香族酸二無水物と芳香族ジ
アミンは、必要に応じろ過し、概略等モル量を定量ポン
プ等で混合容器に供給し、プロペラがついた撹拌棒など
を用いて混合する。この混合液を送液ポンプにより重合
反応させるための反応容器に送る。
The aromatic acid dianhydride and aromatic diamine dissolved in the organic polar solvent are filtered if necessary, and approximately equimolar amounts are supplied to a mixing container using a metering pump, etc., and then mixed using a stirring rod with a propeller, etc. Mix. This mixed solution is sent to a reaction vessel for polymerization reaction using a liquid sending pump.

反応容器は連続した管状の容器、例えば金属製のパイプ
であり、ステンレス、鉄、銅パイプ等にテフロンコート
したものが特に好ましい、また、周囲を金属線で補強し
た樹脂製のパイプも使用できる。パイプの径は管内のワ
ニスの圧力損失、送液量を考慮して決定する。またパイ
プの長さは送液量、管内のワニスの固形分濃度、反応温
度、モノマー組成、所望とするポリアミド酸ワニスの粘
度により決定する。パイプの長さを長くする程、高粘度
のポリアミド酸ワニスが得られる。これらの管状の容器
は、圧力損失が少なく、滞留部分をできるだけ生じない
ように配管し、フランジ、ネジ、溶接等で接続してコン
パクトにまとめ、100℃以下の温度になるよう温度調
節した液体中に浸漬する。ポリアミド酸ワニスの時間に
対する粘度変化は、最初は徐々に上昇し、次第に急激に
高まるので、この急激な粘度変化を抑えるため、連続し
た管状の反応容器を分割して、ワニス流路の後段を前段
より低い温度に保ち、重合反応速度を低く抑えてもよい
。あるいは、前段より後段の温度を極端に高くして、重
合反応速度より管内のワニス中の水分による加水分解反
応速度を速(し、粘度を低く抑えてもよい。このため、
管状の反応容器を数ブロックに分割し、それぞれを異な
った温度で温度調節してもよい。
The reaction vessel is a continuous tubular vessel, such as a metal pipe, and stainless steel, iron, or copper pipes coated with Teflon are particularly preferable, and resin pipes reinforced with metal wire can also be used. The diameter of the pipe is determined by taking into consideration the pressure loss of the varnish inside the pipe and the amount of liquid to be sent. The length of the pipe is determined by the amount of liquid to be fed, the solid concentration of the varnish in the pipe, the reaction temperature, the monomer composition, and the desired viscosity of the polyamic acid varnish. The longer the length of the pipe, the higher the viscosity of the polyamic acid varnish. These tubular containers are designed to have low pressure loss, are piped to minimize stagnation, and are connected using flanges, screws, welding, etc. to make them compact, and can be used in liquids whose temperature is controlled to below 100°C. Soak in. The viscosity change of polyamic acid varnish over time initially increases gradually and then gradually increases rapidly. Therefore, in order to suppress this sudden viscosity change, the continuous tubular reaction vessel is divided into sections, and the latter stage of the varnish flow path is divided into the former stage. Lower temperatures may be maintained to keep the polymerization reaction rate low. Alternatively, the temperature in the latter stage may be made extremely higher than that in the former stage, so that the rate of hydrolysis reaction due to water in the varnish in the tube is faster than the rate of polymerization reaction, and the viscosity may be kept low.
The tubular reaction vessel may be divided into several blocks, each of which may be controlled at a different temperature.

重合反応の反応温度は0〜100℃が好ましく、特に0
〜60℃が好ましい。0℃未満では反応に長時間を要し
、好ましくない、また、100℃を越えると、ワニス中
の水分によりポリアミド酸が加水分解し、得られるポリ
アミド酸ワニスの粘度が高くならず、フィルム形成能が
なくなり、好ましくない。
The reaction temperature of the polymerization reaction is preferably 0 to 100°C, particularly 0 to 100°C.
~60°C is preferred. If the temperature is lower than 0°C, the reaction will take a long time, which is undesirable. If the temperature exceeds 100°C, the polyamic acid will be hydrolyzed by the moisture in the varnish, and the viscosity of the resulting polyamic acid varnish will not increase, resulting in poor film-forming ability. This is not desirable.

送液ポンプの圧力損失は下記の簡易式で表され、重合反
応したポリアミド酸ワニスの粘度が高く、送液量が多く
、配管が長くなると送液圧力が高くなる。
The pressure loss of the liquid pump is expressed by the following simple formula. The higher the viscosity of the polymerized polyamic acid varnish, the larger the amount of liquid to be fed, and the longer the piping, the higher the liquid feeding pressure will be.

