WO2022196554A1 - Polymer production system and polymer production method - Google Patents

Polymer production system and polymer production method Download PDF

Info

Publication number
WO2022196554A1
WO2022196554A1 PCT/JP2022/010836 JP2022010836W WO2022196554A1 WO 2022196554 A1 WO2022196554 A1 WO 2022196554A1 JP 2022010836 W JP2022010836 W JP 2022010836W WO 2022196554 A1 WO2022196554 A1 WO 2022196554A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
fluctuation
section
production system
polymer production
Prior art date
Application number
PCT/JP2022/010836
Other languages
French (fr)
Japanese (ja)
Inventor
瑛人 竪山
倶透 豊田
康裕 田多
康祐 齊藤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202280014130.3A priority Critical patent/CN116888188A/en
Priority to KR1020237027204A priority patent/KR20230157305A/en
Publication of WO2022196554A1 publication Critical patent/WO2022196554A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polymer production system and a polymer production method. Specifically, the present invention relates to a polymer production system capable of continuously producing a polymer and a polymer production method using the polymer production system.
  • a first fluid and a second fluid are mixed in a mixing tank, and the mixed fluid is further mixed in a tubular tubular mixer.
  • a manufacturing method is known (see, for example, Patent Document 1).
  • the mixed fluid is agitated while being moved in the axial direction of the tube by driving the pump to pass the mixed fluid.
  • the residence time of the liquid transfer line for transferring the generated polymer is short.
  • the present inventors have found that by deliberately providing a portion having a long residence time in the polymer feed line, it is possible to greatly reduce the variation in the viscosity of the resulting polymer over time, leading to the completion of the invention.
  • a first fluid containing a first polyaddition polymerizable compound and a second fluid containing a second polyaddition polymerizable compound that polyadditions with the first polymerizable compound are used as raw materials to produce a polymer.
  • a combined manufacturing system a first supply unit that supplies the first fluid; a second supply unit that supplies the second fluid; a first merging section for merging the first fluid and the second fluid to generate a first merged fluid; a first tubular mixing section disposed downstream of the first merging section for promoting radial mixing of the first merged fluid to generate a first tubular mixed fluid; a first variation mitigation section disposed downstream of the first tubular mixing section and configured to reduce variations in axial properties of the first tubular mixed fluid to generate a first product fluid. manufacturing system.
  • ⁇ 2> further comprising a first measurement unit that acquires first reaction information relating to physical quantities and/or compositions in any one or more of the first merged fluid, the first tube mixed fluid, and the first generated fluid. polymer manufacturing system.
  • the first measurement unit includes a viscometer, a thermometer, a pressure gauge, a pump pressure gauge, an absorbance meter, an infrared spectrometer, a near-infrared spectrometer, a density meter, a color difference meter, a refractometer, a spectrophotometer, and a conductivity meter. , having one or more selected from the group consisting of a turbidimeter, an ultrasonic sensor, and a fluorescent X-ray analyzer, The polymer production system according to ⁇ 2>.
  • ⁇ 4> further comprising a first temperature control unit for adjusting the temperature of any one or more of the first fluid, the second fluid, the first merged fluid, the first tube mixed fluid, and the first generated fluid,
  • a first temperature control unit for adjusting the temperature of any one or more of the first fluid, the second fluid, the first merged fluid, the first tube mixed fluid, and the first generated fluid
  • the first fluctuation reducing section is configured by one or more tubular members,
  • the polymer production system according to any one of ⁇ 1> to ⁇ 4>, wherein the total average residence time of each of the tubular members is 7 minutes or longer.
  • ⁇ 6> The polymer production system according to any one of ⁇ 1> to ⁇ 4>, wherein the first fluctuation reducing section is a pipe in which an average residence time of fluid flowing therein is 7 minutes or longer.
  • a first tube mixed fluid measuring unit for acquiring first tube mixed fluid reaction information related to the physical quantity and/or composition of the first tube mixed fluid is provided between the first tubular mixing unit and the first fluctuation reducing unit; prepared, further comprising a first generated fluid measurement unit for obtaining first generated fluid reaction information related to the physical quantity and/or composition of the first generated fluid, at the outlet of the first fluctuation mitigation unit or downstream thereof;
  • the polymer production system according to any one of ⁇ 1> to ⁇ 4>, wherein the volume of the first fluctuation reducing section is 0.5 to 100 times the volume of the first tubular mixing section.
  • ⁇ 8> The polymer production system according to any one of ⁇ 1> to ⁇ 4>, wherein the volume of the first fluctuation reducing section is 5 to 100 times the volume of the first tubular mixing section.
  • the first fluctuation reducing section is configured by one or more tubular members,
  • the cross-sectional average flow velocity of the fluid flowing inside the tubular member is 0.01 m/s or less,
  • the polymer production system according to any one of ⁇ 1> to ⁇ 4>, wherein the total length of each of the tubular members is 0.7 m or longer.
  • ⁇ 11> Any one of ⁇ 1> to ⁇ 10>, wherein the Reynolds number of the fluid flowing inside the first fluctuation reducing portion is 2100 or less when 4 ⁇ cross-sectional area/immersion side length is used as a representative length The described polymer production system.
  • first polymerizable compound and the second polymerizable compound satisfy any one of the following (a) to (c), and a polyamic acid is produced as the polymer: Polymer production system.
  • One of the first polymerizable compound and the second polymerizable compound is a tetracarboxylic dianhydride and the other is a diamine.
  • One of the first polymerizable compound and the second polymerizable compound is an acid anhydride-terminated or amino group-terminated polyamic acid, and the other is a diamine or a tetracarboxylic dianhydride.
  • one of the first polymerizable compound and the second polymerizable compound is an acid anhydride-terminated or amino group-terminated polyamic acid, and the other is an amino group-terminated or an acid anhydride-terminated polyamic acid; .
  • the polymer production system according to ⁇ 14> further comprising an imidization section for imidizing the produced polyamic acid, and producing polyimide as the polymer.
  • the first measurement unit acquires the first reaction information in any one or more of the first merged fluid, the first tube mixed fluid, and the first generated fluid; any one or more selected from the group consisting of fluid supply in the first supply unit, fluid supply in the second supply unit, and temperature adjustment in the first temperature control unit based on the acquired first reaction information;
  • the first measuring unit has a measuring step of acquiring the first reaction information in the first merged fluid and/or the first tube mixed fluid, Based on the obtained first reaction information, the property of the first generated fluid is predicted, and based on the predicted property of the first generated fluid, the fluid supply in the first supply unit and the second supply unit.
  • the polymer production system according to ⁇ 4> further comprising a control unit that controls at least one selected from the group consisting of fluid supply and temperature adjustment in the first temperature control unit.
  • a polymer production system and production method capable of continuously and stably obtaining a desired polymer with little viscosity change over time. Also, in continuous polymer production, a polymer production system and production that can reduce the spec out rate by providing a mechanism with a simple structure and low equipment cost to reduce fluctuations in the properties of the polymer. can provide a method.
  • the first to third embodiments are examples of a polymer production system that includes a first tubular mixing section and a first fluctuation reducing section.
  • FIG. 1 is a diagram showing a polymer production system according to the first embodiment.
  • the polymer production system 1 is a production system for producing a polymer using a first fluid A1 containing a first polyaddition polymerizable compound and a second fluid A2 containing a second polyaddition polymerizable compound as raw materials.
  • the first embodiment is an example of a polymer production system in which a first tubular mixing section and a first fluctuation reducing section are provided continuously.
  • the first tubular mixing section means a tubular mixing section that homogenizes properties in the radial direction while circulating the fluid.
  • the first variation mitigation section is a structural section that can reduce variations in properties in the axial direction by actively generating a residence time distribution that utilizes the difference in flow velocity due to the trajectory in the flow channel.
  • the case where one of the first polymerizable compound and the second polymerizable compound is a tetracarboxylic dianhydride and the other is a diamine to produce a polyamic acid as a polymer will be described below. More specifically, the first polymerizable compound contained in the first fluid A1 is tetracarboxylic dianhydride, the second polymerizable compound contained in the second fluid A2 is diamine, and the polymer is polyamic acid. will be described.
  • the tetracarboxylic dianhydride is not particularly limited, and those similar to those used in conventional polyimide synthesis can be used.
  • Specific examples of tetracarboxylic dianhydrides include 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2, 3,3′,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, 1,3-bis(2,3-dicarboxyphenoxy)benzene dianhydride, 1,4-bis(2, 3-dicarboxyphenoxy)benzene dianhydride, 2,3,3′,4′-benzophenonetetracarboxylic dianhydride, 2,2′,3,3′-benzophenonetetracarboxylic dianhydride, 2,2 ',3,3'-biphenyltetracarboxylic dian
  • solvents include amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and acetanilide; Cyclic ester solvents such as butyrolactone; chain ester solvents such as ethyl acetate; ketone solvents such as 2-propanone, 3-pentanone, acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran and dioxolane; and aromatic hydrocarbon solvents such as toluene and xylene; and the like.
  • amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and acetanilide
  • Cyclic ester solvents such as butyrolactone
  • amide-based solvents, cyclic ester-based solvents, and ether-based solvents in which the polyamic acid is highly soluble are preferred.
  • a solvent may be used individually by 1 type, and may mix 2 or more types.
  • a highly polar alcoholic solvent with a solvent in which polyamic acid has relatively low solubility, such as acetone, ethyl acetate, methyl ethyl ketone, toluene, and xylene, the solubility of polyamic acid can be improved. is also possible.
  • the first fluid A1 may contain a small amount of a tertiary amine such as trimethylamine or triethylamine or acetic acid in order to increase the solubility of the tetracarboxylic dianhydride or increase the reactivity with the diamine.
  • a tertiary amine such as trimethylamine or triethylamine or acetic acid
  • the diamine is not particularly limited, and the same ones used in conventional polyimide synthesis can be used.
  • Specific examples of diamines include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 4,4′-bis(4- aminophenoxy)biphenyl, 1,4'-bis(4-aminophenoxy)benzene, 1,3'-bis(4-aminophenoxy)benzene, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3, 4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 4,4'-methylene-bis(2-ch
  • solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and acetanilide; Cyclic ester solvents such as butyrolactone; chain ester solvents such as ethyl acetate; ketone solvents such as 2-propanone, 3-pentanone, acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran and dioxolane; and aromatic hydrocarbon solvents such as toluene and xylene; and the like.
  • amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and acetanilide
  • Cyclic ester solvents such as butyrolactone
  • chain ester solvents such as
  • amide-based solvents, cyclic ester-based solvents, and ether-based solvents in which the polyamic acid is highly soluble are preferred.
  • a solvent may be used individually by 1 type, and may mix 2 or more types.
  • a highly polar alcoholic solvent with a solvent in which polyamic acid has relatively low solubility, such as acetone, ethyl acetate, methyl ethyl ketone, toluene, and xylene, the solubility of polyamic acid can be improved. is also possible.
  • a filler that serves as a lubricant for the polyimide film may be dispersed in the first fluid A1 and/or the second fluid A2.
  • lubricants include inorganic particles such as titanium oxide, dicalcium phosphate anhydride, calcium pyrophosphate, calcium carbonate, silicon dioxide, alumina, barium sulfate, zirconia, kaolin, talc, clay, mica, acrylic acids, and styrenes. and the like can be exemplified as organic particles. Further, inorganic particles or organic particles added for the purpose of changing other properties of the polyimide film such as film strength and thermal conductivity may be dispersed.
  • the polymer production system 1 joins and mixes a first fluid A1 and a second fluid A2, which are raw materials, at a first junction J1 to generate a first merged fluid B,
  • a first tubular mixed fluid C in which the concentration of each component in the radial direction of the tube is uniform is generated.
  • polyamic acid (heavy combined).
  • the polymer production system 1 has a liquid feed line L that connects the first tank 11 and the second tank 12 described later to the outlet of the first fluctuation reducing section 30 .
  • the polymerization reaction proceeds in either or both of the first tubular mixing section 20 and the first fluctuation reducing section 30.
  • the polymerization reaction may be completely completed at the outlet of the first tubular mixing section 20, or the reaction has hardly progressed at the outlet of the first tubular mixing section 20, and the first fluctuation reducing section 30 may Most of the reaction may proceed.
  • the polymerization reaction does not necessarily have to be completely completed at the outlet of the first fluctuation reducing section 30, and the reaction may proceed even in the pipe or cushion tank provided downstream of the first fluctuation reducing section 30. good.
  • the polymer production system 1 includes a first tank 11, a first tank on-off valve 111, a second tank 12, a second tank on-off valve 121, and a first supply pump 112 (first supply section), a second supply pump 122 (second supply section), a first junction J1, a first tubular mixing section 20, a first fluctuation reducing section 30, a liquid feed line L, A control unit 200 is provided.
  • the liquid feeding line L described above has a first liquid feeding section L1, a second liquid feeding section L2, a third liquid feeding section L3, a fourth liquid feeding section L4, and a fifth liquid feeding section L5.
  • the polymer production system 1 includes a first flow rate measurement unit 113, a second flow rate measurement unit 123, a first tube mixed fluid measurement unit 222 (first measurement unit), and a first generated fluid measurement unit 322 (second 1 measuring unit).
  • the first tank 11 contains the first fluid A1 in which the polyaddition first polymerizable compound is dissolved.
  • the first tank 11 contains the first fluid A1 in which tetracarboxylic dianhydride is dissolved.
  • the first fluid A1 contained in the first tank 11 is supplied to the first junction J1 via the first liquid feeding section L1.
  • the first liquid feeding part L1 is a line that connects the first tank 11 and the first junction part J1.
  • a first tank on-off valve 111, a first supply pump 112, and a first flow rate measuring unit 113 are provided between the first tank 11 and the first junction J1 in the first liquid feeding unit L1, from the upstream side to the downstream side. Arranged in this order from side to side.
  • the first tank on-off valve 111 is arranged in the vicinity of the lower part of the first tank 11 in the first liquid feeding section L1, and opens and closes the first liquid feeding section L1 on the upstream side of the first supply pump 112.
  • the first supply pump 112 supplies the first fluid A1 contained in the first tank 11 to the first junction J1.
  • the first supply pump 112 discharges the first fluid A1 at a predetermined flow rate.
  • the first supply pump 112 is adjusted so as to supply the first fluid A1 under conditions under which polyamic acid with desired properties is obtained.
  • the first supply pump 112 is composed of a metering pump.
  • the present embodiment by controlling the supply of the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122, which will be described later, a desired property can be obtained. Obtain polyamic acid. Therefore, it is preferable that the first fluid A1 and the second fluid A2 are supplied with high accuracy. Configured.
  • a metering pump is a positive displacement pump that repeatedly pumps out a fixed amount of fluid with high accuracy.
  • Examples of metering pumps include push-type reciprocating pumps such as plunger pumps; rotary pumps such as gear pumps provided with gears; and the like.
  • the first flow rate measuring unit 113 measures the flow rate of the first fluid A1 on the downstream side of the first supply pump 112 in the first liquid feeding unit L1.
  • the first flow rate measurement section 113 is arranged between the first supply pump 112 and the first junction J1.
  • the first flow rate measurement unit 113 outputs the measured flow rate of the first fluid A1 to the control unit 200, which will be described later.
  • the second tank 12 contains the second fluid A2 in which the second polyadditive polymerizable compound that polyadditions with the first polymerizable compound is dissolved.
  • the second tank 12 contains the second fluid A2 in which diamine is dissolved.
  • the second fluid A2 stored in the second tank 12 is supplied to the first junction J1 via the second liquid feeding section L2.
  • the second liquid feeding part L2 is a line that connects the second tank 12 and the first junction part J1.
  • a second tank on-off valve 121, a second supply pump 122, and a second flow rate measuring unit 123 are provided between the second tank 12 and the first junction J1 in the second liquid feeding unit L2, from the upstream side to the downstream side. Arranged in this order from side to side.
  • the second tank on-off valve 121 is arranged in the vicinity of the lower portion of the second tank 12 in the second liquid feeding section L2, and opens and closes the second liquid feeding section L2 on the upstream side of the second supply pump 122.
  • the second supply pump 122 supplies the second fluid A2 contained in the second tank 12 to the first junction J1.
  • the second supply pump 122 discharges the second fluid A2 at a predetermined flow rate.
  • the second supply pump 122 is adjusted so as to supply the second fluid A2 under conditions under which polyamic acid with desired properties is obtained.
  • the second supply pump 122 is a metering pump for the same reason as the first supply pump 112 described above.
  • the second flow rate measuring section 123 measures the flow rate of the second fluid A2 on the downstream side of the second supply pump 122 in the second liquid feeding section L2.
  • the second flow rate measurement section 123 is arranged between the second supply pump 122 and the first junction J1.
  • the second flow rate measurement unit 123 outputs the measured flow rate of the second fluid A2 to the control unit 200, which will be described later.
  • the first junction J1 is arranged downstream of the first supply pump 112 and the second supply pump 122 .
  • the first confluence J1 generates a first merge fluid B by merging the first fluid A1 and the second fluid A2.
  • the first fluid A1 and the second fluid A2 are merged without coming into contact with gas.
  • the first junction J1 is configured by a junction valve that joins the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122 .
  • the first tubular mixing section 20 is arranged downstream of the first junction J1.
  • the first tubular mixing section 20 agitates the first merged fluid B without contacting the gas, and makes the fluid uniform in the radial direction of the tube at the outlet of the first tubular mixing section 20.
  • the first tube mixed fluid C is generated.
  • the first tubular mixing section 20 includes a tubular reactor composed of double tubes extending in a predetermined direction.
  • the first tubular mixing section 20 includes a first tubular mixing and stirring section 21 arranged radially inside and a first tubular mixing temperature control section 22 arranged radially outward (first temperature control section ) and
  • the first tubular mixing section 20 is formed so that the first merged fluid B flows for a desired residence time.
  • the first tubular mixing and stirring part 21 stirs the first merged fluid B.
  • the first tubular mixing/agitation section 21 agitates the first combined fluid B adjusted to a temperature suitable for the polymerization reaction by the first tubular mixing/temperature control section 22 .
  • the first tubular mixing/stirring unit 21 includes, for example, static mixers, nozzles, orifices, and other stationary mixers, centrifugal pumps, volute pumps, and drive-type mixers, such as in-line mixers having stirring blades. It preferably includes a static mixer, and more preferably includes a static mixer.
  • a pipe with a twist tape inserted can also provide the same agitation promotion effect as a static mixer, but the static mixer has a better agitation promotion effect. is obtained.
  • the static mixer is not particularly limited, and examples thereof include static mixers such as Kenics mixer type, Sulzer SMV type, Sulzer SMX type, Tray Hi-mixer type, Komax mixer type, Lightnin mixer type, Ross ISG type, and Bran & Lube mixer type. mentioned.
  • the Kenics mixer type static mixer is more preferable since it has a simple structure and has no dead space.
  • the first tubular mixing temperature control section 22 is a piping section arranged radially outside the first tubular mixing stirring section 21 .