πR4 ΔP:圧力損失(g/cmす Q :送液量(cm3/5ec) L :配管の長さくcm) R:配管の径(cm) η :ワニス粘度 従って、送液ポンプとしては高吐出圧力を生じるギアポ
ンプを用いることが好ましい。
πR4 ΔP: Pressure loss (g/cm) Q: Liquid delivery amount (cm3/5ec) L: Piping length (cm) R: Piping diameter (cm) η: Varnish viscosity Therefore, high discharge pressure for a liquid pump It is preferable to use a gear pump that produces .

送液ポンプで送られたモノマー溶液を十分に混合するた
めに、混合装置を設置する。この目的のため、ガラス球
や金属棒、あるいは円柱状、角柱状の物を充填して混合
してもよいが、圧力損失が少なく、より均一な混合を行
うためには、混合装置として静止型管内混合器を設置す
ることがより好ましい。静止型管内混合器としては、東
し■のハイミキサー、スルーザーブラザース社のスタテ
ィックミキシングユニットなどがある。
A mixing device is installed to thoroughly mix the monomer solution sent by the liquid pump. For this purpose, glass bulbs, metal rods, or cylindrical or prismatic objects may be used for mixing, but in order to achieve more uniform mixing with less pressure loss, a stationary mixing device is recommended. It is more preferable to install an in-tube mixer. Static in-tube mixers include Toshi's Himixer and Sluzer Brothers' static mixing unit.

連続した管状の反応容器には間隔をあけて複数個のパル
プを設置し、ポリアミド酸ワニス取り出し口を設け、所
望粘度に達したポリアミド酸ワニスを取り出すようにし
てもよい。これは、送液されるワニスのモノマー組成、
送液量、モノマー純度および水分含有量が異なる場合、
反応時間を調整し、所望粘度のポリアミド酸ワニスを得
るためである。連続した管状の反応容器からの取り出し
口には、前述した静止型管内混合器を設置することによ
り、合成したポリアミド酸ワニスを混合し、さらに均一
化してもよい。これは、管状の反応容器断面では中心部
と周辺部では流速が異なり、反応が不均一に起こるため
、これを均一化するためである。さらに、取り出し口に
ろ過装置を設置し、異物、ゲル状物のろ過を行ってもよ
い。連続した管状の反応容器の途中あるいは取り出し口
付近には、インライン式の粘度計を必要に応じて設置し
てもよい。
A plurality of pulps may be installed at intervals in a continuous tubular reaction vessel, and a polyamic acid varnish outlet may be provided to take out the polyamic acid varnish that has reached a desired viscosity. This is based on the monomer composition of the varnish being delivered,
When the amount of liquid delivered, monomer purity and water content are different,
This is to adjust the reaction time and obtain a polyamic acid varnish with a desired viscosity. The synthesized polyamic acid varnish may be mixed and further homogenized by installing the above-mentioned static type in-tube mixer at the outlet from the continuous tubular reaction vessel. This is to make the reaction uniform since the flow velocity is different between the center and the periphery of the cross section of the tubular reaction vessel and the reaction occurs non-uniformly. Furthermore, a filtration device may be installed at the outlet to filter out foreign substances and gel-like substances. If necessary, an in-line viscometer may be installed in the middle of the continuous tubular reaction vessel or near the outlet.

連続的に合成され取り出し口より取り出されたポリアミ
ド酸ワニスは、連続的に流延装置の液受けに導かれ、次
いで基材上に均一厚みに流延される。基材としては、金
属製のベルト、ドラムが用いられる。また、プラスチッ
クフィルムを基材として使用することもできる。プラス
チックフィルム基材としては、2軸延伸ポリプロピレン
フィルム、ポリエステルフィルムで、かつその平均表面
粗さが0.05μm以下のものが好ましい。これは、ポ
リイミドフィルムの基材からの剥離が容易となり、得ら
れたポリイミドフィルムの表面が平滑になるためである
。市販フィルムでは蒸着用、コンデンサ用タイプのもの
が好ましく、コロナ放電処理のないものがよい。コロナ
放電処理を行った基材フィルムでは、接着性がよく、基
材フィルムとポリアミド酸フィルムとの剥離が非常に困
難となるためである。また、1軸延伸、または無延伸フ
ィルムでは、2軸延伸したフィルムに比べ、同一温度で
比較して収縮が大きく、より低温で乾燥しなければなら
ず経済的でない。その他、ポリエーテルケトン、ポリイ
ミドフィルム、ポリカーボネート、ボリアリレート、ポ
リスルホン、ポリエーテルイミド、ポリエーテルスルホ
ンフィルム等も使用できる。
The polyamic acid varnish that is continuously synthesized and taken out from the outlet is continuously led to the liquid receiver of the casting device, and then cast onto the substrate to a uniform thickness. A metal belt or drum is used as the base material. Moreover, a plastic film can also be used as a base material. The plastic film base material is preferably a biaxially stretched polypropylene film or a polyester film with an average surface roughness of 0.05 μm or less. This is because the polyimide film can be easily peeled off from the base material, and the surface of the obtained polyimide film becomes smooth. Among commercially available films, those for vapor deposition and capacitor use are preferred, and those without corona discharge treatment are preferred. This is because the base film that has been subjected to corona discharge treatment has good adhesion, making it extremely difficult to separate the base film and the polyamic acid film. In addition, uniaxially stretched or unstretched films shrink more than biaxially stretched films at the same temperature, and must be dried at lower temperatures, which is not economical. In addition, polyetherketone, polyimide film, polycarbonate, polyarylate, polysulfone, polyetherimide, polyethersulfone film, etc. can also be used.