  • the first tubular mixing temperature control section 22 adjusts (for example, cools) the temperature of the first merged fluid B flowing through the first tubular mixing and stirring section 21 to a desired temperature condition.
  • the first combined fluid B is adjusted to a temperature suitable for the polymerization reaction, and flows through the first tubular mixing stirring section 21 .
  • the generated first tube mixed fluid C is supplied to the first fluctuation reducing section 30 via the fourth liquid feeding section L4.
  • the first pipe mixed fluid measuring unit 222 measures the viscosity of the first pipe mixed fluid C between the first pipe mixing unit 20 and the first fluctuation reducing unit 30 in the fourth liquid feeding unit L4. Reaction information (first reaction information) is acquired.
  • the viscosity information is effective information as the reaction information because the polymerization reaction progresses and the viscosity increases due to the stirring in the first tubular mixing/stirring part 21 .
  • the first pipe mixed fluid measurement unit 222 outputs the acquired viscosity information of the first pipe mixed fluid C to the control unit 200 which will be described later.
  • the first pipe mixed fluid measurement unit 222 measures the temperature of the first pipe mixed fluid C between the first pipe mixing unit 20 and the first fluctuation reducing unit 30 in the fourth liquid feeding unit L4.
  • Mixed fluid reaction information (first reaction information) is also acquired.
  • the polymerization reaction proceeds by being stirred in the first tubular mixing/stirring part 21. Since the reaction speed of the polymerization reaction varies depending on the temperature, temperature information is effective information as reaction information.
  • the first pipe mixed fluid measurement unit 222 outputs the obtained temperature information of the first pipe mixed fluid C to the control unit 200 which will be described later.
  • the first fluctuation reducing section 30 is arranged downstream of the first tubular mixing section 20 .
  • the first fluctuation mitigating section 30 is composed of a double pipe, and includes a first fluctuation mitigating pipe section 31 arranged radially inside and a first fluctuation mitigating temperature control section 32 arranged radially outside (first a temperature control unit); In this embodiment, the temperature is adjusted to a temperature suitable for the polymerization reaction of the mixed fluid C in the first tube by the first fluctuation relaxation temperature control section 32 .
  • the axial viscosity of the first pipe mixed fluid C is controlled by the residence time distribution caused by the difference in velocity in the radial direction when the first pipe mixed fluid C flows through the first fluctuation mitigating pipe portion 31. Fluctuations are reduced, and the properties of the outflowing first generated fluid D are stabilized.
  • the fluid passing through the center of the tube has the highest flow velocity and the shortest residence time.
  • the residence time is very long. The variation in properties in the axial direction can be mitigated by the difference in residence time due to this trajectory.
  • the first pipe mixed fluid C flows in the first fluctuation mitigating pipe portion 31 in a laminar flow.
  • the Reynolds number ( ⁇ ud/ ⁇ ) is preferably 2100 or less, more preferably 0.00001 or more and 1000 or less.
  • the viscosity of the first pipe mixed fluid C flowing in the first fluctuation mitigating pipe portion 31 is preferably 0.1 poise or more and 100000 poise or less, more preferably 1 poise or more and 10000 poise or less at the temperature during circulation. More preferably, it is 5 poise or more and 5000 poise or less.
  • the first fluctuation mitigation pipe section 31 includes a pipe with a sufficiently long average residence time.
  • the average residence time is a value obtained by dividing the volume of the pipe by the volumetric flow rate of the mixed fluid C in the first pipe.
  • the average residence time of the first fluctuation relaxation pipe portion 31 is 3 minutes.
  • the viscosity fluctuation at the outlet of the first fluctuation mitigating pipe portion 31 is reduced by 56%
  • the viscosity fluctuation is reduced by 74% when the average residence time is 7 minutes
  • the viscosity fluctuation is reduced when the average residence time is 11 minutes. is reduced by 81%.
  • the reduction in viscosity fluctuation described here means that the difference between the maximum value and the minimum value of the viscosity at the inlet of the first fluctuation relaxation pipe portion 31 is the maximum value of the viscosity at the outlet of the first fluctuation relaxation pipe portion 31. It means the rate at which the difference between the minimum values decreases.
  • FIG. 1 shows a configuration in which only one first fluctuation relaxation pipe portion 31 is provided
  • the first fluctuation relaxation pipe portion 31 may have a structure in which two or more tubular members are connected by joints or the like. In that case, it is preferable that the total average residence time of each of the two or more tubular members constituting the first fluctuation mitigating pipe section 31 is 7 minutes or longer. The longer the average residence time of the first fluctuation mitigating pipe section 31, the greater the viscosity fluctuation reduction effect. .
  • the fluid flowing through the first fluctuation relaxation pipe portion 31 is not limited to a Newtonian fluid. different from the case of Therefore, when designing the average residence time of the first fluctuation mitigating pipe section 31, the rheology of the fluid flowing through the first fluctuation mitigating pipe section 31 should be taken into consideration. For example, in the case of a pseudoplastic fluid whose residence time distribution is smaller than that of a Newtonian fluid, it is preferable to set the average residence time of the first fluctuation relaxation pipe portion 31 longer.
  • the first fluctuation mitigating pipe section 31 can mitigate fluctuations with a shorter period than the average residence time, but it is difficult to alleviate fluctuations with a longer period than the average residence time. Therefore, it is preferable to make the average residence time of the first fluctuation reducing pipe section 31 sufficiently longer than the average fluctuation period of the first pipe mixed fluid C that can occur at the outlet of the first tubular mixing section 20 .
  • the average fluctuation cycle described here is the average of the time from when the viscosity of the first tube mixed fluid C at the outlet of the first tube mixing section 20 reaches a maximum value to when it reaches a minimum value and then reaches a maximum value again. time.
  • the average residence time of the first fluctuation mitigating pipe section 31 is preferably at least 1 time, more preferably at least 2 times the average fluctuation cycle of the first tube mixed fluid C at the outlet of the first tubular mixing section 20. more preferred.
  • the volume of the first fluctuation relaxation pipe section 31 is set to the first pipe mixing stirring part It is preferably 0.5 to 100 times the volume of 20, more preferably 5 to 100 times.
  • the first fluctuation mitigating pipe section 31 alleviates viscosity fluctuations by the distribution of residence time due to the difference in flow velocity, and since the flow velocity is extremely slow near the pipe wall, A sufficient effect of alleviating viscosity fluctuations can also be obtained by designing the fluid so that its residence time is sufficiently long.
  • the trajectory with the highest flow velocity refers to the trajectory that always passes through the center of the cross section, for example, in the case of laminar flow in a circular tube.
  • the time required for the tracer particles and the coloring agent to first flow out from the outlet of the first fluctuation mitigating pipe portion 31 is It roughly corresponds to the residence time of the fluid passing through the trajectory with the highest velocity.
  • the residence time of the fluid passing through the trajectory line with the highest flow velocity is 3
  • the variation in viscosity at the outlet of the first variation relaxation piping section 31 is reduced by 72%.
  • the effect of reducing viscosity fluctuations in the first fluctuation reducing pipe section 31 increases as the residence time of the fluid that has passed through the trajectory line with the highest flow velocity increases. More preferably, the total residence time of the fluid through the fast trajectories is 150 minutes or less.
  • the cross-sectional area and length of the first fluctuation relaxation piping section 31 and the first pipe mixed fluid C flowing through the first fluctuation relaxation piping section 31 are The effect of stabilizing the viscosity of the first generated fluid D is approximately the same regardless of the flow rate.
  • the cross-sectional area of the first fluctuation relaxation pipe portion 31 is small and the length is long, the pressure loss increases when the mixed fluid C in the first pipe flows through the first fluctuation relaxation pipe portion 31, so the pressure resistance is high. Piping is required, and equipment costs are high. Therefore, it is preferable to increase the cross-sectional area of the first fluctuation relaxation pipe portion 31 to some extent and shorten the length.
  • the length of the cross-sectional area is 0.7 m or more so that the cross-sectional average flow velocity is 0.01 m / s or less, and the cross-sectional average flow velocity is 0.00001 m / s or more and 0.003 m / s. More preferably, the length is 0.7 m or more and 60 m or less.
  • the cross-sectional average flow velocity described here is a value obtained by dividing the volumetric flow rate of the mixed fluid C in the first pipe by the cross-sectional area of the first fluctuation reducing pipe portion 31 .
  • the total length of each of the two or more tubular members should be 0.7 m or more and 60 m or less.
  • the shape of the first fluctuation mitigating pipe portion 31 is not particularly limited as long as the residence time has a distribution due to the velocity distribution in the cross-sectional direction when the first pipe mixed fluid C flows. Specifically, it may have a structure inside, may use a pipe bent by an elbow or the like, and may not have a circular cross section. Also, a valve, a sensor, or the like may be installed in the middle of the first fluctuation mitigating pipe section 31 .
  • the first fluctuation mitigating pipe section 31 is fed without contacting the gas.
  • the present invention is not limited to this, and a gas phase may exist inside the first fluctuation reducing pipe portion 31 as long as air bubbles are not involved in the mixed fluid C in the first pipe.
  • the first fluctuation mitigation pipe section 31 is provided between the first pipe mixed fluid measurement section 222 and the first generated fluid measurement section 322 .
  • the first fluctuation reducing pipe portion 31 is preferably a cylindrical pipe having the same inner diameter dimension from the end on the upstream side to the end on the downstream side in the flow direction of the mixed fluid C in the first pipe. It is preferable that the length dimension of the first fluctuation mitigating pipe portion 31 is 5 times or more and 1000 times or less the inner diameter dimension. It is preferable that the inner diameter dimension of the first fluctuation reducing pipe portion 31 is 0.5 times or more and 10 times or less the inner diameter dimension of the fourth liquid feeding portion L4 located on the upstream side.
  • the first pipe mixed fluid C flows in a state in which the internal space is filled with the first pipe mixed fluid C. Therefore, the flow velocity of the first pipe mixed fluid C in the radial direction is the difference becomes greater.
  • the first fluctuation mitigation temperature control section 32 is a piping section arranged radially outside the first fluctuation mitigation piping section 31 .
  • the first fluctuation mitigation temperature control section 32 temperature-regulates (for example, cools) the first pipe mixed fluid C flowing through the first fluctuation mitigation piping section 31 to a desired temperature condition.
  • the first pipe mixed fluid C is adjusted to a temperature suitable for the polymerization reaction, and flows through the first fluctuation relaxation piping section 31 .
  • the first tubular mixing section 20 is arranged in the front stage and the first fluctuation reducing section 30 is arranged in the rear stage, so that the first When there is variation in viscosity in the axial direction of the tube in the tubular mixing section 20, the variation in viscosity in the axial direction of the tube can be significantly reduced in the subsequent first variation reducing section 30.
  • FIG. 1 is a diagrammatic representation of the first tubular mixing section 20 and the first fluctuation reducing section 30 described above.
  • the first tube mixing structure has a structure for agitation inside.
  • the velocity distribution in the radial direction is difficult to occur, and the fluctuation of the viscosity of the mixed fluid in the axial direction of the pipe cannot be eliminated.
  • the properties in the radial direction are made uniform in the first tubular mixing section 20 in the front stage.
  • the first generated fluid measuring unit 322 is located at the outlet of the first fluctuation reducing unit 30 or downstream thereof, and is provided with first generated fluid reaction information (first reaction information ). Viscosity information is effective information as reaction information because the viscosity increases as the polymerization reaction progresses.
  • the first generated fluid measurement unit 322 outputs the acquired viscosity information of the first generated fluid to the control unit 200, which will be described later.
  • the first generated fluid measurement unit 322 also acquires first generated fluid reaction information (first reaction information) regarding the temperature of the first generated fluid D in the fifth liquid feeding unit L5. Since the reaction rate of the polymerization reaction differs depending on the temperature, temperature information is effective information as reaction information.
  • the first generated fluid measurement unit 322 outputs the acquired temperature information of the first generated fluid to the control unit 200, which will be described later.
  • first tube mixed fluid measurement unit 222 and the first generated fluid measurement unit 322 of the present embodiment provide reaction information related to the physical quantity and/or composition of at least one of the first tube mixed fluid C and the first generated fluid D. is an example of a measurement unit that acquires
  • the measurement unit is not limited to the first tube mixed fluid measurement unit 222 and the first generated fluid measurement unit 322 (physical quantity and/or composition type, measurement method) of the present embodiment.
  • the measurement unit includes, for example, a viscometer, a thermometer, a pressure gauge, a pump pressure gauge, an absorbance meter, an infrared spectrometer, a near-infrared spectrometer, a density meter, a color difference meter, a refractometer, a spectrophotometer, a conductivity meter, It may have one or more selected from the group consisting of a turbidimeter and a fluorescent X-ray analyzer.
  • the measurement unit acquires one or more pieces of reaction information relating to the physical quantity and/or composition of the object to be measured, and outputs the acquired reaction information to the control unit 200, which will be described later.
  • a cushion tank (not shown) may be provided downstream of the fifth liquid feeding line L5 to accommodate the first generated fluid D.
  • the cushion tank serves as a tank for containing a raw material fluid, for example, when polyamic acid, which is a polymer, is imidated to produce polyimide.
  • the polymer production system 1 further includes an imidization unit that imidizes the polyamic acid.
  • the imidization unit (not shown) imidizes the polyamic acid by, for example, a thermal imidization method of thermal dehydration ring closure, a chemical imidization method using a dehydrating agent and an imidization accelerator, or the like.
  • the cushion tank may not be provided, and the liquid may be fed from the first fluctuation reducing section 30 to the imidization section. However, it is more preferable to once store the polyamic acid in a cushion tank.
  • the control unit 200 includes a first supply pump 112 , a second supply pump 122 , a first tubular mixing temperature control unit 22 , a first fluctuation relaxation temperature control unit 32 , a first flow rate measurement unit 113 , a second flow rate measurement unit 123 . , the first tube mixed fluid measurement unit 222 and the first generated fluid measurement unit 322 are electrically connected.
  • illustration of control lines from the control unit 200 to each pump, each temperature control unit, and each measurement unit is omitted.
  • the control section 200 controls the supply pumps 112 and 122 based on the flow rate values measured by the flow rate measurement sections 113 and 123, respectively.
  • the control unit 200 controls, for example, the first supply pump 112 and/or the second supply pump 122, thereby controlling the first polymerizable compound contained in the first fluid A1 and the second polymerizable compound contained in the second fluid A2.
  • the substance amount ratio with the compound is controlled so as to be within a predetermined range.
  • the above substance amount ratio is set, for example, so as to obtain a polyamic acid having desired properties.
  • the control unit 200 controls the temperature conditions of the first tubular mixing temperature control unit 22 and/or the first fluctuation relaxation temperature control unit 32, for example, so that the reaction rate of the polymerization reaction is within a predetermined range. to control.
  • the control unit 200 controls the supply of the first supply pump 112 and the supply of the second supply pump 122. , temperature adjustment in the first tubular mixing temperature control section 22 , and temperature adjustment in the first fluctuation mitigation temperature control section 32 .
  • the operation of the polymer production system 1 (polyamic acid production system) in the first embodiment will be described.
  • the first supply pump 112 supplies the first fluid A1
  • the second supply pump 122 supplies the second fluid A2.
  • the discharge flow rates of the first supply pump 112 and the second supply pump 122 are controlled by the controller 200 so as to supply the first fluid A1 and the second fluid A2 at a desired ratio.
  • the first fluid A1 and the second fluid A2 are supplied to the first junction J1.
  • the first merging portion J1 the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122 are merged and mixed to form the first merged fluid B. generated.
  • the first merged fluid B generated in the first merging portion J1 is sent through the third liquid sending portion L3 by the supply operations of the first supply pump 112 and the second supply pump 122, and is fed to the first tubular mixing portion 20. supplied to
  • the first merged fluid B is stirred to make the properties such as concentration uniform in the radial direction, thereby generating the first tubular mixed fluid C. do.
  • the first tubular mixing section 20 is a static mixer such as a static mixer
  • the first merged fluid B is stirred only by passing it through.
  • the first merged fluid B moves in the axial direction of the pipe without causing a wide velocity distribution. If there is a change, it cannot be resolved.
  • the first pipe mixed fluid C generated in the first tubular mixing section 20 is sent through the fourth liquid sending section L4 and supplied to the first fluctuation reducing section 30 .
  • the first pipe mixed fluid C is introduced and continuously fed while the residence time of the first pipe mixed fluid C is distributed according to the velocity distribution in the radial direction.
  • fluctuations in the viscosity of the first pipe mixed fluid C in the axial direction of the tube which cannot be eliminated in the first tubular mixing section 20 in the preceding stage, can be significantly reduced in the first fluctuation reducing section 30 in the subsequent stage. can. Therefore, a desired polymer can be obtained continuously and stably.
  • the first pipe mixed fluid measuring section 222 and the first produced fluid measuring section 322 acquire viscosity information (measurement step). Based on the viscosity information (first reaction information) acquired by the first tube mixed fluid measurement unit 222 and/or the first generated fluid measurement unit 322, the control unit 200 controls the supply pumps 112 and 122 and the temperature controllers 112 and 122. The parts 22 and 32 are controlled (control process). Thereby, a polyamic acid having desired properties (temperature, viscosity) can be obtained.
  • the first pipe mixed fluid measurement unit 222 acquires the first viscosity information (measuring step), and based on this, the first fluctuation A temporal change in the viscosity of the first generated fluid D at the outlet of the relaxation section 30 can be predicted (prediction step).
  • the supply pumps 112 and 122 and the temperature controllers 22 and 32 may be controlled based on the predicted viscosity (control step). For example, when a laminar flow is formed in the first fluctuation reducing section 30 and a Hagen-Poiseuille flow is formed, the flow velocity distribution in the radial direction can be calculated, so the residence time distribution can be known.
  • the change over time of the viscosity at the inlet of the first fluctuation mitigation section 30 and the viscosity at the outlet of the first fluctuation mitigation section 30 may be measured once, and the change in the viscosity of the first generated fluid D may be predicted by modeling the effect of reducing the viscosity variation by the first variation reducing section 30 from the result.
  • a first-order lag function or the like can be used.
  • the operating conditions are controlled based on the viscosity information from the first pipe mixed fluid measurement unit 222, which fluctuates greatly, hunting may occur.
  • the operating conditions are controlled based on the viscosity information obtained by the first generated fluid measuring unit 322, the viscosity is stable, so hunting is unlikely, but the dead time is long, so spec-out is likely to occur. Therefore, it is effective to predict the viscosity of the first generated fluid D at the outlet of the first fluctuation reducing section 30 based on the viscosity information obtained by the first tube mixed fluid measuring section 222, and to perform control based thereon. .
  • the first pipe mixed fluid measurement unit 222 and the first product fluid measurement unit 322 acquire temperature information (measurement step). Based on the temperature information (first reaction information) acquired by the first tube mixed fluid measurement unit 222 and/or the first generated fluid measurement unit 322, the control unit 200 controls the first tubular mixed temperature control unit 22 and/or Alternatively, the temperature adjustment conditions in the first fluctuation mitigation temperature adjustment section 32 are controlled (control step). Thereby, a polyamic acid having desired properties (temperature, viscosity) can be obtained.
  • the polymer production system 1 includes a first supply pump 112 that supplies a first fluid A1 containing a first polymerizable compound, a second supply pump 122 that supplies a second fluid A2 containing a second polymerizable compound, and a first a first merging portion J1 for merging the fluid A1 and the second fluid A2 to generate a first merged fluid B; and a first tubular mixing section 20 that generates the first tubular mixed fluid C by equalizing the fluctuation of the viscosity of the first tubular mixing section 20, and the axis of the first tubular mixed fluid C that is arranged downstream of the first tubular mixing section 20. and a first fluctuation reducing unit 30 that generates the first generated fluid D by reducing the unevenness of the directional property.
  • the first tubular mixed fluid C mixed in the first tubular mixing section 20 arranged in the preceding stage is made uniform in the axial direction in the first fluctuation reducing section 30 arranged in the subsequent stage. Fluctuations in the viscosity of the first tubular mixed fluid C in the axial direction of the tube, which cannot be eliminated in the first tubular mixing section 20, can be eliminated in the subsequent first fluctuation reducing section 30, and the polymer solution can be continuously supplied. can be stably obtained.
  • the present invention is particularly effective when producing a high-viscosity polymer of, for example, 1000 poise or more.
  • the supply in the first supply pump 112 the second supply Any one or more of supply by the pump 122, temperature adjustment by the first tubular mixing temperature control section 22, and temperature adjustment by the first fluctuation relaxation temperature control section 32 is controlled. Thereby, a polymer having desired properties (temperature, viscosity) can be obtained.
  • one of the first polymerizable compound and the second polymerizable compound is a tetracarboxylic dianhydride and the other is a diamine, and the case of producing a polyamic acid as a polymer was described. It is not limited to this.
  • one is an acid anhydride group-terminated or amino group-terminated polyamic acid (prepolymer)
  • the other is a diamine or tetracarboxylic dianhydride
  • one of the first polymerizable compound and the second polymerizable compound is an acid anhydride group-terminated polyamic acid, and the other is a diamine.
  • one of the first polymerizable compound and the second polymerizable compound is an amino group-terminated polyamic acid
  • the other is a tetracarboxylic dianhydride.
  • one of the first polymerizable compound and the second polymerizable compound is an acid anhydride group-terminated or amino group-terminated polyamic acid, and the other is an amino group-terminated or an acid anhydride group-terminated polyamic acid
  • a polyamic acid may be produced as a coalescence.
  • one of the first polymerizable compound and the second polymerizable compound is an acid anhydride group-terminated polyamic acid, and the other is an amino group-terminated polyamic acid.
  • FIG. 2 is a diagram showing a polymer production system in the second embodiment.
  • symbol is attached
  • the first fluctuation reducing section 30 of the present embodiment is arranged downstream of the first tubular mixing section 20 .
  • the first fluctuation damping section 30 includes a cylindrical first fluctuation damping tank 31a without a stirrer, and a first fluctuation damping temperature control section 32 (first temperature control section) arranged outside the first fluctuation damping tank 31a.
  • first fluctuation damping temperature control section 32 first temperature control section
  • the temperature of the mixed fluid C in the first tube is adjusted to a temperature suitable for the polymerization reaction by the first fluctuation relaxation temperature control section 32 .
  • the viscosity fluctuation in the first tube mixed fluid C in the axial direction is reduced by the residence time distribution caused by the difference in velocity between the vertical direction and the horizontal direction.
  • the properties of the fluid D can be stabilized, and fluctuations in the properties of the first tube mixed fluid C in the axial direction can be alleviated.
  • the first fluctuation mitigation tank 31a an open channel is formed, in which the first tube mixed fluid C flows in from the upper part in the vertical direction, and the first produced fluid D flows out from the lower part. Since the pressure on the inflow side of the first pipe mixed fluid C becomes the pressure of the gas phase portion by making the first fluctuation mitigation tank 31a an open channel, when the first pipe mixing portion 20 and subsequent ones are pipes, In comparison, it is superior in that the discharge pressures of the first supply pump 112 and the second supply pump 122 can be reduced.
  • the gas phase portion can be kept at a constant pressure with an inert gas or the like.
  • the shape of the first fluctuation mitigation tank 31a a structure that does not easily create a dead space is preferable, and specifically, a cylindrical tank is preferable. If the ratio (L/D) of the diameter D to the height L of the cylindrical tank is too small, the fluid will not flow sufficiently in the horizontal direction and short-passing will easily occur, so it is preferably 0.5 or more. On the other hand, if the L/D is too large, it becomes difficult to install the apparatus, so it is preferably 10 or less. Therefore, it is preferably 0.5 to 10.
  • the inlet of the first fluctuation mitigation tank 31a may be installed on the wall surface or may be an insertion pipe. When an insertion tube is used, it is preferable to install the inflow port so that it is held in the liquid surface, or to install it so that the fluid flows along the wall surface to prevent air bubbles from entering.
  • the outflow port of the first fluctuation reduction tank 31a is preferably installed at a position where the entire outflow port is immersed in the liquid in order to prevent air bubbles from entering.
  • the inflow velocity of the first pipe mixed fluid C into the first fluctuation mitigation tank 31a and the outflow velocity of the first generated fluid D are the same, variations may occur.
  • the outflow speed of the first generated fluid D may be controlled so that the liquid level in the first fluctuation reduction tank 31a is within a predetermined range.
  • the gas phase may be involved at the outlet, so it is preferable to make it 20% or more.
  • the flow in the first fluctuation reducing tank 31a transitions from the open channel flow to the pipe channel flow or between the open channel flow and the pipe channel flow, causing pressure fluctuations in the first fluctuation reducing tank 31a. Since there is a possibility, it is preferable to set it to 80% or less. Therefore, it is preferable to control the amount of the first tube mixed fluid C in the first fluctuation reduction tank 31a to be 20% to 80% of the volume of the first fluctuation reduction tank 31a.
  • the angle formed by the central axis and the installation surface is 75° or less in order to reduce the risk of entrainment of air bubbles.
  • the angle between the central axis of the first fluctuation mitigation tank 31a and the installation surface is 45° to 75°.
  • the first fluctuation mitigation tank 31a is configured so that the average residence time is sufficiently long.
  • the average residence time is a value obtained by dividing the volume of the solution in the first fluctuation mitigation tank 31a by the volumetric flow rate of the mixed fluid C in the first pipe.
  • the longer the average residence time in the first fluctuation mitigation tank 31a the greater the effect of stabilizing the viscosity of the first generated fluid D flowing out of the first fluctuation mitigation tank 31a. Therefore, it is preferable to lengthen the average residence time in the first fluctuation mitigation tank 31a as the fluctuation of the properties of the first mixed fluid C flowing out of the first tubular mixing section 20 in the axial direction increases.
  • the residence time is preferably 3 minutes or longer, more preferably 7 minutes or longer, and more preferably 10 minutes or longer. The longer the average residence time in the first fluctuation mitigation tank 31a, the greater the viscosity fluctuation reduction effect.
  • the volume of the solution in the first fluctuation relaxation tank 31a is adjusted to the first tubular mixing stirring part It is preferably 0.5 to 100 times the volume of 20, more preferably 5 to 100 times.
  • the shape of the first fluctuation mitigation tank 31a is not particularly limited. Specifically, it may have a structure inside. Further, a sensor or the like may be installed in the first fluctuation mitigation tank 31a.
  • the inside of the first fluctuation mitigation tank 31a is an open channel, and the first pipe mixed fluid C flowing in from the inlet located on the upper side flows vertically and horizontally in the first fluctuation mitigation tank 31a. Since the flow velocity of the first pipe mixed fluid C differs and the residence time in the first fluctuation reducing tank 31a differs, the fluctuation of the properties of the first fluctuation reducing tank 31a in the axial direction can be reduced.
  • the first fluctuation mitigation temperature control unit 32 temperature-regulates (for example, cools) the first tube mixed fluid C flowing through the first fluctuation mitigation tank 31a to a desired temperature condition.
  • the first tubular mixing section 20 is arranged in the front stage and the first fluctuation reducing section 30 is arranged in the rear stage, so that the first When there is variation in viscosity in the axial direction of the tube in the tubular mixing section 20, the variation in viscosity in the axial direction of the tube can be significantly reduced in the subsequent first variation reducing section 30.
  • FIG. 1 is a diagrammatic representation of the first tubular mixing section 20 and the first fluctuation reducing section 30 described above.
  • the first pipe mixed fluid C is allowed to flow in, and the residence time of the first pipe mixed fluid C is distributed according to the residence time distribution caused by the difference in velocity between the vertical direction and the horizontal direction. Feed continuously.
  • fluctuations in the viscosity of the first pipe mixed fluid C in the axial direction of the tube which cannot be eliminated in the first tubular mixing section 20 in the preceding stage, can be significantly reduced in the first fluctuation reducing section 30 in the subsequent stage. can. Therefore, a desired polymer can be obtained continuously and stably.
  • FIG. 3 is a diagram showing a polymer production system in the third embodiment.
  • symbol is attached
  • the first fluctuation mitigation section 30 of the present embodiment is arranged downstream of the first tubular mixing section 20, and the fluids simultaneously flowing into the first fluctuation mitigation section 30 flow into the first fluctuation mitigation section 30 due to a wide residence time distribution. designed to drain over a long period of time from Specifically, it takes 10 minutes or more from the point at which the fluid flowing through the trajectory line with the highest flow velocity flows out until 70% of the fluid that simultaneously flows into the first fluctuation damping section 30 flows out. It is designed to produce a distribution of residence times. This wide residence time distribution promotes homogenization of the mixed fluid C in the first pipe in the axial direction, making it possible to obtain the first produced fluid D with little variation in viscosity over time.
  • the trajectory with the highest flow velocity is, for example, when the tracer particles and the colorant are put in the entire cross section of the entrance of the first fluctuation reduction section 30, the tracer particles and the colorant are first from the exit of the first fluctuation reduction section 30. refers to the trajectory through which the flows out.
  • the statement that ⁇ it takes 10 minutes or more from the time the fluid flowing through the trajectory line with the highest flow velocity to flow out until 70% of the fluid that simultaneously flowed into the first fluctuation damping section 30 flows out'' means that For example, when the tracer particles and the coloring agent are put into the entire cross section of the entrance of the first fluctuation reducing section 30, the tracer particles and the coloring agent first flow out from the outlet of the first fluctuation reducing section 30, and then the tracer particles and the coloring agent It means that it takes 10 minutes or more for 70% of the agent to flow out. These can be evaluated by a turbidity meter, an absorption photometer, or the like.
  • the first fluctuation mitigation section 30 includes a first fluctuation mitigation branch section J2 (first branch section) that branches the inflowing fluid into a plurality of flow paths, and a first fluctuation mitigation branch section J2.
  • a first fluctuation mitigation junction J3 (second junction) for joining the fluids flowing through the plurality of flow paths is provided on the downstream side of each of the plurality of flow paths in the fluid flow direction.
  • the first fluctuation mitigation section 30 distributes the first pipe mixed fluid C to two flow paths having different residence times at the first fluctuation mitigation branch section J2 (first branch section). It has a structure in which it merges into one flow path again at the fluctuation mitigation confluence portion J3 (second confluence portion).
  • the two flow paths of the first fluctuation mitigation section 30 are composed of double pipes, with a first fluctuation mitigation pipe section 31 and a second fluctuation mitigation pipe section 33 arranged radially inside, and a fluctuation relaxation pipe section 33 arranged radially outside.
  • the first pipe mixed fluid C is adjusted to a temperature suitable for the polymerization reaction by the first fluctuation relaxation temperature control section 32 and the second fluctuation relaxation temperature control section 34 .
  • the shape of the pipe that constitutes the first fluctuation mitigation section 30 is not particularly limited.
  • the first fluctuation mitigation section includes a first branching section that branches the fluid flowing inside into two or more different flow paths, and a first fluctuation mitigation confluence section (second confluence) where the branched flow paths merge again. (part), may have a structure inside, may use a pipe bent by an elbow or the like, and may not have a circular cross section. Also, a valve, a sensor, or the like may be installed in the middle of the first fluctuation mitigating pipe section 31 . Also, the interior of one pipe may be divided by a partition or the like to form two or more flow paths having different residence times.
  • a residence time distribution may be generated by a radial velocity difference within the same flow path.
  • the fluid passing through the center of the tube has the highest flow velocity and the shortest residence time.
  • the residence time is very long. Even within one flow path, the variation in properties in the axial direction can be mitigated by such a difference in residence time due to the trajectory.
  • the mixed fluid C in the first pipe In order to obtain a sufficient effect of alleviating viscosity fluctuations due to the difference in velocity in the radial direction within the same flow path, it is more preferable for the mixed fluid C in the first pipe to flow in a laminar flow within the pipe.
  • the Reynolds number ( ⁇ ud/ ⁇ ) calculated from the average flow velocity u and the density ⁇ is preferably 2100 or less, more preferably 0.00001 or more and 1000 or less.
  • the viscosity of the first pipe mixed fluid C flowing in 33 is preferably high.
  • the viscosity of the first pipe mixed fluid C flowing through the first fluctuation mitigating pipe section 31 and/or the second fluctuation mitigating pipe section 33 is preferably 0.1 poise or more and 100000 poise or less at the temperature during circulation. It is preferably 1 poise or more and 10000 poise or less, and more preferably 5 poise or more and 5000 poise or less.
  • FIG. 3 shows an example in which the first fluctuation reducing section 30 is composed of two flow paths with different residence times, it is not limited to this.
  • 70% of the fluid simultaneously flowing into the first fluctuation reducing section 30 passes through the trajectory line with the highest flow velocity before flowing out.
  • the first fluctuation reducing section 30 may be configured by one pipe without including the branching section and the merging section.
  • the residence time distribution is positively generated.
  • One fluctuation reducing section 30 may have a structure in which it branches into three or more pipes.
  • the first fluctuation mitigation pipe part 31 and the second fluctuation mitigation pipe part 33 can mitigate fluctuations with a shorter period than the average residence time, but they can alleviate fluctuations with a longer period than the average residence time. Hateful. Therefore, compared to the average fluctuation cycle of the first pipe mixed fluid C that can occur at the outlet of the first tubular mixing unit 20, the total average residence time of the first fluctuation reducing pipe portion 31 and the second fluctuation reducing pipe portion 33 is It should preferably be long enough.
  • the average residence time mentioned here is a value obtained by dividing the total volume of the flow path by the volumetric flow rate of the mixed fluid C in the first tube.
  • the average fluctuation period is the average of the time from when the viscosity of the first tube mixed fluid C at the outlet of the first tube mixing section 20 reaches a maximum value to when it reaches a minimum value and then reaches a maximum value again. value.
  • the sum of the average residence times of the first fluctuation mitigating pipe portion 31 and the second fluctuation mitigating pipe portion 33 should be at least 1 time the average fluctuation cycle of the first pipe mixed fluid C at the outlet of the first pipe mixing portion 20. is preferable, and more preferably twice or more.
  • the first fluctuation relaxation pipe portion 31 and the second fluctuation relaxation pipe portion 33 In order for the first fluctuation relaxation pipe portion 31 and the second fluctuation relaxation pipe portion 33 to have an appropriate average residence time according to the viscosity fluctuation of the mixed fluid C in the first pipe, the first fluctuation relaxation pipe portion 31 and the second It is preferable that the total volume of the two fluctuation-mitigating pipe sections 33 is 0.5 to 100 times the volume of the first tubular mixing/stirring section 20 .
  • the first fluctuation mitigating pipe section 31 and the second fluctuation mitigating pipe section 33 are fed without contacting gas.
  • the present invention is not limited to this, and a gas phase may exist inside the first fluctuation mitigating pipe section 31 and/or the second fluctuation mitigating pipe section 33 as long as air bubbles are not involved in the first pipe mixed fluid C. .
  • the first pipe mixed fluid C flowing into the first fluctuation reducing section 30 is subjected to the first fluctuation It is distributed to the first fluctuation relaxation piping section 31 and the second fluctuation relaxation piping section 33 at the relaxation branch J2.
  • the first pipe mixed fluid C distributed at the first fluctuation mitigation branch portion J2 flows through the first fluctuation mitigation pipe portion 31 and the second fluctuation mitigation pipe portion 33 toward the first fluctuation mitigation junction J3 side, It merges at the first fluctuation mitigation junction J3 and flows out from the first fluctuation mitigation section 30 .
  • the first fluctuation mitigation temperature control part 32 and the second fluctuation mitigation temperature control part 34 are pipe parts arranged radially outside the first fluctuation mitigation pipe part 31 and the second fluctuation mitigation pipe part 33, respectively.
  • the temperature of the first tube mixed fluid C flowing through is controlled (for example, cooled) to a desired temperature condition.
  • the mixed fluid C in the first tube is adjusted to a temperature suitable for the polymerization reaction, and flows through the first fluctuation relaxation piping section 31 and the second fluctuation relaxation piping section 33 .
  • the first fluctuation reducing section 30 has one or more may be provided to adjust the flow rate of the first tube mixed fluid C flowing through each channel.
  • the first pipe mixed fluid C is distributed to each flow path at a desired flow rate. You may do so.
  • the first tubular mixing section 20 is arranged in the front stage and the first fluctuation reducing section 30 is arranged in the rear stage, so that the first When there is variation in viscosity in the axial direction of the tube in the tubular mixing section 20, the variation in viscosity in the axial direction of the tube can be significantly reduced in the subsequent first variation reducing section 30.
  • FIG. 1 is a diagrammatic representation of the first tubular mixing section 20 and the first fluctuation reducing section 30 described above.
  • the first pipe mixed fluid C is allowed to flow in, and the radial velocity distribution and/or the residence time distribution of the first pipe mixed fluid C is distributed by the effect of branching into flow paths with different residence times. Continuously feed the liquid while holding the As a result, fluctuations in the viscosity of the first pipe mixed fluid C in the axial direction of the tube, which cannot be eliminated in the first tubular mixing section 20 in the preceding stage, can be significantly reduced in the first fluctuation reducing section 30 in the subsequent stage. can. Therefore, a desired polymer can be obtained continuously and stably.
  • the first pipe mixed fluid measuring section 222 and the first produced fluid measuring section 322 acquire viscosity information (measurement step). Based on the viscosity information (first reaction information) acquired by the first tube mixed fluid measurement unit 222 and/or the first generated fluid measurement unit 322, the control unit 200 controls the supply pumps 112 and 122 and the temperature controllers 112 and 122. Control the parts 22, 32, 34 (control process). Thereby, a polyamic acid having desired properties (temperature, viscosity) can be obtained.
  • the first pipe mixed fluid measurement unit 222 acquires the first viscosity information (measuring step), and based on this, the first fluctuation A temporal change in the viscosity of the first generated fluid D at the outlet of the relaxation section 30 can be predicted (prediction step).