基材から剥離したポリアミド酸フィルムの平均表面粗さ
は基材面の表面粗さと相関し、基材反対面は表面が平滑
なフィルムとなる。基材面を転写したポリアミド酸フィ
ルムを熱処理すると、得られるポリイミドフィルムの表
面粗さは基材面の表面粗さより小さくはなるものの、基
材の平均表面粗さが0.05μmを越えるとポリアミド
酸フィルムの平均表面粗さが大きくなりすぎ、表面の平
滑なポリイミドフィルムが得られにくい。平均表面粗さ
が0.03μm以下の基材を用いることが、より好まし
い。
The average surface roughness of the polyamic acid film peeled from the base material correlates with the surface roughness of the base material surface, and the opposite surface of the base material becomes a film with a smooth surface. When a polyamic acid film with a transferred base material surface is heat-treated, the surface roughness of the resulting polyimide film becomes smaller than that of the base material surface, but if the average surface roughness of the base material exceeds 0.05 μm, the polyamic acid film The average surface roughness of the film becomes too large, making it difficult to obtain a polyimide film with a smooth surface. It is more preferable to use a base material with an average surface roughness of 0.03 μm or less.

流延装置としては一般にTダイか用いられるが、基材と
の間隙によりワニスを一定厚みに賦形する塗工機がより
好ましい。これは、ワニスの滞留が少なく、厚み調整が
容易なためである。このような塗工機としては、エアー
ナイフコーター、ワイヤーバーコーター、ロールコータ
−等がある。
A T-die is generally used as the casting device, but a coating device that shapes the varnish to a constant thickness depending on the gap between the casting device and the substrate is more preferable. This is because there is less varnish retention and the thickness can be easily adjusted. Examples of such coating machines include air knife coaters, wire bar coaters, and roll coaters.

基材から剥離する溶媒を含んでいるポリアミド酸フィル
ムの加熱減量は、300℃で30分間加熱して行い、加
熱前後の重量変化が10〜45重量%の範囲とすること
が好ましい。加熱減量が45重量%を越えるとフィルム
の自己支持性が弱く、剥離時にフィルムが伸びるので好
ましくない。また、10重量%未満では基材との剥離性
が非常に悪くなる。
The weight loss on heating of a polyamic acid film containing a solvent that can be peeled off from a base material is carried out by heating at 300° C. for 30 minutes, and it is preferable that the weight change before and after heating is in the range of 10 to 45% by weight. If the loss on heating exceeds 45% by weight, the self-supporting properties of the film will be weak and the film will stretch during peeling, which is not preferable. Moreover, if it is less than 10% by weight, the releasability from the base material becomes very poor.

基材から剥離したポリアミド酸フィルムは、フィルムの
両端をビンあるいはクリップに保持して200℃以上の
高温度で熱処理し、脱水閉環イミド化し、その後ピンあ
るいはクリップからはずし、耳をカプトし巻き取る。
The polyamic acid film peeled from the base material is held at both ends in a bottle or clip and heat-treated at a high temperature of 200° C. or higher to dehydrate and form a ring-closing imidation, after which it is removed from the pin or clip, the edges are capped, and the film is rolled up.

〔作用〕[Effect]

本発明の特徴は連続合成したポリアミド酸ワニスを用い
、さらにポリアミド酸合成工程とフィルムの製膜工程を
連続工程とした点にあり、これにより次のような従来の
欠点を除くことができる。
The feature of the present invention is that a continuously synthesized polyamic acid varnish is used, and the polyamic acid synthesis step and the film forming step are made continuous, thereby eliminating the following drawbacks of the conventional method.