  • the supply pumps 112, 122 and the temperature controllers 22, 32, 34 may be controlled based on the predicted viscosity (control step). For example, when a Hagen-Poiseuille flow is formed by laminar flow in the first fluctuation damping section 30, the flow velocity distribution in the radial direction can be calculated, so the residence time distribution can be known.
  • the time moving average weighted by the residence time distribution is calculated from the viscosity of the first pipe mixed fluid C acquired by the first pipe mixed fluid measurement unit 222, the first generation at the outlet of the first fluctuation reduction unit 30 An estimate of the viscosity of fluid D is obtained.
  • the first fluctuation reducing section 30 has a structure that branches into two or more flow paths, the average of the residence time distribution of each flow path, weighted by the flow rate ratio of each flow path, may be considered. .
  • the supply in the first supply pump 112 the second supply Any one or more of the supply by the pump 122, the temperature adjustment in the first tubular mixing temperature control section 22, the temperature adjustment in the first fluctuation relaxation temperature control section 32, and the temperature adjustment in the second fluctuation relaxation temperature control section 34 are controlled. Thereby, a polymer having desired properties (temperature, viscosity) can be obtained.
  • the fluids are mixed in the first tubular mixing section and the first fluctuation reducing section.
  • a one-stage or multiple-stage tubular mixing section and/or a variation reducing section may be provided further downstream of the configuration of the above-described embodiments.
  • the present invention is not limited to this.
  • the water may flow separately into a cushion tank or the like provided downstream.
  • the first tubular mixing section 20 is composed of a double tube of the first tubular mixing stirring section 21 and the first temperature adjusting section 22 has been described, but the present invention is limited to this. not a thing
  • the first tubular mixing section 20 may be composed of only the first tubular mixing/stirring section 21 with a single tube, and the first tubular mixing/stirring section 21 may be immersed in the temperature control liquid.
  • the polymer production system for producing polyamic acid or polyimide was described, but the polymer to be produced is not limited to these.
  • the polymer production system may produce polymers using polyaddition monomers such as urethane monomers and epoxy monomers.
  • the first variation reducing unit 30 reduces the variation in viscosity over time, but the property that can reduce variation is not limited to viscosity, and other physical properties can be reduced over time. Even if there is a large fluctuation, it can be reduced by the first fluctuation reducing section 30 .
  • the viscosity information about the viscosity of the mixed fluid C in the first tube and the viscosity of the first generated fluid D is acquired by the viscosity measuring unit, and based on the acquired viscosity information, the supply amount of the fluid and/or the mixing temperature Controlled but not limited to conditions.
  • absorbance information relating to the absorbance of the first pipe mixed fluid C and the first product fluid D may be acquired, and the fluid supply amount and/or the temperature conditions for mixing may be controlled based on the acquired absorbance information.
  • each part of the polymer production system is connected by the first liquid-feeding line L1, the second liquid-feeding line L2, the third liquid-feeding line L3, the fourth liquid-feeding line L4, and the fifth liquid-feeding line L5.
  • the outlet of the first tubular mixing section 20 and the inlet of the first fluctuation reducing section 30 may be directly connected without the fourth liquid feeding line L4.
  • the method for controlling the temperatures of the first tubular mixing section 20 and the first fluctuation reducing section 30 has been described, but the present invention is not limited to this.
  • the temperature control section of the first tubular mixing section 20 and/or the first fluctuation reducing section 30 is not necessarily required, and the first junction section J1, the first liquid feeding line L1, the second liquid feeding line L2, Any one or more of the third liquid-feeding line L3, the fourth liquid-feeding line L4, and the fifth liquid-feeding line L5 may be provided with a temperature control section.
  • Example 1 a polyamic acid was produced using a polymer production system 1 having a structure as shown in FIG.
  • a polyamic acid having an acid anhydride at the end obtained by the reaction of 4,4′-diaminodiphenyl ether and pyromellitic dianhydride was dissolved in N,N-dimethylformamide. It accommodated the first fluid A1.
  • the second tank 12 contained a second fluid A2 in which p-phenylenediamine was dissolved in N,N-dimethylformamide.
  • the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122 are merged and mixed to form a first merged fluid B generated.
  • the first merged fluid B is stirred without coming into contact with gas, and from the outlet of the first tubular mixing section 20, the first mixed fluid B having uniform properties in the radial direction of the tube is discharged.
  • Tube mixed fluid C flowed out.
  • a Kenics mixer type static mixer (inner diameter 8 mm, length 670 mm) was used as the first tubular mixing section 20 to stir the first merged fluid B without contacting the gas.
  • the total amount supplied by the first supply pump 112 and the second supply pump 122 was set to 1.0 cc/s, and a polymer solution having a desired viscosity was obtained by adjusting the material supply ratio of these pumps.
  • the polymerization reaction was completed, and the first tubular mixed fluid C was obtained with uniform properties in the radial direction. and a minimum value difference of about 400 poise.
  • the average viscosity of the mixed fluid C in the first tube was 2100 poise.
  • a hollow cylindrical tube with an inner diameter of 30 mm and a length of 900 mm was used as the first fluctuation reducing section 30 .
  • the first tubular mixed fluid C flowing out of the first tubular mixing section 20 was allowed to flow into the first fluctuation reducing section 30 at a volumetric flow rate of 1.0 cc/s. Due to the flow velocity distribution generated in the first fluctuation reducing section 30, mixing in the axial direction of the first pipe mixed fluid C proceeds, and the average viscosity from the outlet of the first fluctuation reducing section 30 is 2100 poise, and the viscosity fluctuation of the first generated fluid D flowed out.
  • Example 2 a polyamic acid was produced using a polymer production system 1 having a structure as shown in FIG.
  • a first polyamic acid having acid anhydride ends obtained by the reaction of 4,4′-diaminodiphenyl ether and pyromellitic dianhydride was dissolved in N,N-dimethylformamide.
  • Fluid A1 was accommodated.
  • the second tank 12 contained a second fluid A2 in which p-phenylenediamine was dissolved in N,N-dimethylformamide.
  • the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122 are merged and mixed to form a first merged fluid B generated.
  • the first merged fluid B is stirred without coming into contact with gas, and from the outlet of the first tubular mixing section 20, the first mixed fluid B having uniform properties in the radial direction of the tube is discharged.
  • Tube mixed fluid C flowed out.
  • the first fluid A1 and the second fluid A2 are combined and mixed at a total supply amount of 1.0 cc/s. and the first merged fluid B was generated.
  • the first tubular mixing section 20 the first merged fluid B is stirred without coming into contact with gas, and from the outlet of the first tubular mixing section 20, the first mixed fluid B having uniform properties in the radial direction of the tube is discharged.
  • a pipe mixed fluid C was obtained.
  • the polymerization reaction was completed, and the first tubular mixed fluid C was obtained with uniform properties in the radial direction. and the minimum value difference is 800 poise.
  • the average viscosity of the mixed fluid C in the first tube was 1800 poise.
  • a cylindrical tank having an inner diameter of 80 mm and a capacity of 500 ml was used as the first variation mitigation tank 31a of the first variation mitigation unit 30, and the central axis of the cylindrical tank was installed at an angle of 60° to the installation surface.
  • a portion of the first pipe mixed fluid C flowing out from the first tubular mixing section 20 was allowed to flow in from the upper portion of the first fluctuation damping tank 31a at a volumetric flow rate of 0.2 cc/s. Further, the first generated fluid D was caused to flow out at the same flow rate from the bottom portion of the first fluctuation mitigation tank 31a.
  • the average residence time in the first fluctuation mitigation tank 31a was 11 minutes.
  • the axial mixing of the mixed fluid C in the first pipe progresses, and the average value of the viscosity from the outlet of the first fluctuation relaxation tank 31a is 1800 poise, and the viscosity fluctuation The first generated fluid D with a small amount flowed out.
  • Measurement by an on-line viscometer revealed that the difference between the maximum value and the minimum value of the viscosity of the first generated fluid D was 40 poise. Therefore, the temporal viscosity fluctuation of the fluid at the outlet of the first tubular mixing section 20 is significantly reduced by providing the first fluctuation reducing section 30 .
  • Example 3 a polyamic acid was produced using a polymer production system 1 having a structure as shown in FIG.
  • a first polyamic acid having acid anhydride ends obtained by the reaction of 4,4′-diaminodiphenyl ether and pyromellitic dianhydride was dissolved in N,N-dimethylformamide.
  • Fluid A1 was accommodated.
  • the second tank 12 contained a second fluid A2 in which p-phenylenediamine was dissolved in N,N-dimethylformamide.
  • the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122 are merged and mixed to form a first merged fluid B generated.
  • the first merged fluid B is stirred without coming into contact with gas, and from the outlet of the first tubular mixing section 20, the first mixed fluid B having uniform properties in the radial direction of the tube is discharged.
  • Tube mixed fluid C flowed out.
  • a Kenics mixer type static mixer (inner diameter 8 mm, length 670 mm) was used as the first tubular mixing section 20 to stir the first merged fluid B without contacting the gas.
  • the total amount supplied by the first supply pump 112 and the second supply pump 122 was set to 1.0 cc/s, and a polymer solution having a desired viscosity was obtained by adjusting the material supply ratio of these pumps.
  • the polymerization reaction was completed, and the first tubular mixed fluid C was obtained with uniform properties in the radial direction. and a minimum value difference of about 400 poise.
  • the average viscosity of the mixed fluid C in the first tube was 2100 poise.
  • the first fluctuation relaxation piping section 31 uses a hollow cylindrical tube with an inner diameter of 30 mm and a length of 1000 mm
  • the second fluctuation relaxation piping section 33 uses a hollow cylindrical tube with an inner diameter of 20 mm and a length of 200 mm. 13 minutes after the fluid flowing through the trajectory line with the highest flow velocity flows out until 70% of the fluids simultaneously flowing into the first fluctuation damping section 30 flow out.
  • the first tubular mixed fluid C flowing out of the first tubular mixing section 20 was allowed to flow into the first fluctuation reducing section 30 at a volumetric flow rate of 1.0 cc/s.

Abstract

A polymer production system 1 comprises a first supply unit 112 that supplies a first fluid A1 including a first polymerizable compound, a second supply unit 122 that supplies a second fluid A2 including a second polymerizable compound, a first merging unit J1 that merges the first fluid A1 and the second fluid A2 to generate a first merged fluid B, a first tube-type mixing unit 20 that is arranged downstream of the first merging unit J1 and advances mixing of the first merged fluid B in the radial direction to generate a first tube-type mixed fluid C, and a first fluctuation mitigation unit 30 that is connected to the first tube-type mixing unit and reduces the variation in the viscosity of the first tube-type mixed fluid C in the axial direction to generate a first generated fluid D.

Description

重合体製造システム及び重合体の製造方法Polymer production system and polymer production method
 本発明は、重合体製造システム及び重合体の製造方法に関する。詳細には、本発明は、重合体を連続的に製造可能な重合体製造システム及び重合体製造システムを用いた重合体の製造方法に関する。 The present invention relates to a polymer production system and a polymer production method. Specifically, the present invention relates to a polymer production system capable of continuously producing a polymer and a polymer production method using the polymer production system.
 従来より、ポリアミック酸(ポリアミド酸)等の重合体の製造方法として、例えば、第1流体と第2流体とを混合槽で混合し、混合した混合流体を管状の管型混合器で更に混合する製造方法が知られている(例えば、特許文献1参照)。管型混合器においては、ポンプの駆動により混合流体が通液されることで、混合流体は、管の軸方向に移動されながら撹拌される。 Conventionally, as a method for producing a polymer such as polyamic acid (polyamic acid), for example, a first fluid and a second fluid are mixed in a mixing tank, and the mixed fluid is further mixed in a tubular tubular mixer. A manufacturing method is known (see, for example, Patent Document 1). In the tubular mixer, the mixed fluid is agitated while being moved in the axial direction of the tube by driving the pump to pass the mixed fluid.
特開昭62-214912号公報JP-A-62-214912
 管型混合器では、管の径方向においては混合による均一化が進行するが、管型混合器内における滞留時間の分布が小さいため、管の軸方向において生じる混合流体の粘度変動は保持される。重付加反応では、生成する重合体が高分子量になるほど原料の混合比率を精密に調整する必要があるため、管型混合器による重付加反応では、低粘度の重合体は安定して得られるが、例えば1000poise以上の高粘度の重合体を、粘度の安定した状態で連続的に得ることは困難であった。経時的に粘度が変動する重合体では、製膜してフィルム化する際に、厚みが一定のフィルムが得られないという課題があった。これを解決するために、管型混合器の下流に撹拌槽等を設けて粘度の変動を解消することが考えられるが、設備費が高くなることに加え、重合体溶液が気泡を巻き込んでしまい、製膜にする前に脱泡が必要となるという課題があった。 In the tubular mixer, homogenization due to mixing progresses in the radial direction of the tube, but because the residence time distribution in the tubular mixer is small, the viscosity fluctuation of the mixed fluid that occurs in the axial direction of the tube is maintained. . In the polyaddition reaction, the higher the molecular weight of the polymer to be produced, the more precisely the mixing ratio of the raw materials must be adjusted. For example, it is difficult to continuously obtain a high-viscosity polymer of 1000 poise or more with a stable viscosity. A polymer whose viscosity fluctuates over time has a problem that a film with a constant thickness cannot be obtained when it is formed into a film. In order to solve this problem, it is conceivable to install a stirring tank or the like downstream of the tubular mixer to eliminate the fluctuation of the viscosity. However, there is a problem that defoaming is required before film formation.
 このような課題を解決するために鋭意検討した結果、従来であれば、所要時間と製品のロスを少なくするために、生成した重合体を移液する送液ラインの滞留時間は短い方が好ましいが、重合体の送液ライン中に敢えて滞留時間の長い部位を設けることによって、得られる重合体の粘度の経時的変動を大幅に低減できることを見出し、発明を完成するに至った。 As a result of intensive studies to solve such problems, conventionally, in order to reduce the required time and product loss, it is preferable that the residence time of the liquid transfer line for transferring the generated polymer is short. However, the present inventors have found that by deliberately providing a portion having a long residence time in the polymer feed line, it is possible to greatly reduce the variation in the viscosity of the resulting polymer over time, leading to the completion of the invention.
 本発明は、経時的な粘度変動の少ない所望の重合体を連続的に且つ安定的に得ることが可能な重合体製造システム及び製造方法を提供することを目的とする。また、本発明は、連続的な重合体の製造において、生成する重合体の性状の変動幅を低減することで、スペックアウト率を低減可能な重合体製造システム及び製造方法を提供することを他の目的とする。 An object of the present invention is to provide a polymer production system and production method capable of continuously and stably obtaining a desired polymer with little viscosity change over time. Another object of the present invention is to provide a polymer production system and production method capable of reducing the spec out rate by reducing the fluctuation range of the properties of the polymer produced in continuous polymer production. for the purpose of
 上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
 <1>.重付加性の第1重合性化合物を含む第1流体と、前記第1重合性化合物と重付加する重付加性の第2重合性化合物を含む第2流体とを原料として重合体を製造する重合体製造システムであって、
 前記第1流体を供給する第1供給部と、
 前記第2流体を供給する第2供給部と、
 前記第1流体と前記第2流体とを合流させて第1合流流体を生成する第1合流部と、
 前記第1合流部の下流側に配置され、前記第1合流流体の径方向の混合を進めて第1管混合流体を生成する第1管型混合部と、
 前記第1管型混合部の下流側に配置され、前記第1管混合流体の軸方向の性状の変動を低減することで第1生成流体を生成する第1変動緩和部と、を備える重合体製造システム。
Specific means for solving the above problems include the following embodiments.
<1>. A first fluid containing a first polyaddition polymerizable compound and a second fluid containing a second polyaddition polymerizable compound that polyadditions with the first polymerizable compound are used as raw materials to produce a polymer. A combined manufacturing system,
a first supply unit that supplies the first fluid;
a second supply unit that supplies the second fluid;
a first merging section for merging the first fluid and the second fluid to generate a first merged fluid;
a first tubular mixing section disposed downstream of the first merging section for promoting radial mixing of the first merged fluid to generate a first tubular mixed fluid;
a first variation mitigation section disposed downstream of the first tubular mixing section and configured to reduce variations in axial properties of the first tubular mixed fluid to generate a first product fluid. manufacturing system.
 <2>.前記第1合流流体、前記第1管混合流体、前記第1生成流体のいずれか1以上における物理量及び/又は組成に関する第1反応情報を取得する第1測定部を更に備える、 <1>に記載の重合体製造システム。 <2>. According to <1>, further comprising a first measurement unit that acquires first reaction information relating to physical quantities and/or compositions in any one or more of the first merged fluid, the first tube mixed fluid, and the first generated fluid. polymer manufacturing system.
 <3>.前記第1測定部は、粘度計、温度計、圧力計、ポンプ圧計、吸光度計、赤外分光計、近赤外分光計、密度計、色差計、屈折率計、分光光度計、導電率計、濁度計、超音波センサ、及び蛍光X線分析装置からなる群より選択される1以上を有する、
<2>に記載の重合体製造システム。
<3>. The first measurement unit includes a viscometer, a thermometer, a pressure gauge, a pump pressure gauge, an absorbance meter, an infrared spectrometer, a near-infrared spectrometer, a density meter, a color difference meter, a refractometer, a spectrophotometer, and a conductivity meter. , having one or more selected from the group consisting of a turbidimeter, an ultrasonic sensor, and a fluorescent X-ray analyzer,
The polymer production system according to <2>.
 <4>.前記第1流体、前記第2流体、前記第1合流流体、前記第1管混合流体、前記第1生成流体のいずれか1以上の温度を調整するための第1温調部を更に備える、
<2>に記載の重合体製造システム。
<4>. further comprising a first temperature control unit for adjusting the temperature of any one or more of the first fluid, the second fluid, the first merged fluid, the first tube mixed fluid, and the first generated fluid,
The polymer production system according to <2>.
 <5>.前記第1変動緩和部が1以上の管状部材によって構成され、
 前記管状部材のそれぞれの平均滞留時間の合計が7分以上である、<1>~<4>のいずれかに記載の重合体製造システム。
<5>. The first fluctuation reducing section is configured by one or more tubular members,
The polymer production system according to any one of <1> to <4>, wherein the total average residence time of each of the tubular members is 7 minutes or longer.
 <6>.前記第1変動緩和部は、内部を流れる流体の平均滞留時間が7分以上の配管である、<1>~<4>のいずれかに記載の重合体製造システム。 <6>. The polymer production system according to any one of <1> to <4>, wherein the first fluctuation reducing section is a pipe in which an average residence time of fluid flowing therein is 7 minutes or longer.