従来のバッチ方式により得られたポリアミド酸ワニスに
は、保存中、そのワニス粘度が経時的に上昇したり、あ
るいは低下するという問題点があった。これらのワニス
を使用してポリイミドフィルムを製造する場合、ワニス
粘度がバッチごとに変化するので、バッチごとにフィル
ムの厚み1lflを行わなければならない。厚み調整に
は多計のワニスを必要とし、経済的でなくなる。一方、
合成したワニスを一定粘度に維持しておくため、ワニス
は低温度で保存する必要があり、設備、エネルギー等の
要因でコスト高になる。またワニスの保存安定性改良の
ため、前記のカルボン酸等の添加剤を加えているが、こ
の場合、製品が添加剤により着色し、商品価値の低下を
招いたり、添加剤により物性の低下を招くことがある。
Polyamic acid varnishes obtained by conventional batch methods have a problem in that the viscosity of the varnish increases or decreases over time during storage. When producing polyimide films using these varnishes, the viscosity of the varnish varies from batch to batch, so a film thickness of 1 lfl must be produced for each batch. Adjusting the thickness requires a large amount of varnish, making it uneconomical. on the other hand,
In order to maintain the synthesized varnish at a constant viscosity, the varnish must be stored at a low temperature, which increases costs due to factors such as equipment and energy. In addition, additives such as the aforementioned carboxylic acids are added to improve the storage stability of varnishes, but in this case, the additives may cause the product to become colored, resulting in a decline in commercial value, or the additives may cause a decline in physical properties. I may invite you.

従来のバッチ方式により合成したポリアミド酸ワニスに
比べ、本発明では連続合成するため、一定組成、一定精
度のポリアミド酸ワニスが得られ、また、ワニス合成工
程後、フィルムの製膜工程を連続して行うため粘度変化
がなく、フィルムの厚み調整は1回訓節するだけでよく
、厚み精度の良いフィルムが得られる。
Compared to polyamic acid varnishes synthesized by conventional batch methods, the present invention uses continuous synthesis to obtain polyamic acid varnishes with a constant composition and constant precision. Because of this, there is no change in viscosity, and the film thickness only needs to be adjusted once, resulting in a film with good thickness accuracy.

また、合成したポリアミド酸ワニスは製膜工程で即使用
されるため、低温度で保存する必要はなく、保存安定性
改良のため添加剤を添加する必要もない。
Furthermore, since the synthesized polyamic acid varnish is used immediately in the film forming process, there is no need to store it at low temperatures, and there is no need to add additives to improve storage stability.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに詳細に説明するが、
本発明はこの実施例に限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to this example.

実施例 添付図面の第1図に示したポリイミドフィルムの製造工
程に従い、ポリイミドフィルムを製造した。
EXAMPLE A polyimide film was manufactured according to the polyimide film manufacturing process shown in FIG. 1 of the accompanying drawings.

ピロメリット酸二無水物1565gをN、N−ジメチル
ホルムアミド8500g中に溶解させた溶液へと、ジア
ミノジフェニルエーテル1435gをN、N−ジメチル
ホルムアミド8500g中に溶解させた溶液B−t−調
整した。溶解しにくい場合は加温し、溶解後、温度を室
温まで下げた。溶液A、Bをそれぞれ第1図の定量ポン
プ1.2より一定重量混合槽3中の溶液面下に供給し、
プロペラ付の攪拌モータで空気が入らないよう攪拌混合
した。この混合した溶液は、混合槽3の下面よリステン
レス製のパイプで接続したギアポンプ4で静止型管内混
合器5を通し、連続した管状の反応容器6に圧送した。
A solution of 1,565 g of pyromellitic dianhydride dissolved in 8,500 g of N,N-dimethylformamide and a solution of 1,435 g of diaminodiphenyl ether dissolved in 8,500 g of N,N-dimethylformamide were prepared. If it was difficult to dissolve, it was heated, and after dissolution, the temperature was lowered to room temperature. Solutions A and B are each supplied at a constant weight below the solution surface in the mixing tank 3 from the metering pump 1.2 in FIG.
The mixture was stirred and mixed using a stirring motor with a propeller to prevent air from entering. This mixed solution was pumped into a continuous tubular reaction vessel 6 through a static pipe mixer 5 using a gear pump 4 connected to the lower surface of the mixing tank 3 through a stainless steel pipe.

ギアポンプ4(川崎重工業■製 KHP型(最高吐出圧
力 400kg/c+J)を使用)の送液量は、ギアポ
ンプに接続したスタティックミキシングユニット、エレ
メント数5(スルーザーブラザース社製)を用いた。連
続した管状の反応容器6は外径25龍、肉厚2.3鶴で
、内面をテフロンコートした銅管で、全長20mのもの
を用いた。管状の反応容器6は30℃に温度調節した媒
体7中に浸漬させ、鋼管の出口には5と同じ静止型管内
混合器8を設置し、ロールコータ−液受け9に導いた。
The amount of liquid sent by gear pump 4 (KHP type (maximum discharge pressure 400 kg/c+J) manufactured by Kawasaki Heavy Industries ■) was determined by using a static mixing unit with 5 elements (manufactured by Sluzer Brothers) connected to the gear pump. The continuous tubular reaction vessel 6 was a copper tube with an outer diameter of 25 mm, a wall thickness of 2.3 mm, and a Teflon coated inner surface, and a total length of 20 m. The tubular reaction vessel 6 was immersed in a medium 7 whose temperature was adjusted to 30°C, and the same static type in-tube mixer 8 as in 5 was installed at the outlet of the steel pipe, leading to a roll coater liquid receiver 9.