 <7>.前記第1管混合流体の物理量及び/又は組成に関する第1管混合流体反応情報を取得する第1管混合流体測定部を、前記第1管型混合部と前記第1変動緩和部との間に備え、
 前記第1生成流体の物理量及び/又は組成に関する第1生成流体反応情報を取得する第1生成流体測定部を、前記第1変動緩和部の出口またはその下流に更に備え、
 前記第1変動緩和部の容積は、前記第1管型混合部の容積の0.5~100倍である、<1>~<4>のいずれかに記載の重合体製造システム。
<7>. a first tube mixed fluid measuring unit for acquiring first tube mixed fluid reaction information related to the physical quantity and/or composition of the first tube mixed fluid is provided between the first tubular mixing unit and the first fluctuation reducing unit; prepared,
further comprising a first generated fluid measurement unit for obtaining first generated fluid reaction information related to the physical quantity and/or composition of the first generated fluid, at the outlet of the first fluctuation mitigation unit or downstream thereof;
The polymer production system according to any one of <1> to <4>, wherein the volume of the first fluctuation reducing section is 0.5 to 100 times the volume of the first tubular mixing section.
 <8>.前記第1変動緩和部の容積は、前記第1管型混合部の容積の5~100倍である、<1>~<4>のいずれかに記載の重合体製造システム。 <8>. The polymer production system according to any one of <1> to <4>, wherein the volume of the first fluctuation reducing section is 5 to 100 times the volume of the first tubular mixing section.
 <9>.前記第1変動緩和部は、最も流速の速い流跡線を通過した流体の滞留時間が3分以上の配管である、<1>~<4>のいずれかに記載の重合体製造システム。 <9>. The polymer production system according to any one of <1> to <4>, wherein the first fluctuation mitigation section is a pipe in which the fluid that has passed through the trajectory line with the highest flow velocity has a residence time of 3 minutes or longer.
 <10>.前記第1変動緩和部が1以上の管状部材によって構成され、
 前記管状部材の内部を流れる流体の断面平均流速が0.01m/s以下であり、
 前記管状部材のそれぞれの長さの合計が0.7m以上の配管である、<1>~<4>のいずれかに記載の重合体製造システム。
<10>. The first fluctuation reducing section is configured by one or more tubular members,
The cross-sectional average flow velocity of the fluid flowing inside the tubular member is 0.01 m/s or less,
The polymer production system according to any one of <1> to <4>, wherein the total length of each of the tubular members is 0.7 m or longer.
 <11>.前記第1変動緩和部は、内部を流れる流体のレイノルズ数が、代表長さとして4×断面積/浸辺長を用いた場合に2100以下となる、<1>~<10>のいずれかに記載の重合体製造システム。 <11>. Any one of <1> to <10>, wherein the Reynolds number of the fluid flowing inside the first fluctuation reducing portion is 2100 or less when 4×cross-sectional area/immersion side length is used as a representative length The described polymer production system.
 <12>.前記第1変動緩和部は駆動型の撹拌機を持たず、流体が開水路を形成する<1>に記載の重合体製造システム。 <12>. The polymer production system according to <1>, wherein the first fluctuation reducing section does not have a driven stirrer and the fluid forms an open channel.
 <13>.前記第1変動緩和部に同時に流入した流体のうちの70%が流出するまでに、最も流速の速い流跡線を通った流体が流出してから10分以上を要する、を有する<1>に記載の重合体製造システム。 <13>. In <1>, it takes 10 minutes or more after the fluid that has flowed through the trajectory line with the highest flow velocity has flowed out until 70% of the fluid that simultaneously flowed into the first fluctuation damping portion flows out. The described polymer production system.
 <14>.前記第1重合性化合物及び前記第2重合性化合物が下記(a)~(c)のいずれかを満たし、前記重合体としてポリアミック酸を製造する<1>~<13>のいずれかに記載の重合体製造システム。
(a)前記第1重合性化合物及び前記第2重合性化合物のうち、一方がテトラカルボン酸二無水物であり、他方がジアミンである。
(b)前記第1重合性化合物及び前記第2重合性化合物のうち、一方が酸無水物末端又はアミノ基末端のポリアミック酸であり、他方がジアミン又はテトラカルボン酸二無水物である。
(c)前記第1重合性化合物及び前記第2重合性化合物のうち、一方が酸無水物末端又はアミノ基末端のポリアミック酸であり、他方がアミノ基末端又は酸無水物末端のポリアミック酸である。
<14>. <1> to <13>, wherein the first polymerizable compound and the second polymerizable compound satisfy any one of the following (a) to (c), and a polyamic acid is produced as the polymer: Polymer production system.
(a) One of the first polymerizable compound and the second polymerizable compound is a tetracarboxylic dianhydride and the other is a diamine.
(b) One of the first polymerizable compound and the second polymerizable compound is an acid anhydride-terminated or amino group-terminated polyamic acid, and the other is a diamine or a tetracarboxylic dianhydride.
(c) one of the first polymerizable compound and the second polymerizable compound is an acid anhydride-terminated or amino group-terminated polyamic acid, and the other is an amino group-terminated or an acid anhydride-terminated polyamic acid; .
 <15>.製造されたポリアミック酸をイミド化するイミド化部を更に備え、前記重合体としてポリイミドを製造する、<14>に記載の重合体製造システム。 <15>. The polymer production system according to <14>, further comprising an imidization section for imidizing the produced polyamic acid, and producing polyimide as the polymer.
 <16>.前記第1測定部は、前記第1合流流体、前記第1管混合流体、前記第1生成流体のいずれか1以上における前記第1反応情報を取得し、
 取得した前記第1反応情報に基づいて、前記第1供給部における流体供給、前記第2供給部における流体供給、前記第1温調部における温度調整からなる群より選択されるいずれか1以上を制御する制御部を更に備える、<4>に記載の重合体製造システム。
<16>. the first measurement unit acquires the first reaction information in any one or more of the first merged fluid, the first tube mixed fluid, and the first generated fluid;
any one or more selected from the group consisting of fluid supply in the first supply unit, fluid supply in the second supply unit, and temperature adjustment in the first temperature control unit based on the acquired first reaction information; The polymer production system according to <4>, further comprising a controller for controlling.
 <17>.前記第1測定部は、前記第1合流流体及び/又は前記第1管混合流体における前記第1反応情報を取得する測定工程を有し、
 取得した前記第1反応情報に基づいて、前記第1生成流体の性状を予測し、予測した前記第1生成流体の性状に基づいて、前記第1供給部における流体供給、前記第2供給部における流体供給、前記第1温調部における温度調整からなる群より選択されるいずれか1以上を制御する制御部を更に備える、<4>に記載の重合体製造システム。
<17>. The first measuring unit has a measuring step of acquiring the first reaction information in the first merged fluid and/or the first tube mixed fluid,
Based on the obtained first reaction information, the property of the first generated fluid is predicted, and based on the predicted property of the first generated fluid, the fluid supply in the first supply unit and the second supply unit The polymer production system according to <4>, further comprising a control unit that controls at least one selected from the group consisting of fluid supply and temperature adjustment in the first temperature control unit.
 <18>.<1>~<17>のいずれかに記載の重合体製造システムを用いた、重合体の製造方法。 <18>. A method for producing a polymer using the polymer production system according to any one of <1> to <17>.
 <19>.<1>~<17>のいずれかに記載の重合体製造システムを用いた、ポリアミック酸溶液及び/又はポリイミドの製造方法。 <19>. A method for producing a polyamic acid solution and/or polyimide using the polymer production system according to any one of <1> to <17>.
 本発明によれば、経時的な粘度変動の少ない所望の重合体を連続的に且つ安定的に得ることが可能な重合体製造システム及び製造方法を提供することができる。また、連続的な重合体の製造において、重合体の性状の変動を低減するための、シンプルな構造で設備費の安い機構を設けることで、スペックアウト率を低減可能な重合体製造システム及び製造方法を提供することができる。 According to the present invention, it is possible to provide a polymer production system and production method capable of continuously and stably obtaining a desired polymer with little viscosity change over time. Also, in continuous polymer production, a polymer production system and production that can reduce the spec out rate by providing a mechanism with a simple structure and low equipment cost to reduce fluctuations in the properties of the polymer. can provide a method.
第1実施形態における重合体製造システムを示す図である。It is a figure which shows the polymer manufacturing system in 1st Embodiment. 第2実施形態における重合体製造システムを示す図である。It is a figure which shows the polymer manufacturing system in 2nd Embodiment. 第3実施形態における重合体製造システムを示す図である。It is a figure which shows the polymer manufacturing system in 3rd Embodiment.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 第1乃至第3実施形態は、第1管型混合部と第1変動緩和部とを備える重合体製造システムの例である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The first to third embodiments are examples of a polymer production system that includes a first tubular mixing section and a first fluctuation reducing section.
<第1実施形態>
 図1により、第1実施形態における重合体製造システムについて説明する。図1は、第1実施形態における重合体製造システムを示す図である。
<First Embodiment>
A polymer manufacturing system according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a polymer production system according to the first embodiment.
 まず、第1実施形態における重合体製造システム1の概要について説明する。
 重合体製造システム1は、重付加性の第1重合性化合物を含む第1流体A1と、重付加性の第2重合性化合物を含む第2流体A2とを原料として重合体を製造する製造システムである。第1実施形態は、第1管型混合部と第1変動緩和部とが連続して設けられる場合の重合体製造システムの例である。
First, an overview of the polymer production system 1 in the first embodiment will be described.
The polymer production system 1 is a production system for producing a polymer using a first fluid A1 containing a first polyaddition polymerizable compound and a second fluid A2 containing a second polyaddition polymerizable compound as raw materials. is. The first embodiment is an example of a polymer production system in which a first tubular mixing section and a first fluctuation reducing section are provided continuously.
 ここで、第1管型混合部とは、流体を流通させながら径方向の性状を均一化する管状の混合部を意味する。また、第1変動緩和部とは、流路中の流跡線による流速の違いを利用した滞留時間分布を積極的に生じさせることによって、軸方向の性状の変動を低減することができる構造部を意味する。 Here, the first tubular mixing section means a tubular mixing section that homogenizes properties in the radial direction while circulating the fluid. In addition, the first variation mitigation section is a structural section that can reduce variations in properties in the axial direction by actively generating a residence time distribution that utilizes the difference in flow velocity due to the trajectory in the flow channel. means
 以下では一例として、第1重合性化合物及び第2重合性化合物のうち、一方がテトラカルボン酸二無水物であり、他方がジアミンであり、重合体としてポリアミック酸を製造する場合について説明する。より具体的には、第1流体A1に含まれる第1重合性化合物がテトラカルボン酸二無水物であり、第2流体A2に含まれる第2重合性化合物がジアミンであり、重合体としてポリアミック酸を製造する場合について説明する。 As an example, the case where one of the first polymerizable compound and the second polymerizable compound is a tetracarboxylic dianhydride and the other is a diamine to produce a polyamic acid as a polymer will be described below. More specifically, the first polymerizable compound contained in the first fluid A1 is tetracarboxylic dianhydride, the second polymerizable compound contained in the second fluid A2 is diamine, and the polymer is polyamic acid. will be described.
 テトラカルボン酸二無水物としては、特に制限されず、従来のポリイミド合成で用いられているものと同様のものを用いることができる。テトラカルボン酸二無水物の具体例としては、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,3,3',4'-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、1,3-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、2,3,3',4'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,2',6,6'-ビフェニルテトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、アントラセン-2,3,6,7-テトラカルボン酸二無水物、フェナンスレン-1,8,9,10-テトラカルボン酸二無水物、2,2-ビス(4-ヒドロキシフェニル)プロパンジベンゾエート-3,3’,4,4’-テトラカルボン酸酸二無水物等の芳香族テトラカルボン酸二無水物;ブタン-1,2,3,4-テトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物;シクロブタン-1,2,3,4-テトラカルボン酸二無水物等の脂環族テトラカルボン酸二無水物;チオフェン-2,3,4,5-テトラカルボン酸二無水物、ピリジン-2,3,5,6-テトラカルボン酸二無水物等の複素環族テトラカルボン酸二無水物;などが挙げられる。テトラカルボン酸二無水物は、1種を単独で用いてもよく、2種以上を併用してもよい。 The tetracarboxylic dianhydride is not particularly limited, and those similar to those used in conventional polyimide synthesis can be used. Specific examples of tetracarboxylic dianhydrides include 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2, 3,3′,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, 1,3-bis(2,3-dicarboxyphenoxy)benzene dianhydride, 1,4-bis(2, 3-dicarboxyphenoxy)benzene dianhydride, 2,3,3′,4′-benzophenonetetracarboxylic dianhydride, 2,2′,3,3′-benzophenonetetracarboxylic dianhydride, 2,2 ',3,3'-biphenyltetracarboxylic dianhydride, 2,2',6,6'-biphenyltetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic dianhydride, anthracene-2,3,6,7-tetracarboxylic dianhydride, phenanthrene-1,8,9,10-tetracarboxylic dianhydride, 2,2-bis(4-hydroxyphenyl)propane dibenzoate-3 ,3′,4,4′-tetracarboxylic dianhydride and other aromatic tetracarboxylic dianhydrides; butane-1,2,3,4-tetracarboxylic dianhydride and other aliphatic tetracarboxylic acids dianhydride; alicyclic tetracarboxylic dianhydride such as cyclobutane-1,2,3,4-tetracarboxylic dianhydride; thiophene-2,3,4,5-tetracarboxylic dianhydride, pyridine -heterocyclic tetracarboxylic dianhydrides such as 2,3,5,6-tetracarboxylic dianhydride; Tetracarboxylic dianhydrides may be used alone or in combination of two or more.
 第1流体A1の溶媒としては、テトラカルボン酸二無水物及びポリアミック酸が溶解するものが用いられる。溶媒の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、アセトアニリド等のアミド系溶媒;γ-ブチロラクトン等の環状エステル系溶媒;酢酸エチル等の鎖状エステル系溶媒;2-プロパノン、3-ペンタノン、アセトン、メチルエチルケトン等のケトン系溶媒;テトラヒドロフラン、ジオキソラン等のエーテル系溶媒;メタノール、エタノール、イソプロパノール等のアルコール系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;などが挙げられる。これらの中でも、ポリアミック酸の溶解性が高いアミド系溶媒、環状エステル系溶媒、及びエーテル系溶媒が好ましい。溶媒は、1種を単独で用いてもよく、2種以上を混合してもよい。例えば、アセトン、酢酸エチル、メチルエチルケトン、トルエン、キシレン等のポリアミック酸の溶解性が比較的低い溶媒に対して極性の高いアルコ―ル系溶媒を混合することで、ポリアミック酸の溶解性を向上させることも可能である。 As the solvent for the first fluid A1, one that dissolves tetracarboxylic dianhydride and polyamic acid is used. Specific examples of solvents include amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and acetanilide; Cyclic ester solvents such as butyrolactone; chain ester solvents such as ethyl acetate; ketone solvents such as 2-propanone, 3-pentanone, acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran and dioxolane; and aromatic hydrocarbon solvents such as toluene and xylene; and the like. Among these, amide-based solvents, cyclic ester-based solvents, and ether-based solvents in which the polyamic acid is highly soluble are preferred. A solvent may be used individually by 1 type, and may mix 2 or more types. For example, by mixing a highly polar alcoholic solvent with a solvent in which polyamic acid has relatively low solubility, such as acetone, ethyl acetate, methyl ethyl ketone, toluene, and xylene, the solubility of polyamic acid can be improved. is also possible.
 第1流体A1は、テトラカルボン酸二無水物の溶解性を高め、又はジアミンとの反応性を高めるため、トリメチルアミン、トリエチルアミン等の第3級アミンや酢酸を少量含有していてもよい。 The first fluid A1 may contain a small amount of a tertiary amine such as trimethylamine or triethylamine or acetic acid in order to increase the solubility of the tetracarboxylic dianhydride or increase the reactivity with the diamine.
 ジアミンとしては、特に制限されず、従来のポリイミド合成で用いられているものと同様のものを用いることができる。ジアミンの具体例としては、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ビス(4-アミノフェノキシ)ビフェニル、1,4'-ビス(4-アミノフェノキシ)ベンゼン、1,3'-ビス(4-アミノフェノキシ)ベンゼン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、3,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルフォン、3,4’-ジアミノジフェニルスルフォン、3,3'-ジアミノジフェニルスルフォン、4,4'-メチレン-ビス(2-クロロアニリン)、3,3'-ジメチル-4,4'-ジアミノビフェニル、4,4'-ジアミノジフェニルスルフィド、2,6-ジアミノトルエン、2,4-ジアミノクロロベンゼン、1,2-ジアミノアントラキノン、1,4-ジアミノアントラキノン、3,3'-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4'-ジアミノベンゾフェノン、4,4'-ジアミノビベンジル等の芳香族ジアミン;1,2-ジアミノエタン、1,4-ジアミノブタン、テトラメチレンジアミン、1,10-ジアミノドデカン等の脂肪族ジアミン;1,4-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、4,4'-ジアミノジシクロヘキシルメタン等の脂環族ジアミン;3,4-ジアミノピリジン等の複素環族ジアミン;などが挙げられる。ジアミンは、1種を単独で用いてもよく、2種以上を併用してもよい。 The diamine is not particularly limited, and the same ones used in conventional polyimide synthesis can be used. Specific examples of diamines include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 4,4′-bis(4- aminophenoxy)biphenyl, 1,4'-bis(4-aminophenoxy)benzene, 1,3'-bis(4-aminophenoxy)benzene, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3, 4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 4,4'-methylene-bis(2-chloroaniline), 3, 3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-diaminodiphenyl sulfide, 2,6-diaminotoluene, 2,4-diaminochlorobenzene, 1,2-diaminoanthraquinone, 1,4-diaminoanthraquinone, Aromatic diamines such as 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 4,4′-diaminobenzophenone, 4,4′-diaminobibenzyl; 1,2-diaminoethane, 1,4-diamino Aliphatic diamines such as butane, tetramethylenediamine, and 1,10-diaminododecane; heterocyclic diamines such as 3,4-diaminopyridine; and the like. A diamine may be used individually by 1 type, and may use 2 or more types together.
 第2流体A2の溶媒としては、ジアミン及びポリアミック酸が溶解するものが用いられる。溶媒の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、アセトアニリド等のアミド系溶媒;γ-ブチロラクトン等の環状エステル系溶媒;酢酸エチル等の鎖状エステル系溶媒;2-プロパノン、3-ペンタノン、アセトン、メチルエチルケトン等のケトン系溶媒;テトラヒドロフラン、ジオキソラン等のエーテル系溶媒;メタノール、エタノール、イソプロパノール等のアルコール系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;などが挙げられる。これらの中でも、ポリアミック酸の溶解性が高いアミド系溶媒、環状エステル系溶媒、及びエーテル系溶媒が好ましい。溶媒は、1種を単独で用いてもよく、2種以上を混合してもよい。例えば、アセトン、酢酸エチル、メチルエチルケトン、トルエン、キシレン等のポリアミック酸の溶解性が比較的低い溶媒に対して極性の高いアルコ―ル系溶媒を混合することで、ポリアミック酸の溶解性を向上させることも可能である。 As the solvent for the second fluid A2, one that dissolves diamine and polyamic acid is used. Specific examples of solvents include amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and acetanilide; Cyclic ester solvents such as butyrolactone; chain ester solvents such as ethyl acetate; ketone solvents such as 2-propanone, 3-pentanone, acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran and dioxolane; and aromatic hydrocarbon solvents such as toluene and xylene; and the like. Among these, amide-based solvents, cyclic ester-based solvents, and ether-based solvents in which the polyamic acid is highly soluble are preferred. A solvent may be used individually by 1 type, and may mix 2 or more types. For example, by mixing a highly polar alcoholic solvent with a solvent in which polyamic acid has relatively low solubility, such as acetone, ethyl acetate, methyl ethyl ketone, toluene, and xylene, the solubility of polyamic acid can be improved. is also possible.