送液量は150cm’/minとし、得られた液受けの
ポリアミド酸ワニスの粘度は500poise  (2
5℃)で、還元比粘度は1゜3dl/g(DMF中0.
1 g/di、25℃)であった。
The amount of liquid fed was 150 cm'/min, and the viscosity of the obtained polyamic acid varnish in the liquid receiver was 500 poise (2
5°C), and the reduced specific viscosity is 1°3 dl/g (0.3 dl/g in DMF).
1 g/di, 25°C).

基材11として東し側の2軸延伸ポリプロピレンフィル
ム 商品名 トレファンBO(厚さ30μm、平均表面
粗さ0.02μm)を用い、ロールコータ−10により
ポリアミド酸ワニスを基材11上に一定厚みに流延した
。流延した基材11上のポリアミド酸フィルムを乾燥炉
12を通して乾燥した。乾燥後のポリアミド酸フィルム
の加熱減量(300℃、30分間)は29重量%であっ
た。
Using a biaxially stretched polypropylene film (trade name: TORAYFAN BO) (thickness: 30 μm, average surface roughness: 0.02 μm) on the east side as the base material 11, polyamic acid varnish was applied to the base material 11 at a constant thickness using a roll coater 10. It spread to The cast polyamic acid film on the base material 11 was dried in a drying oven 12. The heating loss of the polyamic acid film after drying (300° C., 30 minutes) was 29% by weight.

乾燥炉12から出て基材11から剥離したポリアミド酸
フィルムを、200〜400℃に段階的に上昇する温度
分布をもつ熱処理炉13内を通過させ、脱水閉環イミド
化を行い、厚さ25μmのポリイミドフィルム14を得
た。得られたポリイミドフィルムの特性を表1に示した
The polyamic acid film released from the drying oven 12 and peeled from the base material 11 is passed through a heat treatment oven 13 with a temperature distribution that rises stepwise from 200 to 400°C to undergo dehydration and ring-closing imidization, resulting in a film with a thickness of 25 μm. A polyimide film 14 was obtained. Table 1 shows the properties of the obtained polyimide film.

表2に連続合成法により合成したポリアミド酸ワニスの
連続運転時間により得られたポリアミド酸ワニスの粘度
と、ワニス合成後、連続して流延して得たポリイミドフ
ィルムのフィルム厚みと厚み精度を示した。
Table 2 shows the viscosity of the polyamic acid varnish synthesized by the continuous synthesis method obtained by continuous operation time, and the film thickness and thickness accuracy of the polyimide film obtained by continuous casting after varnish synthesis. Ta.

以下余白 表1 ” +3Qσn/XX100 σn:厚みの標準偏差 X:平均厚み (ポリアミド酸ワニス連続合成運転2時間後に得られた
ポリアミド酸ワニスより製造したポリイミドフィルムの
特性) 表2 ” :E型粘度計(25℃)で測定 ”: +3yn/XxlO0 ポリアミド酸ワニスの粘度は連続運転時間によりほとん
ど変化せず、一定厚みのフィルムが精度よく得られた。
Table 1 below: +3Qσn/XX100 σn: Standard deviation of thickness (Measured at 25° C.)”: +3yn/XxlO0 The viscosity of the polyamic acid varnish hardly changed depending on the continuous operation time, and a film with a constant thickness was obtained with high accuracy.

比較例 実施例に示した溶液Aを反応°釜に入れ、攪拌しながら
これに溶液Bを滴下させ、30℃でポリアミド酸ワニス
(粘度500poise  (25℃))をバッチ法に
より合成した。これを実施例と同様にして流延、乾燥、
熱処理して得たポリイミドフィルムの物性は、表1に示
した連続合成法により得られたポリイミドフィルムの物
性と同程度であった。
Comparative Example Solution A shown in Example was placed in a reaction vessel, and solution B was added dropwise thereto while stirring to synthesize a polyamic acid varnish (viscosity 500 poise (25°C)) at 30°C by a batch method. This was casted, dried, and
The physical properties of the polyimide film obtained by heat treatment were comparable to those of the polyimide film obtained by the continuous synthesis method shown in Table 1.

さらに、上記と同様にしてバッチ法によりポリアミド酸
ワニスを5回合成し、合成時のポリアミド酸ワニスの粘
度、使用時(ポリアミド酸フィルム製造時)のポリアミ
ド酸ワニスの粘度、得られたポリイミドフィルムの厚み
および厚み精度を測定した。測定結果を表3に示した。
Furthermore, polyamic acid varnish was synthesized five times by the batch method in the same manner as above, and the viscosity of the polyamic acid varnish at the time of synthesis, the viscosity of the polyamic acid varnish at the time of use (during production of polyamic acid film), and the viscosity of the polyamic acid varnish obtained The thickness and thickness accuracy were measured. The measurement results are shown in Table 3.