 第1流体A1及び/又は第2流体A2には、ポリイミドフィルムの滑剤となるフィラーが分散されていてもよい。滑剤としては、例えば、酸化チタン、第二リン酸カルシウム無水物、ピロリン酸カルシウム、炭酸カルシウム、二酸化ケイ素、アルミナ、硫酸バリウム、ジルコニア、カオリン、タルク、クレー、マイカ、などの無機粒子や、アクリル酸類、スチレン類等を構成成分とする有機粒子を例示することができる。また、フィルムの強度、熱伝導性といったポリイミドフィルムの他の特性を変化させる目的で添加する無機粒子や有機粒子が分散されていてもよい。 A filler that serves as a lubricant for the polyimide film may be dispersed in the first fluid A1 and/or the second fluid A2. Examples of lubricants include inorganic particles such as titanium oxide, dicalcium phosphate anhydride, calcium pyrophosphate, calcium carbonate, silicon dioxide, alumina, barium sulfate, zirconia, kaolin, talc, clay, mica, acrylic acids, and styrenes. and the like can be exemplified as organic particles. Further, inorganic particles or organic particles added for the purpose of changing other properties of the polyimide film such as film strength and thermal conductivity may be dispersed.
 図1に示すように、重合体製造システム1は、原料である第1流体A1及び第2流体A2を第1合流部J1において合流させて混合して第1合流流体Bを生成し、第1合流流体Bを第1管型混合部20において撹拌することで、管の径方向の各成分の濃度が一様な第1管混合流体Cを生成する。続いて、第1管混合流体Cの軸方向の粘度の変動を第1変動緩和部30にて低減することで第1生成流体Dを得ることにより、経時的な粘度変動の少ないポリアミック酸(重合体)を製造するよう構成されている。 As shown in FIG. 1, the polymer production system 1 joins and mixes a first fluid A1 and a second fluid A2, which are raw materials, at a first junction J1 to generate a first merged fluid B, By agitating the merged fluid B in the first tubular mixing section 20, a first tubular mixed fluid C in which the concentration of each component in the radial direction of the tube is uniform is generated. Subsequently, by reducing the variation in the axial viscosity of the first tube mixed fluid C in the first variation reducing section 30 to obtain the first generated fluid D, polyamic acid (heavy combined).
 また、重合体製造システム1は、後述の第1タンク11及び第2タンク12から第1変動緩和部30の出口までをつなぐ送液ラインLを有する。 In addition, the polymer production system 1 has a liquid feed line L that connects the first tank 11 and the second tank 12 described later to the outlet of the first fluctuation reducing section 30 .
 重合反応は、第1管型混合部20と第1変動緩和部30のいずれかまたは両方にて進行する。第1管型混合部20の出口で重合反応が完全に終了していてもよいし、第1管型混合部20の出口ではまだ反応がほとんど進行しておらず、第1変動緩和部30で反応の大部分が進むのであってもよい。また、必ずしも第1変動緩和部30の出口で重合反応が完全に終了している必要は無く、第1変動緩和部30の下流に設けた配管やクッションタンク内でも反応が進行するようにしてもよい。ただし、性状が安定した重合体を得るためには、第1変動緩和部30の出口で重合反応が80%以上終了するように設計するのが好ましく、第1管型混合部20の出口で重合反応が80%以上終了するように設計するのが更に好ましい。 The polymerization reaction proceeds in either or both of the first tubular mixing section 20 and the first fluctuation reducing section 30. The polymerization reaction may be completely completed at the outlet of the first tubular mixing section 20, or the reaction has hardly progressed at the outlet of the first tubular mixing section 20, and the first fluctuation reducing section 30 may Most of the reaction may proceed. In addition, the polymerization reaction does not necessarily have to be completely completed at the outlet of the first fluctuation reducing section 30, and the reaction may proceed even in the pipe or cushion tank provided downstream of the first fluctuation reducing section 30. good. However, in order to obtain a polymer with stable properties, it is preferable to design so that 80% or more of the polymerization reaction is completed at the outlet of the first fluctuation reducing section 30, and the polymerization is performed at the outlet of the first tubular mixing section 20. It is more preferable to design so that the reaction is completed 80% or more.
 続けて、重合体製造システム1の具体的な構成について説明する。
 図1に示すように、重合体製造システム1は、第1タンク11と、第1タンク用開閉弁111と、第2タンク12と、第2タンク用開閉弁121と、第1供給ポンプ112(第1供給部)と、第2供給ポンプ122(第2供給部)と、第1合流部J1と、第1管型混合部20と、第1変動緩和部30と、送液ラインLと、制御部200と、を備える。上述の送液ラインLは、第1送液部L1と、第2送液部L2と、第3送液部L3と、第4送液部L4と、第5送液部L5と、を有する。また、重合体製造システム1は、第1流量測定部113と、第2流量測定部123と、第1管混合流体測定部222(第1測定部)と、第1生成流体測定部322(第1測定部)と、を有する。
Next, a specific configuration of the polymer production system 1 will be described.
As shown in FIG. 1, the polymer production system 1 includes a first tank 11, a first tank on-off valve 111, a second tank 12, a second tank on-off valve 121, and a first supply pump 112 ( first supply section), a second supply pump 122 (second supply section), a first junction J1, a first tubular mixing section 20, a first fluctuation reducing section 30, a liquid feed line L, A control unit 200 is provided. The liquid feeding line L described above has a first liquid feeding section L1, a second liquid feeding section L2, a third liquid feeding section L3, a fourth liquid feeding section L4, and a fifth liquid feeding section L5. . In addition, the polymer production system 1 includes a first flow rate measurement unit 113, a second flow rate measurement unit 123, a first tube mixed fluid measurement unit 222 (first measurement unit), and a first generated fluid measurement unit 322 (second 1 measuring unit).
 第1タンク11は、重付加性の第1重合性化合物が溶解した第1流体A1を収容する。本実施形態においては、第1タンク11は、テトラカルボン酸二無水物が溶解した第1流体A1を収容する。第1タンク11に収容された第1流体A1は、第1送液部L1を介して、第1合流部J1に供給される。 The first tank 11 contains the first fluid A1 in which the polyaddition first polymerizable compound is dissolved. In this embodiment, the first tank 11 contains the first fluid A1 in which tetracarboxylic dianhydride is dissolved. The first fluid A1 contained in the first tank 11 is supplied to the first junction J1 via the first liquid feeding section L1.
 第1送液部L1は、第1タンク11と第1合流部J1とをつなぐラインである。第1送液部L1における第1タンク11と第1合流部J1との間には、第1タンク用開閉弁111、第1供給ポンプ112、及び第1流量測定部113が、上流側から下流側に向かってこの順で配置される。 The first liquid feeding part L1 is a line that connects the first tank 11 and the first junction part J1. A first tank on-off valve 111, a first supply pump 112, and a first flow rate measuring unit 113 are provided between the first tank 11 and the first junction J1 in the first liquid feeding unit L1, from the upstream side to the downstream side. Arranged in this order from side to side.
 第1タンク用開閉弁111は、第1送液部L1における第1タンク11の下方近傍に配置され、第1供給ポンプ112の上流側において、第1送液部L1を開閉する。 The first tank on-off valve 111 is arranged in the vicinity of the lower part of the first tank 11 in the first liquid feeding section L1, and opens and closes the first liquid feeding section L1 on the upstream side of the first supply pump 112.
 第1供給ポンプ112は、第1タンク11に収容されている第1流体A1を第1合流部J1に供給する。第1供給ポンプ112は、第1流体A1を所定の流量で吐出する。例えば、第1供給ポンプ112は、所望の性状のポリアミック酸が得られる条件で第1流体A1を供給するよう調整される。 The first supply pump 112 supplies the first fluid A1 contained in the first tank 11 to the first junction J1. The first supply pump 112 discharges the first fluid A1 at a predetermined flow rate. For example, the first supply pump 112 is adjusted so as to supply the first fluid A1 under conditions under which polyamic acid with desired properties is obtained.
 本実施形態においては、第1供給ポンプ112は、定量ポンプで構成される。
 本実施形態においては、第1供給ポンプ112により供給される第1流体A1と、後述する第2供給ポンプ122により供給される第2流体A2と、の供給を制御することで、所望の性状のポリアミック酸を得る。そのため、第1流体A1及び第2流体A2の供給精度が高いことが好ましく、本実施形態では、第1供給ポンプ112が定量ポンプで構成されるとともに、後述する第2供給ポンプ122も定量ポンプで構成される。
In this embodiment, the first supply pump 112 is composed of a metering pump.
In the present embodiment, by controlling the supply of the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122, which will be described later, a desired property can be obtained. Obtain polyamic acid. Therefore, it is preferable that the first fluid A1 and the second fluid A2 are supplied with high accuracy. Configured.
 定量ポンプは、容積式のポンプであり、一定量の流体を高い精度で繰り返し送り出すポンプである。定量ポンプとしては、例えば、プランジャポンプ等の押し出し式の往復ポンプ;歯車を備えたギアポンプ等の回転ポンプ;などが挙げられる。 A metering pump is a positive displacement pump that repeatedly pumps out a fixed amount of fluid with high accuracy. Examples of metering pumps include push-type reciprocating pumps such as plunger pumps; rotary pumps such as gear pumps provided with gears; and the like.
 第1流量測定部113は、第1送液部L1における第1供給ポンプ112の下流側の第1流体A1の流量を測定する。本実施形態においては、第1流量測定部113は、第1供給ポンプ112と第1合流部J1との間に配置される。第1流量測定部113は、測定した第1流体A1の流量を後述する制御部200に出力する。 The first flow rate measuring unit 113 measures the flow rate of the first fluid A1 on the downstream side of the first supply pump 112 in the first liquid feeding unit L1. In this embodiment, the first flow rate measurement section 113 is arranged between the first supply pump 112 and the first junction J1. The first flow rate measurement unit 113 outputs the measured flow rate of the first fluid A1 to the control unit 200, which will be described later.
 第2タンク12は、第1重合性化合物と重付加する重付加性の第2重合性化合物が溶解した第2流体A2を収容する。本実施形態においては、第2タンク12は、ジアミンが溶解した第2流体A2を収容する。第2タンク12に収容された第2流体A2は、第2送液部L2を介して、第1合流部J1に供給される。 The second tank 12 contains the second fluid A2 in which the second polyadditive polymerizable compound that polyadditions with the first polymerizable compound is dissolved. In this embodiment, the second tank 12 contains the second fluid A2 in which diamine is dissolved. The second fluid A2 stored in the second tank 12 is supplied to the first junction J1 via the second liquid feeding section L2.
 第2送液部L2は、第2タンク12と第1合流部J1とをつなぐラインである。第2送液部L2における第2タンク12と第1合流部J1との間には、第2タンク用開閉弁121、第2供給ポンプ122、及び第2流量測定部123が、上流側から下流側に向かってこの順で配置される。 The second liquid feeding part L2 is a line that connects the second tank 12 and the first junction part J1. A second tank on-off valve 121, a second supply pump 122, and a second flow rate measuring unit 123 are provided between the second tank 12 and the first junction J1 in the second liquid feeding unit L2, from the upstream side to the downstream side. Arranged in this order from side to side.
 第2タンク用開閉弁121は、第2送液部L2における第2タンク12の下方近傍に配置され、第2供給ポンプ122の上流側において、第2送液部L2を開閉する。 The second tank on-off valve 121 is arranged in the vicinity of the lower portion of the second tank 12 in the second liquid feeding section L2, and opens and closes the second liquid feeding section L2 on the upstream side of the second supply pump 122.
 第2供給ポンプ122は、第2タンク12に収容されている第2流体A2を第1合流部J1に供給する。第2供給ポンプ122は、第2流体A2を所定の流量で吐出する。例えば、第2供給ポンプ122は、所望の性状のポリアミック酸が得られる条件で第2流体A2を供給するよう調整される。
 本実施形態では、第2供給ポンプ122は、上述の第1供給ポンプ112と同様の理由により、定量ポンプで構成される。
The second supply pump 122 supplies the second fluid A2 contained in the second tank 12 to the first junction J1. The second supply pump 122 discharges the second fluid A2 at a predetermined flow rate. For example, the second supply pump 122 is adjusted so as to supply the second fluid A2 under conditions under which polyamic acid with desired properties is obtained.
In this embodiment, the second supply pump 122 is a metering pump for the same reason as the first supply pump 112 described above.
 第2流量測定部123は、第2送液部L2における第2供給ポンプ122の下流側の第2流体A2の流量を測定する。本実施形態においては、第2流量測定部123は、第2供給ポンプ122と第1合流部J1との間に配置される。第2流量測定部123は、測定した第2流体A2の流量を後述する制御部200に出力する。 The second flow rate measuring section 123 measures the flow rate of the second fluid A2 on the downstream side of the second supply pump 122 in the second liquid feeding section L2. In this embodiment, the second flow rate measurement section 123 is arranged between the second supply pump 122 and the first junction J1. The second flow rate measurement unit 123 outputs the measured flow rate of the second fluid A2 to the control unit 200, which will be described later.
 第1合流部J1は、第1供給ポンプ112及び第2供給ポンプ122の下流側に配置される。第1合流部J1は、第1流体A1と第2流体A2とを合流させて第1合流流体Bを生成する。第1合流部J1においては、第1流体A1と第2流体A2とを気体に接触しない状態で合流させる。第1合流部J1は、第1供給ポンプ112により供給される第1流体A1と、第2供給ポンプ122により供給される第2流体A2とを合流させる合流弁により構成される。 The first junction J1 is arranged downstream of the first supply pump 112 and the second supply pump 122 . The first confluence J1 generates a first merge fluid B by merging the first fluid A1 and the second fluid A2. At the first junction J1, the first fluid A1 and the second fluid A2 are merged without coming into contact with gas. The first junction J1 is configured by a junction valve that joins the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122 .
 第1管型混合部20は、第1合流部J1の下流側に配置される。第1管型混合部20は、第1合流流体Bを気体に接触しない状態で撹拌し、第1管型混合部20の出口で各成分の濃度が管の径方向で一様な流体とすることで、第1管混合流体Cを生成する。 The first tubular mixing section 20 is arranged downstream of the first junction J1. The first tubular mixing section 20 agitates the first merged fluid B without contacting the gas, and makes the fluid uniform in the radial direction of the tube at the outlet of the first tubular mixing section 20. Thus, the first tube mixed fluid C is generated.
 第1管型混合部20は、所定方向に延びる二重管で構成された管型の反応器を含んでいる。第1管型混合部20は、径方向の内側に配置される第1管型混合撹拌部21と、径方向の外側に配置される第1管型混合温調部22(第1温調部)と、を有する。第1管型混合部20は、第1合流流体Bが所望の滞留時間で流通するように形成されている。 The first tubular mixing section 20 includes a tubular reactor composed of double tubes extending in a predetermined direction. The first tubular mixing section 20 includes a first tubular mixing and stirring section 21 arranged radially inside and a first tubular mixing temperature control section 22 arranged radially outward (first temperature control section ) and The first tubular mixing section 20 is formed so that the first merged fluid B flows for a desired residence time.
 第1管型混合撹拌部21は、第1合流流体Bを撹拌する。本実施形態においては、第1管型混合撹拌部21は、第1管型混合温調部22により重合反応に適した温度に調整された第1合流流体Bを撹拌する。 The first tubular mixing and stirring part 21 stirs the first merged fluid B. In the present embodiment, the first tubular mixing/agitation section 21 agitates the first combined fluid B adjusted to a temperature suitable for the polymerization reaction by the first tubular mixing/temperature control section 22 .
 第1管型混合撹拌部21は、例えば、スタティックミキサー、ノズル、オリフィス等の静止型混合器や、遠心ポンプ、渦巻きポンプ、撹拌羽を有するインラインミキサー等の駆動型混合器を含んで構成され、好ましくは静止型混合器を含んで構成され、より好ましくはスタティックミキサーを含んで構成される。なお、ツイストテープの内挿された管(特開2003-314982号公報の[図19]等を参照)でもスタティックミキサーと同様に撹拌促進効果が得られるが、スタティックミキサーの方がより撹拌促進効果が得られるため好ましい。 The first tubular mixing/stirring unit 21 includes, for example, static mixers, nozzles, orifices, and other stationary mixers, centrifugal pumps, volute pumps, and drive-type mixers, such as in-line mixers having stirring blades. It preferably includes a static mixer, and more preferably includes a static mixer. In addition, a pipe with a twist tape inserted (see [Fig. 19] of Japanese Patent Application Laid-Open No. 2003-314982, etc.) can also provide the same agitation promotion effect as a static mixer, but the static mixer has a better agitation promotion effect. is obtained.
 スタティックミキサーとしては、特に限定されず、例えば、Kenics mixer型、Sulzer SMV型、Sulzer SMX型、Tray Hi-mixer型、Komax mixer型、Lightnin mixer型、Ross ISG型、Bran&Lube mixer型等のスタティックミキサーが挙げられる。これらの中でも、Kenics mixer型のスタティックミキサーは、構造が単純であるためデッドスペースがなく、より好ましい。 The static mixer is not particularly limited, and examples thereof include static mixers such as Kenics mixer type, Sulzer SMV type, Sulzer SMX type, Tray Hi-mixer type, Komax mixer type, Lightnin mixer type, Ross ISG type, and Bran & Lube mixer type. mentioned. Among these, the Kenics mixer type static mixer is more preferable since it has a simple structure and has no dead space.
 第1管型混合温調部22は、第1管型混合撹拌部21の径方向の外側に配置される配管部である。第1管型混合温調部22は、第1管型混合撹拌部21を流通する第1合流流体Bを、所望の温度条件に温調(例えば、冷却)する。第1管型混合温調部22において、第1合流流体Bは、重合反応に適した温度に調整され、第1管型混合撹拌部21を流通される。 The first tubular mixing temperature control section 22 is a piping section arranged radially outside the first tubular mixing stirring section 21 . The first tubular mixing temperature control section 22 adjusts (for example, cools) the temperature of the first merged fluid B flowing through the first tubular mixing and stirring section 21 to a desired temperature condition. In the first tubular mixing temperature control section 22 , the first combined fluid B is adjusted to a temperature suitable for the polymerization reaction, and flows through the first tubular mixing stirring section 21 .
 生成された第1管混合流体Cは、第4送液部L4を介して、第1変動緩和部30に供給される。 The generated first tube mixed fluid C is supplied to the first fluctuation reducing section 30 via the fourth liquid feeding section L4.
 第1管混合流体測定部222は、第4送液部L4における第1管型混合部20と第1変動緩和部30との間において、第1管混合流体Cの粘度に関する第1管混合流体反応情報(第1反応情報)を取得する。第1管型混合撹拌部21内で撹拌されることで重合反応が進行し、粘度が上昇するため、粘度情報は反応情報として有効な情報である。第1管混合流体測定部222は、取得した第1管混合流体Cの粘度情報を後述する制御部200に出力する。 The first pipe mixed fluid measuring unit 222 measures the viscosity of the first pipe mixed fluid C between the first pipe mixing unit 20 and the first fluctuation reducing unit 30 in the fourth liquid feeding unit L4. Reaction information (first reaction information) is acquired. The viscosity information is effective information as the reaction information because the polymerization reaction progresses and the viscosity increases due to the stirring in the first tubular mixing/stirring part 21 . The first pipe mixed fluid measurement unit 222 outputs the acquired viscosity information of the first pipe mixed fluid C to the control unit 200 which will be described later.
 また、第1管混合流体測定部222は、第4送液部L4における第1管型混合部20と第1変動緩和部30との間において、第1管混合流体Cの温度に関する第1管混合流体反応情報(第1反応情報)も取得する。第1管型混合撹拌部21内で撹拌されることで重合反応が進行するが、温度によって重合反応の反応速度が異なるため、温度情報は反応情報として有効な情報である。第1管混合流体測定部222は、取得した第1管混合流体Cの温度情報を後述する制御部200に出力する。 In addition, the first pipe mixed fluid measurement unit 222 measures the temperature of the first pipe mixed fluid C between the first pipe mixing unit 20 and the first fluctuation reducing unit 30 in the fourth liquid feeding unit L4. Mixed fluid reaction information (first reaction information) is also acquired. The polymerization reaction proceeds by being stirred in the first tubular mixing/stirring part 21. Since the reaction speed of the polymerization reaction varies depending on the temperature, temperature information is effective information as reaction information. The first pipe mixed fluid measurement unit 222 outputs the obtained temperature information of the first pipe mixed fluid C to the control unit 200 which will be described later.
 第1変動緩和部30は、第1管型混合部20の下流側に配置される。第1変動緩和部30は二重管で構成され、径方向の内側に配置される第1変動緩和配管部31と、径方向の外側に配置される第1変動緩和温調部32(第1温調部)と、を有する。本実施形態においては、第1変動緩和温調部32により第1管混合流体Cの重合反応に適した温度に調整される。 The first fluctuation reducing section 30 is arranged downstream of the first tubular mixing section 20 . The first fluctuation mitigating section 30 is composed of a double pipe, and includes a first fluctuation mitigating pipe section 31 arranged radially inside and a first fluctuation mitigating temperature control section 32 arranged radially outside (first a temperature control unit); In this embodiment, the temperature is adjusted to a temperature suitable for the polymerization reaction of the mixed fluid C in the first tube by the first fluctuation relaxation temperature control section 32 .
 第1変動緩和配管部31では、第1変動緩和配管部31を第1管混合流体Cが流れるときの径方向の速度差によって生じる滞留時間分布により、第1管混合流体Cの軸方向の粘度変動を低減し、流出する第1生成流体Dの性状を安定化させる。例えば、円管内を層流で流れる場合であれば、管の中心を通る流体が、流速が最も速く、滞留時間が最も短くなる。一方、管壁際を通過する流体の流速は極めて遅いため、滞留時間が非常に長くなる。この流跡線による滞留時間の違いによって、軸方向の性状の変動を緩和できる。 In the first fluctuation mitigating pipe portion 31, the axial viscosity of the first pipe mixed fluid C is controlled by the residence time distribution caused by the difference in velocity in the radial direction when the first pipe mixed fluid C flows through the first fluctuation mitigating pipe portion 31. Fluctuations are reduced, and the properties of the outflowing first generated fluid D are stabilized. For example, in the case of laminar flow in a circular tube, the fluid passing through the center of the tube has the highest flow velocity and the shortest residence time. On the other hand, since the flow velocity of the fluid passing near the pipe wall is extremely low, the residence time is very long. The variation in properties in the axial direction can be mitigated by the difference in residence time due to this trajectory.
 第1変動緩和配管部31で十分な粘度変動緩和効果を得るためには、第1管混合流体Cが第1変動緩和配管部31内を層流で流れるのが好ましい。第1変動緩和配管部31内を層流で流れるためには、代表長さdとして4×断面積/浸辺長を用いた場合に、粘度μ、断面平均流速u、密度ρから計算されるレイノルズ数(ρud/μ)が、2100以下となるようにするのが好ましく、0.00001以上1000以下となるようにするのがより好ましい。また、溶液粘度が低い場合には、流れが発達するまでの助走区間が長いために速度分布を効果的に発生させられないので、第1変動緩和配管部31内を流れる第1管混合流体Cの粘度は高めである方がよい。具体的には、第1変動緩和配管部31内を流れる第1管混合流体Cの粘度は、流通時の温度において0.1poise以上100000poise以下であるのが好ましく、1poise以上10000poise以下であるのがより好ましく、5poise以上5000poise以下であるのがより好ましい。 In order to obtain a sufficient viscosity fluctuation mitigation effect in the first fluctuation mitigating pipe portion 31, it is preferable that the first pipe mixed fluid C flows in the first fluctuation mitigating pipe portion 31 in a laminar flow. In order to flow in a laminar flow in the first fluctuation relaxation pipe portion 31, when using 4 × cross-sectional area / immersion side length as the representative length d, it is calculated from the viscosity μ, the cross-sectional average flow velocity u, and the density ρ The Reynolds number (ρud/μ) is preferably 2100 or less, more preferably 0.00001 or more and 1000 or less. Further, when the solution viscosity is low, the velocity distribution cannot be effectively generated because the run-up section until the flow develops is long. should have a higher viscosity. Specifically, the viscosity of the first pipe mixed fluid C flowing in the first fluctuation mitigating pipe portion 31 is preferably 0.1 poise or more and 100000 poise or less, more preferably 1 poise or more and 10000 poise or less at the temperature during circulation. More preferably, it is 5 poise or more and 5000 poise or less.
 第1変動緩和配管部31は、平均滞留時間が十分に長い配管を含む。ここで平均滞留時間とは、配管の体積を、第1管混合流体Cの体積流量で除した値である。第1変動緩和配管部31の平均滞留時間が長い方が、第1変動緩和配管部31から流出する第1生成流体Dの粘度の安定化効果が大きい。従って、第1管型混合部20から流出する第1混合流体Cの軸方向の性状の変動が大きいほど、第1変動緩和配管部31の平均滞留時間を長くするのが好ましい。 The first fluctuation mitigation pipe section 31 includes a pipe with a sufficiently long average residence time. Here, the average residence time is a value obtained by dividing the volume of the pipe by the volumetric flow rate of the mixed fluid C in the first pipe. The longer the average residence time of the first fluctuation relaxation pipe portion 31 is, the greater the effect of stabilizing the viscosity of the first generated fluid D flowing out from the first fluctuation relaxation pipe portion 31 is. Therefore, it is preferable to lengthen the average residence time of the first fluctuation mitigating pipe portion 31 as the fluctuation of the properties of the first mixed fluid C flowing out from the first tubular mixing portion 20 in the axial direction increases.
 具体的には、例えば、断面が円形の直管である第1変動緩和配管部31内をニュートン流体が層流で流れる場合では、第1変動緩和配管部31の平均滞留時間が3分の場合、第1変動緩和配管部31の出口における粘度の変動は56%減少し、平均滞留時間が7分の場合では粘度の変動は74%減少し、平均滞留時間が11分の場合では粘度の変動は81%減少する。ただし、ここで述べる粘度変動の減少とは、第1変動緩和配管部31の入口における粘度の最大値と最小値の差に対して、第1変動緩和配管部31の出口における粘度の最大値と最小値の差が減少する割合を意味する。 Specifically, for example, when the Newtonian fluid flows in a laminar flow in the first fluctuation relaxation pipe portion 31, which is a straight pipe with a circular cross section, the average residence time of the first fluctuation relaxation pipe portion 31 is 3 minutes. , the viscosity fluctuation at the outlet of the first fluctuation mitigating pipe portion 31 is reduced by 56%, the viscosity fluctuation is reduced by 74% when the average residence time is 7 minutes, and the viscosity fluctuation is reduced when the average residence time is 11 minutes. is reduced by 81%. However, the reduction in viscosity fluctuation described here means that the difference between the maximum value and the minimum value of the viscosity at the inlet of the first fluctuation relaxation pipe portion 31 is the maximum value of the viscosity at the outlet of the first fluctuation relaxation pipe portion 31. It means the rate at which the difference between the minimum values decreases.
 図1では、第1変動緩和配管部31を1つだけ備える構成を示したが、第1変動緩和配管部31は2以上の管状部材を継ぎ手等によってつないだ構造となっていてもよい。その場合では、第1変動緩和配管部31を構成する2以上の管状部材のそれぞれの平均滞留時間の合計が7分以上となるようにするのが好ましい。第1変動緩和配管部31の平均滞留時間が長いほど粘度変動の低減効果は大きいが、生成した重合体のロスを少なく抑えるためには平均滞留時間の合計を300分以下とするのがより好ましい。 Although FIG. 1 shows a configuration in which only one first fluctuation relaxation pipe portion 31 is provided, the first fluctuation relaxation pipe portion 31 may have a structure in which two or more tubular members are connected by joints or the like. In that case, it is preferable that the total average residence time of each of the two or more tubular members constituting the first fluctuation mitigating pipe section 31 is 7 minutes or longer. The longer the average residence time of the first fluctuation mitigating pipe section 31, the greater the viscosity fluctuation reduction effect. .
 第1変動緩和配管部31内を流れる流体はニュートン流体に限定されないが、非ニュートン流体の場合では、せん断の影響によって速度分布が変わり、滞留時間分布が異なるため、粘度変動の低減率はニュートン流体の場合と異なる。従って、第1変動緩和配管部31の平均滞留時間を設計する際には、第1変動緩和配管部31内を流れる流体のレオロジーを考慮するとよい。例えばニュートン流体よりも滞留時間分布が小さくなる擬塑性流体の場合では、第1変動緩和配管部31の平均滞留時間を長めとするのが好ましい。 The fluid flowing through the first fluctuation relaxation pipe portion 31 is not limited to a Newtonian fluid. different from the case of Therefore, when designing the average residence time of the first fluctuation mitigating pipe section 31, the rheology of the fluid flowing through the first fluctuation mitigating pipe section 31 should be taken into consideration. For example, in the case of a pseudoplastic fluid whose residence time distribution is smaller than that of a Newtonian fluid, it is preferable to set the average residence time of the first fluctuation relaxation pipe portion 31 longer.
 第1変動緩和配管部31は、平均滞留時間に比べて周期の短い変動であれば緩和することができるが、平均滞留時間に比べて周期が長い変動は緩和されにくい。従って、第1管型混合部20の出口で生じ得る第1管混合流体Cの平均変動周期に比べて、第1変動緩和配管部31の平均滞留時間を十分に長くするのが好ましい。ただし、ここで述べる平均変動周期とは、第1管型混合部20の出口における第1管混合流体Cの粘度が極大値となってから、一度極小値となり、再び極大値となるまでの平均的な時間を意味する。第1変動緩和配管部31の平均滞留時間は、第1管型混合部20の出口における第1管混合流体Cの平均変動周期の1倍以上とするのが好ましく、2倍以上とするのがより好ましい。 The first fluctuation mitigating pipe section 31 can mitigate fluctuations with a shorter period than the average residence time, but it is difficult to alleviate fluctuations with a longer period than the average residence time. Therefore, it is preferable to make the average residence time of the first fluctuation reducing pipe section 31 sufficiently longer than the average fluctuation period of the first pipe mixed fluid C that can occur at the outlet of the first tubular mixing section 20 . However, the average fluctuation cycle described here is the average of the time from when the viscosity of the first tube mixed fluid C at the outlet of the first tube mixing section 20 reaches a maximum value to when it reaches a minimum value and then reaches a maximum value again. time. The average residence time of the first fluctuation mitigating pipe section 31 is preferably at least 1 time, more preferably at least 2 times the average fluctuation cycle of the first tube mixed fluid C at the outlet of the first tubular mixing section 20. more preferred.
 第1管混合流体Cの粘度変動に応じて、第1変動緩和配管部31が適切な平均滞留時間を持つようにするため、第1変動緩和配管部31の容積は第1管型混合撹拌部20の容積の0.5~100倍とすることが好ましく、5~100倍とすることがより好ましい。 In order to ensure that the first fluctuation relaxation pipe section 31 has an appropriate average residence time according to the viscosity fluctuation of the first pipe mixed fluid C, the volume of the first fluctuation relaxation pipe section 31 is set to the first pipe mixing stirring part It is preferably 0.5 to 100 times the volume of 20, more preferably 5 to 100 times.
 また、第1変動緩和配管部31は、流速の違いによる滞留時間の分布によって粘度変動を緩和するものであり、管壁際では流速は極めて遅くなることから、最も流速の速い流跡線を通過した流体の滞留時間が十分に長くなるように設計することによっても、十分な粘度変動緩和効果が得られる。最も流速の速い流跡線とは、例えば円管内を層流で流れている場合では、常に断面の中心を通る流跡線を指す。第1変動緩和配管部31の入口の断面全体にトレーサー粒子や着色剤を入れたときに、第1変動緩和配管部31の出口から最初にトレーサー粒子や着色剤が流出するまでに要する時間が、最も流速の速い流跡線を通った流体の滞留時間に概ね一致する。具体的には、例えば、断面が円形の直管である第1変動緩和配管部31内をニュートン流体が層流で流れる場合では、最も流速の速い流跡線を通った流体の滞留時間が3分の場合、第1変動緩和配管部31の出口における粘度の変動は72%減少する。第1変動緩和配管部31は、最も流速の速い流跡線を通った流体の滞留時間が長いほど粘度変動の低減効果は大きいが、生成した重合体のロスを少なく抑えるためには、最も流速の速い流跡線を通った流体の滞留時間の合計を150分以下とするのがより好ましい。 In addition, the first fluctuation mitigating pipe section 31 alleviates viscosity fluctuations by the distribution of residence time due to the difference in flow velocity, and since the flow velocity is extremely slow near the pipe wall, A sufficient effect of alleviating viscosity fluctuations can also be obtained by designing the fluid so that its residence time is sufficiently long. The trajectory with the highest flow velocity refers to the trajectory that always passes through the center of the cross section, for example, in the case of laminar flow in a circular tube. When the tracer particles and the coloring agent are put into the entire cross section of the inlet of the first fluctuation mitigating pipe portion 31, the time required for the tracer particles and the coloring agent to first flow out from the outlet of the first fluctuation mitigating pipe portion 31 is It roughly corresponds to the residence time of the fluid passing through the trajectory with the highest velocity. Specifically, for example, when a Newtonian fluid flows in a laminar flow in the first fluctuation mitigating pipe section 31, which is a straight pipe with a circular cross section, the residence time of the fluid passing through the trajectory line with the highest flow velocity is 3 In the case of minutes, the variation in viscosity at the outlet of the first variation relaxation piping section 31 is reduced by 72%. The effect of reducing viscosity fluctuations in the first fluctuation reducing pipe section 31 increases as the residence time of the fluid that has passed through the trajectory line with the highest flow velocity increases. More preferably, the total residence time of the fluid through the fast trajectories is 150 minutes or less.
 第1変動緩和配管部31の平均滞留時間が同程度であれば、第1変動緩和配管部31の断面積、長さ、及び第1変動緩和配管部31内を流れる第1管混合流体Cの流量によらず、第1生成流体Dの粘度の安定化効果は同程度となる。しかし、第1変動緩和配管部31の断面積が小さく、長さが長い場合では、第1管混合流体Cが第1変動緩和配管部31を流れる際の圧力損失が大きくなるため、耐圧の高い配管が必要となり、設備費が高額になる。従って、第1変動緩和配管部31の断面積をある程度大きくし、長さを短くするのが好ましい。具体的には、断面平均流速が0.01m/s以下となるような断面積として長さを0.7m以上とするのが好ましく、断面平均流速が0.00001m/s以上0.003m/s以下として長さが0.7m以上60m以下とするのがより好ましい。ただし、ここで述べる断面平均流速とは、第1管混合流体Cの体積流量を第1変動緩和配管部31の断面積で除した値である。また、第1変動緩和配管部31は2以上の管状部材を継ぎ手等によってつないだ場合には、2以上の管状部材のそれぞれの長さの合計が0.7m以上60m以下とする。 If the average residence time of the first fluctuation relaxation piping section 31 is about the same, the cross-sectional area and length of the first fluctuation relaxation piping section 31 and the first pipe mixed fluid C flowing through the first fluctuation relaxation piping section 31 are The effect of stabilizing the viscosity of the first generated fluid D is approximately the same regardless of the flow rate. However, if the cross-sectional area of the first fluctuation relaxation pipe portion 31 is small and the length is long, the pressure loss increases when the mixed fluid C in the first pipe flows through the first fluctuation relaxation pipe portion 31, so the pressure resistance is high. Piping is required, and equipment costs are high. Therefore, it is preferable to increase the cross-sectional area of the first fluctuation relaxation pipe portion 31 to some extent and shorten the length. Specifically, it is preferable that the length of the cross-sectional area is 0.7 m or more so that the cross-sectional average flow velocity is 0.01 m / s or less, and the cross-sectional average flow velocity is 0.00001 m / s or more and 0.003 m / s. More preferably, the length is 0.7 m or more and 60 m or less. However, the cross-sectional average flow velocity described here is a value obtained by dividing the volumetric flow rate of the mixed fluid C in the first pipe by the cross-sectional area of the first fluctuation reducing pipe portion 31 . In addition, when two or more tubular members are connected by a joint or the like in the first fluctuation mitigating pipe section 31, the total length of each of the two or more tubular members should be 0.7 m or more and 60 m or less.
 第1変動緩和配管部31としては、設備費を安くするため、中空の円筒管を用いるのが好ましい。ただし、第1変動緩和配管部31の形状としては、第1管混合流体Cが流れるときの断面方向の速度分布によって滞留時間に分布が生じるものであれば特に制限されない。具体的には、内部に構造体を有していても良く、エルボ等によって曲がった配管を用いても良く、断面は円形でなくてもよい。また、第1変動緩和配管部31の途中にはバルブやセンサ等が設置されていてもよい。 It is preferable to use a hollow cylindrical pipe as the first fluctuation mitigation pipe section 31 in order to reduce the equipment cost. However, the shape of the first fluctuation mitigating pipe portion 31 is not particularly limited as long as the residence time has a distribution due to the velocity distribution in the cross-sectional direction when the first pipe mixed fluid C flows. Specifically, it may have a structure inside, may use a pipe bent by an elbow or the like, and may not have a circular cross section. Also, a valve, a sensor, or the like may be installed in the middle of the first fluctuation mitigating pipe section 31 .