表3中、No、1〜5は同じ日に流延したが、合成した
ポリアミド酸ワニスを連続して流延しようとした場合、
ワニス粘度が異なるワニスを追加補充すると補充前のワ
ニスと補充したワニスが混じり合わず境界をつくり、流
延後もその境界部が判別できるため(フィルム厚みが境
界部を境に異なる)、連続して流延することができなか
った。
In Table 3, Nos. 1 to 5 were cast on the same day, but when trying to cast the synthesized polyamic acid varnish continuously,
When varnishes with different viscosity are added, the varnish before replenishment and the varnish added do not mix and create a boundary, and the boundary can be identified even after casting (the film thickness differs at the boundary), so the varnish is continuous. It could not be spread.

そのため、それぞれのワニスは各々単独で流延し、流延
完了後、清掃を十分に行ってから次のワニスを流延した
。清掃中、ワニスを一定厚みに賦形するギャップが若干
狂うので、フィルムの厚み調整は、毎回補正して行った
Therefore, each varnish was cast individually, and after completion of casting, the next varnish was cast after thorough cleaning. During cleaning, the gap used to shape the varnish to a constant thickness was slightly distorted, so the film thickness was adjusted each time.

表3に示したように、バッチ法で合成したポリアミド酸
ワニスは、合成時のワニス粘度を一定値にすることが非
常に困難であり、さらに、保存中ワニス粘度が経時変化
し、使用時のワニス粘度が合成時の粘度と異なってしま
う。さらに塗工機に粘度の異なるワニスを追加補充する
と、補充前のワニスと補充したワニスが混じり合わず境
界をつくり、流延後もその境界部が判別できる。これは
一方のワニスを殆ど消費しつくすまで続き、境界部を境
にフィルム厚みが異なり、厚み精度が悪くなってしまう
。このため、粘度の異なるワニスを補充することはよけ
い厚み精度を悪くすることになる。また、これを防ぐに
は、ワニスをバッチごとに使用し、清掃してから粘度の
異なるワテスを補充し、厚み調整して流延する方式とな
るが、厚み調整には大量のワニスと時間がかかり、経済
的でない。
As shown in Table 3, for polyamic acid varnish synthesized by the batch method, it is extremely difficult to maintain a constant varnish viscosity during synthesis.Furthermore, the varnish viscosity changes over time during storage, and The viscosity of the varnish differs from the viscosity at the time of synthesis. Furthermore, when the coating machine is additionally refilled with varnishes of different viscosities, the varnish before refilling and the refilled varnish do not mix, creating a boundary, which can be identified even after casting. This continues until most of the varnish on one side is consumed, and the film thickness differs at the boundary, resulting in poor thickness accuracy. For this reason, replenishing varnishes with different viscosities will worsen the thickness accuracy. In addition, to prevent this, the method is to use varnish for each batch, clean it, replenish it with varnish of different viscosity, adjust the thickness, and then cast it, but adjusting the thickness requires a large amount of varnish and time. It is expensive and not economical.

〔発明の効果〕〔Effect of the invention〕

本発明の製造法を用いることにより、ポリアミド酸ワニ
スの粘度が一定幅に抑えられ、低温で保存する必要がな
く、連続して流延でき、厚み精度の良いフィルムが連続
して経済的に得られる。また、バッチ方式に比べると、
合成したワニスを容器に入れる工程、移動の工程、容器
から取り出す工程が省略でき、さらにワニスの器壁付着
等による損失がなく、ワニス歩留りが向上する。
By using the production method of the present invention, the viscosity of the polyamic acid varnish can be suppressed within a certain range, there is no need to store it at low temperatures, it can be cast continuously, and films with good thickness accuracy can be continuously produced economically. It will be done. Also, compared to the batch method,
The process of putting the synthesized varnish into a container, the process of moving it, and the process of taking it out from the container can be omitted, and there is no loss due to varnish adhesion to the container wall, etc., and the varnish yield is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例におけるポリイミドフィルム
製造の工程を示す概略図である。 符号の説明 A 芳香族酸二無水物溶液 B 芳香族ジアミン溶液 ■ 定量ポンプ    2 定量ポンプ3 混合槽  
    4 ギアポンプ5 静止型管内混合器 6 管
状反応容器7 温度調節した媒体 8 静止型管内混合
器9 液受け     lOロールコータ−11基材フ
ィルム  12 乾燥炉 13 熱処理炉 14 ポリイミドフィルム
FIG. 1 is a schematic diagram showing the process of manufacturing a polyimide film in an example of the present invention. Explanation of symbols A Aromatic acid dianhydride solution B Aromatic diamine solution ■ Metering pump 2 Metering pump 3 Mixing tank
4 Gear pump 5 Static in-tube mixer 6 Tubular reaction vessel 7 Temperature-controlled medium 8 Static in-tube mixer 9 Liquid receiver IO roll coater 11 base film 12 Drying oven 13 Heat treatment oven 14 Polyimide film

Claims (1)

【特許請求の範囲】 1、芳香族酸二無水物と芳香族ジアミンより合成したポ
リアミド酸ワニスを基材上に流延し乾燥した後、基材か
ら剥離し脱水閉環イミド化を行いポリイミドフィルムを
製造する方法において、有機極性溶媒中に溶解した芳香
族酸二無水物の溶液と芳香族ジアミンの溶液とを混合し
、送液ポンプで100℃以下に保った反応容器に送り、
混合および重合反応を行わしめることによりポリアミド
酸ワニスを連続合成し、かつ、ポリアミド酸ワニスの合
成工程と基材上への流延工程とを連続工程としたことを
特徴とするポリイミドフィルムの製造法。 2、反応容器の内容物を混合する混合装置が静止型管内
混合器であり、送液ポンプがギアポンプである特許請求
の範囲第1項記載のポリイミドフィルムの製造法。 3、基材が2軸延伸ポリプロピレンフィルムまたはポリ
エステルフィルムであり、その平均表面粗さが0.05
μm以下である特許請求の範囲第1項記載のポリイミド
フィルムの製造法。 4、有機極性溶媒中に溶解した芳香族酸二無水物の溶液
および芳香族ジアミンの溶液の水分含有量が5000p
μm以下である特許請求の範囲第1項記載のポリイミド
フィルムの製造法。 5、流延工程における流延装置として、流延装置と基材
との間隙によりワニスを一定厚みに賦形する塗工機を用
いる特許請求の範囲第1項記載のポリイミドフィルムの
製造法。
[Claims] 1. A polyamic acid varnish synthesized from an aromatic acid dianhydride and an aromatic diamine is cast onto a base material, dried, and then peeled off from the base material and subjected to dehydration and ring-closing imidization to form a polyimide film. In the manufacturing method, a solution of an aromatic acid dianhydride dissolved in an organic polar solvent and a solution of an aromatic diamine are mixed, and the mixture is sent to a reaction vessel kept at 100 ° C. or lower using a liquid pump.
A method for producing a polyimide film, characterized in that a polyamic acid varnish is continuously synthesized by performing a mixing and polymerization reaction, and the step of synthesizing the polyamic acid varnish and the step of casting it onto a substrate are continuous steps. . 2. The method for producing a polyimide film according to claim 1, wherein the mixing device for mixing the contents of the reaction container is a static in-tube mixer, and the liquid feeding pump is a gear pump. 3. The base material is a biaxially stretched polypropylene film or polyester film, and its average surface roughness is 0.05.
The method for producing a polyimide film according to claim 1, wherein the polyimide film has a particle size of .mu.m or less. 4. The water content of the aromatic acid dianhydride solution and the aromatic diamine solution dissolved in the organic polar solvent is 5000p.
The method for producing a polyimide film according to claim 1, wherein the polyimide film has a particle size of .mu.m or less. 5. The method for producing a polyimide film according to claim 1, which uses a coating machine that shapes the varnish to a constant thickness by a gap between the casting device and the base material as the casting device in the casting step.
JP5783486A 1986-03-14 1986-03-14 Manufacture of polyimide film Pending JPS62214912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5783486A JPS62214912A (en) 1986-03-14 1986-03-14 Manufacture of polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5783486A JPS62214912A (en) 1986-03-14 1986-03-14 Manufacture of polyimide film

Publications (1)

Publication Number Publication Date
JPS62214912A true JPS62214912A (en) 1987-09-21

Family

ID=13066976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5783486A Pending JPS62214912A (en) 1986-03-14 1986-03-14 Manufacture of polyimide film

Country Status (1)

Country Link
JP (1) JPS62214912A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007047308A2 (en) * 2005-10-19 2007-04-26 Monosol, Llc Method and apparatus for solution casting film with secondary component
WO2007047231A1 (en) * 2005-10-19 2007-04-26 Monosol, Llc Method and apparatus for continuously preparing crosslinked, solution-cast polymer film
WO2015186594A1 (en) * 2014-06-02 2015-12-10 東洋紡株式会社 Method for manufacturing polyimide film
WO2019167655A1 (en) * 2018-03-01 2019-09-06 株式会社カネカ System and method for manufacturing polyamic acid, and system and method for manufacturing polyimide
JP2019183115A (en) * 2018-03-30 2019-10-24 株式会社カネカ Polyamic acid manufacturing system and manufacturing method, and polyimide manufacturing system and manufacturing method
JP2019183116A (en) * 2018-03-30 2019-10-24 株式会社カネカ Polymer manufacturing system and manufacturing method
JP2019183117A (en) * 2018-03-30 2019-10-24 株式会社カネカ Polymer manufacturing system and manufacturing method
JP2020001393A (en) * 2015-03-31 2020-01-09 旭化成株式会社 Manufacturing method of polyimide film
JP2020055959A (en) * 2018-10-03 2020-04-09 株式会社カネカ Polymer production system and polymer production method
JP2021004342A (en) * 2019-06-27 2021-01-14 株式会社カネカ Continuous production system and production method for polyamic acid solution
JP2021024893A (en) * 2019-07-31 2021-02-22 株式会社カネカ Manufacturing system and manufacturing method of polymer
JP2021031501A (en) * 2019-08-13 2021-03-01 株式会社カネカ Polymer production system and polymer production process
WO2022196554A1 (en) * 2021-03-18 2022-09-22 株式会社カネカ Polymer production system and polymer production method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007047231A1 (en) * 2005-10-19 2007-04-26 Monosol, Llc Method and apparatus for continuously preparing crosslinked, solution-cast polymer film
WO2007047308A3 (en) * 2005-10-19 2007-08-02 Monosol Llc Method and apparatus for solution casting film with secondary component
WO2007047308A2 (en) * 2005-10-19 2007-04-26 Monosol, Llc Method and apparatus for solution casting film with secondary component
WO2015186594A1 (en) * 2014-06-02 2015-12-10 東洋紡株式会社 Method for manufacturing polyimide film
JPWO2015186594A1 (en) * 2014-06-02 2017-04-20 東洋紡株式会社 Method for producing polyimide film
JP2019206705A (en) * 2014-06-02 2019-12-05 東洋紡株式会社 Method for producing polyimide-based film
JP2020001393A (en) * 2015-03-31 2020-01-09 旭化成株式会社 Manufacturing method of polyimide film
WO2019167655A1 (en) * 2018-03-01 2019-09-06 株式会社カネカ System and method for manufacturing polyamic acid, and system and method for manufacturing polyimide
TWI825073B (en) * 2018-03-01 2023-12-11 日商鐘化股份有限公司 Polyamide manufacturing system and manufacturing method, and polyimide manufacturing system and manufacturing method
JPWO2019167655A1 (en) * 2018-03-01 2021-03-04 株式会社カネカ Polyamic acid production system and production method, and polyimide production system and production method
JP2019183117A (en) * 2018-03-30 2019-10-24 株式会社カネカ Polymer manufacturing system and manufacturing method
JP2019183116A (en) * 2018-03-30 2019-10-24 株式会社カネカ Polymer manufacturing system and manufacturing method
JP2019183115A (en) * 2018-03-30 2019-10-24 株式会社カネカ Polyamic acid manufacturing system and manufacturing method, and polyimide manufacturing system and manufacturing method
JP2020055959A (en) * 2018-10-03 2020-04-09 株式会社カネカ Polymer production system and polymer production method
JP2021004342A (en) * 2019-06-27 2021-01-14 株式会社カネカ Continuous production system and production method for polyamic acid solution
JP2021024893A (en) * 2019-07-31 2021-02-22 株式会社カネカ Manufacturing system and manufacturing method of polymer
JP2021031501A (en) * 2019-08-13 2021-03-01 株式会社カネカ Polymer production system and polymer production process
WO2022196554A1 (en) * 2021-03-18 2022-09-22 株式会社カネカ Polymer production system and polymer production method
KR20230157305A (en) 2021-03-18 2023-11-16 가부시키가이샤 가네카 Polymer manufacturing systems and methods for making polymers

Similar Documents

Publication Publication Date Title
EP0087305B1 (en) Process for production of aromatic polyimide film
JPS62214912A (en) Manufacture of polyimide film
EP0036330B1 (en) Process for continuously producing an aromatic polyimide film
JPS59162044A (en) Thick polyimide-metal laminate of large exfoliation strength
WO2002102882A1 (en) Semiconductive polyimide film and process for production thereof
TW567211B (en) Polyimide composition having improved peel strength when clad
JP2002256085A (en) Easily slidable polyimide film and its production method
JP4475711B2 (en) Polyimide precursor solution
JP3947994B2 (en) Polyimide film, its production method and use
JP5770125B2 (en) Method for producing polyimide film
JPS60190314A (en) Manufacture of polyimide film
US5066770A (en) Process and apparatus for manufacturing polymers
JPH09227697A (en) Preparation of heat-resistant polyimide film through gel
JP2009275090A (en) Manufacturing method of polyimide film
JP2006265371A (en) Method for producing polyimide film
JPH06313055A (en) Production of surface-roughened polyimide film
JP2003165905A (en) Aromatic polyimide film, manufacturing method therefor, and use thereof
JP4753167B2 (en) Polyimide film and method for producing the same
JPS60190313A (en) Manufacture of polyimide film
JPH0131772B2 (en)
JPS588761A (en) Continuous preparation of polyimide solution
JPS6028432A (en) Preparation of polyamic acid solution
JPS6140165B2 (en)
JP4816989B2 (en) Method for producing polyamide film
JPH01259036A (en) Production of polymer and production equipment therefor