 第1変動緩和配管部31は、気泡を含まない第1生成流体Dを得るため、気体に接触しない状態で送液されることが好ましい。ただし、これに制限されず、第1管混合流体Cに気泡を巻き込まなければ、第1変動緩和配管部31の内部に気相が存在していてもよい。 In order to obtain the first generated fluid D that does not contain air bubbles, it is preferable that the first fluctuation mitigating pipe section 31 is fed without contacting the gas. However, the present invention is not limited to this, and a gas phase may exist inside the first fluctuation reducing pipe portion 31 as long as air bubbles are not involved in the mixed fluid C in the first pipe.
 第1変動緩和配管部31は、第1管混合流体測定部222と第1生成流体測定部322との間に設けられる。第1変動緩和配管部31は、第1管混合流体Cの流通方向の上流側の端部から下流側の端部にわたって、同一の内径寸法を有する円筒管であることが好ましい。第1変動緩和配管部31の長さ寸法は、内径寸法の5倍以上1000倍以下とすることが好ましい。第1変動緩和配管部31の内径寸法は、上流側に位置する第4送液部L4の内径寸法の0.5倍以上10倍以下とすることが好ましい。また、第1変動緩和配管部31では、第1管混合流体Cで内部空間が満たされた状態で、第1管混合流体Cが流通するため、径方向における第1管混合流体Cの流速の差が大きくなる。 The first fluctuation mitigation pipe section 31 is provided between the first pipe mixed fluid measurement section 222 and the first generated fluid measurement section 322 . The first fluctuation reducing pipe portion 31 is preferably a cylindrical pipe having the same inner diameter dimension from the end on the upstream side to the end on the downstream side in the flow direction of the mixed fluid C in the first pipe. It is preferable that the length dimension of the first fluctuation mitigating pipe portion 31 is 5 times or more and 1000 times or less the inner diameter dimension. It is preferable that the inner diameter dimension of the first fluctuation reducing pipe portion 31 is 0.5 times or more and 10 times or less the inner diameter dimension of the fourth liquid feeding portion L4 located on the upstream side. In addition, in the first fluctuation mitigating pipe section 31, the first pipe mixed fluid C flows in a state in which the internal space is filled with the first pipe mixed fluid C. Therefore, the flow velocity of the first pipe mixed fluid C in the radial direction is the difference becomes greater.
 第1変動緩和温調部32は、第1変動緩和配管部31の径方向の外側に配置される配管部である。第1変動緩和温調部32は、第1変動緩和配管部31を流通する第1管混合流体Cを、所望の温度条件に温調(例えば、冷却)する。第1変動緩和温調部32において、第1管混合流体Cは、重合反応に適した温度に調整され、第1変動緩和配管部31を流通される。 The first fluctuation mitigation temperature control section 32 is a piping section arranged radially outside the first fluctuation mitigation piping section 31 . The first fluctuation mitigation temperature control section 32 temperature-regulates (for example, cools) the first pipe mixed fluid C flowing through the first fluctuation mitigation piping section 31 to a desired temperature condition. In the first fluctuation relaxation temperature control section 32 , the first pipe mixed fluid C is adjusted to a temperature suitable for the polymerization reaction, and flows through the first fluctuation relaxation piping section 31 .
 以上の第1管型混合部20及び第1変動緩和部30においては、第1管型混合部20を前段に配置し、第1変動緩和部30を後段に配置することで、前段の第1管型混合部20において管の軸方向に粘度の変動があった場合に、後段の第1変動緩和部30において管の軸方向の粘度の変動を大幅に低減できる。 In the first tubular mixing section 20 and the first fluctuation reducing section 30 described above, the first tubular mixing section 20 is arranged in the front stage and the first fluctuation reducing section 30 is arranged in the rear stage, so that the first When there is variation in viscosity in the axial direction of the tube in the tubular mixing section 20, the variation in viscosity in the axial direction of the tube can be significantly reduced in the subsequent first variation reducing section 30. FIG.
 例えば、第1流体A1と第2流体A2との比率の変動によって生成する流体に管の軸方向の粘度の変動が生じた場合に、内部に撹拌のための構造体を有する第1管型混合部20においては、径方向の速度分布が生じにくく、管の軸方向の混合流体の粘度の変動を解消することができない。これに対して、第1管型混合部20を前段に配置し、第1変動緩和部30を後段に配置することで、前段の第1管型混合部20で径方向の性状を均一化させた後に、後段の第1変動緩和部30で滞留時間に分布を持たせて送液することにより、前段の第1管型混合部20で解消することができなかった第1管混合流体Cの管の軸方向における粘度の変動を、後段の第1変動緩和部30において大幅に低減することができる。 For example, when the viscosity of the fluid produced by the variation in the ratio of the first fluid A1 and the second fluid A2 varies in the axial direction of the tube, the first tube mixing structure has a structure for agitation inside. In the portion 20, the velocity distribution in the radial direction is difficult to occur, and the fluctuation of the viscosity of the mixed fluid in the axial direction of the pipe cannot be eliminated. On the other hand, by arranging the first tubular mixing section 20 in the front stage and arranging the first fluctuation reducing section 30 in the rear stage, the properties in the radial direction are made uniform in the first tubular mixing section 20 in the front stage. After that, by feeding the liquid with a distribution in the residence time in the first fluctuation reducing section 30 in the latter stage, the first tube mixed fluid C that could not be eliminated in the first tubular mixing section 20 in the former stage Fluctuations in viscosity in the axial direction of the pipe can be significantly reduced in the first fluctuation reducing section 30 in the latter stage.
 第1生成流体測定部322は、第1変動緩和部30の出口またはその下流に位置し、第5送液部L5における第1生成流体Dの粘度に関する第1生成流体反応情報(第1反応情報)を取得する。重合反応が進行することで粘度が上昇するため、粘度情報は、反応情報として有効な情報である。第1生成流体測定部322は、取得した第1生成流体の粘度情報を後述する制御部200に出力する。 The first generated fluid measuring unit 322 is located at the outlet of the first fluctuation reducing unit 30 or downstream thereof, and is provided with first generated fluid reaction information (first reaction information ). Viscosity information is effective information as reaction information because the viscosity increases as the polymerization reaction progresses. The first generated fluid measurement unit 322 outputs the acquired viscosity information of the first generated fluid to the control unit 200, which will be described later.
 また、第1生成流体測定部322は、第5送液部L5における第1生成流体Dの温度に関する第1生成流体反応情報(第1反応情報)も取得する。温度によって重合反応の反応速度が異なるため、温度情報は反応情報として有効な情報である。第1生成流体測定部322は、取得した第1生成流体の温度情報を後述する制御部200に出力する。 The first generated fluid measurement unit 322 also acquires first generated fluid reaction information (first reaction information) regarding the temperature of the first generated fluid D in the fifth liquid feeding unit L5. Since the reaction rate of the polymerization reaction differs depending on the temperature, temperature information is effective information as reaction information. The first generated fluid measurement unit 322 outputs the acquired temperature information of the first generated fluid to the control unit 200, which will be described later.
 なお、本実施形態の第1管混合流体測定部222及び第1生成流体測定部322は、第1管混合流体C及び第1生成流体Dのいずれか1以上における物理量及び/又は組成に関する反応情報を取得する測定部の一例である。 Note that the first tube mixed fluid measurement unit 222 and the first generated fluid measurement unit 322 of the present embodiment provide reaction information related to the physical quantity and/or composition of at least one of the first tube mixed fluid C and the first generated fluid D. is an example of a measurement unit that acquires
 測定部は、本実施形態の第1管混合流体測定部222及び第1生成流体測定部322(物理量及び/又は組成の種類、測定方式)に限定されない。測定部は、例えば、粘度計、温度計、圧力計、ポンプ圧計、吸光度計、赤外分光計、近赤外分光計、密度計、色差計、屈折率計、分光光度計、導電率計、濁度計、及び蛍光X線分析装置からなる群より選択される1又は2以上を有していてもよい。測定部は、測定対象における物理量及び/又は組成に関する1又は2以上の反応情報を取得するとともに、取得した反応情報を後述する制御部200に出力する。 The measurement unit is not limited to the first tube mixed fluid measurement unit 222 and the first generated fluid measurement unit 322 (physical quantity and/or composition type, measurement method) of the present embodiment. The measurement unit includes, for example, a viscometer, a thermometer, a pressure gauge, a pump pressure gauge, an absorbance meter, an infrared spectrometer, a near-infrared spectrometer, a density meter, a color difference meter, a refractometer, a spectrophotometer, a conductivity meter, It may have one or more selected from the group consisting of a turbidimeter and a fluorescent X-ray analyzer. The measurement unit acquires one or more pieces of reaction information relating to the physical quantity and/or composition of the object to be measured, and outputs the acquired reaction information to the control unit 200, which will be described later.
 第5送液ラインL5の下流には、クッションタンク(不図示)を設け、第1生成流体Dを収容するようにしてもよい。クッションタンクは、例えば、重合体であるポリアミック酸をイミド化してポリイミドを製造する際においては原料流体を収容するタンクになる。 A cushion tank (not shown) may be provided downstream of the fifth liquid feeding line L5 to accommodate the first generated fluid D. The cushion tank serves as a tank for containing a raw material fluid, for example, when polyamic acid, which is a polymer, is imidated to produce polyimide.
 本実施形態における重合体製造システム1がポリイミドを製造する場合、重合体製造システム1は、ポリアミック酸をイミド化するイミド化部を更に備える。イミド化部(不図示)は、例えば、熱的に脱水閉環する熱的イミド化方法、脱水剤及びイミド化促進剤を用いる化学的イミド化方法等により、ポリアミック酸をイミド化する。 When the polymer production system 1 according to the present embodiment produces polyimide, the polymer production system 1 further includes an imidization unit that imidizes the polyamic acid. The imidization unit (not shown) imidizes the polyamic acid by, for example, a thermal imidization method of thermal dehydration ring closure, a chemical imidization method using a dehydrating agent and an imidization accelerator, or the like.
 なお、重合体製造システム1がポリイミドを製造する場合、クッションタンクを設けず、第1変動緩和部30からイミド化部に送液されるように構成してもよい。ただし、ポリアミック酸を一旦、クッションタンクに収容しておく方がより好ましい。 When the polymer manufacturing system 1 manufactures polyimide, the cushion tank may not be provided, and the liquid may be fed from the first fluctuation reducing section 30 to the imidization section. However, it is more preferable to once store the polyamic acid in a cushion tank.
 制御部200について説明する。制御部200には、第1供給ポンプ112、第2供給ポンプ122、第1管型混合温調部22、第1変動緩和温調部32、第1流量測定部113、第2流量測定部123、第1管混合流体測定部222、及び第1生成流体測定部322が電気的に接続されている。なお、本明細書において、制御部200から各ポンプ、各温調部及び各測定部への制御線の図示は省略している。 The control unit 200 will be explained. The control unit 200 includes a first supply pump 112 , a second supply pump 122 , a first tubular mixing temperature control unit 22 , a first fluctuation relaxation temperature control unit 32 , a first flow rate measurement unit 113 , a second flow rate measurement unit 123 . , the first tube mixed fluid measurement unit 222 and the first generated fluid measurement unit 322 are electrically connected. In this specification, illustration of control lines from the control unit 200 to each pump, each temperature control unit, and each measurement unit is omitted.
 制御部200は、各流量測定部113,123により測定された流量値に基づいて、各供給ポンプ112,122を制御する。
 制御部200は、例えば、第1供給ポンプ112及び/又は第2供給ポンプ122を制御することにより、第1流体A1に含まれる第1重合性化合物と第2流体A2に含まれる第2重合性化合物との物質量比が所定範囲内になるように制御する。上記の物質量比は、例えば、所望の性状のポリアミック酸が得られるように設定される。また、制御部200は、例えば、第1管型混合温調部22及び/又は第1変動緩和温調部32の温度条件を制御することにより、重合反応の反応速度が所定範囲内になるように制御する。
The control section 200 controls the supply pumps 112 and 122 based on the flow rate values measured by the flow rate measurement sections 113 and 123, respectively.
The control unit 200 controls, for example, the first supply pump 112 and/or the second supply pump 122, thereby controlling the first polymerizable compound contained in the first fluid A1 and the second polymerizable compound contained in the second fluid A2. The substance amount ratio with the compound is controlled so as to be within a predetermined range. The above substance amount ratio is set, for example, so as to obtain a polyamic acid having desired properties. Further, the control unit 200 controls the temperature conditions of the first tubular mixing temperature control unit 22 and/or the first fluctuation relaxation temperature control unit 32, for example, so that the reaction rate of the polymerization reaction is within a predetermined range. to control.
 制御部200は、第1管混合流体測定部222及び/又は第1生成流体測定部322により取得された第1反応情報に基づいて、第1供給ポンプ112における供給、第2供給ポンプ122における供給、第1管型混合温調部22における温度調整、第1変動緩和温調部32における温度調整のいずれか1以上を制御する。 Based on the first reaction information acquired by the first tube mixed fluid measurement unit 222 and/or the first generated fluid measurement unit 322, the control unit 200 controls the supply of the first supply pump 112 and the supply of the second supply pump 122. , temperature adjustment in the first tubular mixing temperature control section 22 , and temperature adjustment in the first fluctuation mitigation temperature control section 32 .
 次に、第1実施形態における重合体製造システム1(ポリアミック酸製造システム)の動作を説明する。
 まず、重合体製造システム1において、動作を開始することで、第1供給ポンプ112が第1流体A1を供給し、第2供給ポンプ122が第2流体A2を供給する。ここで、第1供給ポンプ112及び第2供給ポンプ122は、第1流体A1及び第2流体A2を所望の割合で供給するように、互いの吐出流量が制御部200により制御されている。これにより、第1合流部J1には、第1流体A1及び第2流体A2が供給される。第1合流部J1においては、第1供給ポンプ112により供給された第1流体A1と、第2供給ポンプ122により供給された第2流体A2とを合流させて混合され、第1合流流体Bが生成される。
Next, the operation of the polymer production system 1 (polyamic acid production system) in the first embodiment will be described.
First, in the polymer production system 1, by starting operation, the first supply pump 112 supplies the first fluid A1, and the second supply pump 122 supplies the second fluid A2. Here, the discharge flow rates of the first supply pump 112 and the second supply pump 122 are controlled by the controller 200 so as to supply the first fluid A1 and the second fluid A2 at a desired ratio. As a result, the first fluid A1 and the second fluid A2 are supplied to the first junction J1. In the first merging portion J1, the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122 are merged and mixed to form the first merged fluid B. generated.
 第1合流部J1において生成された第1合流流体Bは、第1供給ポンプ112及び第2供給ポンプ122の供給動作により第3送液部L3を送液されて、第1管型混合部20に供給される。 The first merged fluid B generated in the first merging portion J1 is sent through the third liquid sending portion L3 by the supply operations of the first supply pump 112 and the second supply pump 122, and is fed to the first tubular mixing portion 20. supplied to
 第1管型混合部20においては、第1合流流体Bを撹拌し、濃度等の性状が径方向で不均一となっているのを一様とすることで、第1管混合流体Cを生成する。第1管型混合部20がスタティックミキサー等の静止型混合器である場合、第1合流流体Bは通液されるだけで撹拌される。ここで、第1管型混合部20においては、第1合流流体Bは広い速度分布が生じずに管の軸方向に移動されていくため、管の軸方向において第1合流流体Bの粘度の変動があった場合に、それを解消することができない。 In the first tubular mixing section 20, the first merged fluid B is stirred to make the properties such as concentration uniform in the radial direction, thereby generating the first tubular mixed fluid C. do. When the first tubular mixing section 20 is a static mixer such as a static mixer, the first merged fluid B is stirred only by passing it through. Here, in the first tubular mixing section 20, the first merged fluid B moves in the axial direction of the pipe without causing a wide velocity distribution. If there is a change, it cannot be resolved.
 第1管型混合部20において生成された第1管混合流体Cは、第4送液部L4を送液されて、第1変動緩和部30に供給される。 The first pipe mixed fluid C generated in the first tubular mixing section 20 is sent through the fourth liquid sending section L4 and supplied to the first fluctuation reducing section 30 .
 第1変動緩和部30においては、第1管混合流体Cを流入させ、径方向の速度分布によって第1管混合流体Cの滞留時間に分布を持たせた状態で連続的に送液する。これにより、前段の第1管型混合部20では解消することができない第1管混合流体Cの管の軸方向における粘度の変動を、後段の第1変動緩和部30において大幅に低減することができる。よって、所望の重合体を連続的に且つ安定的に得ることができる。 In the first fluctuation reducing section 30, the first pipe mixed fluid C is introduced and continuously fed while the residence time of the first pipe mixed fluid C is distributed according to the velocity distribution in the radial direction. As a result, fluctuations in the viscosity of the first pipe mixed fluid C in the axial direction of the tube, which cannot be eliminated in the first tubular mixing section 20 in the preceding stage, can be significantly reduced in the first fluctuation reducing section 30 in the subsequent stage. can. Therefore, a desired polymer can be obtained continuously and stably.
 ここで、上述の重合体製造システム1の動作の途中において、第1管混合流体測定部222及び第1生成流体測定部322は、粘度情報を取得している(測定工程)。
 制御部200は、第1管混合流体測定部222及び/又は第1生成流体測定部322により取得された粘度情報(第1反応情報)に基づいて、各供給ポンプ112,122と、各温調部22,32を制御する(制御工程)。これにより、所望の性状(温度、粘度)のポリアミック酸を得ることができる。
Here, during the operation of the polymer production system 1 described above, the first pipe mixed fluid measuring section 222 and the first produced fluid measuring section 322 acquire viscosity information (measurement step).
Based on the viscosity information (first reaction information) acquired by the first tube mixed fluid measurement unit 222 and/or the first generated fluid measurement unit 322, the control unit 200 controls the supply pumps 112 and 122 and the temperature controllers 112 and 122. The parts 22 and 32 are controlled (control process). Thereby, a polyamic acid having desired properties (temperature, viscosity) can be obtained.
 第1変動緩和部30における第1管混合流体Cの滞留時間の分布がわかる場合、第1管混合流体測定部222により第1粘度情報を取得し(測定工程)、これに基づいて第1変動緩和部30の出口における第1生成流体Dの粘度の経時変化を予測できる(予測工程)。このように予測した粘度に基づいて、各供給ポンプ112,122と、各温調部22,32を制御してもよい(制御工程)。例えば、第1変動緩和部30内を層流で流れ、ハーゲン・ポアズイユ流れが形成されている場合では、径方向の流速分布が計算できるため、滞留時間分布がわかる。従って、第1管混合流体測定部222によって取得した第1管混合流体Cの粘度について、滞留時間分布で重みづけをした時間移動平均を計算すると、第1変動緩和部30の出口における第1生成流体Dの粘度の予測値が得られる。 When the distribution of the residence time of the first pipe mixed fluid C in the first fluctuation mitigation unit 30 is known, the first pipe mixed fluid measurement unit 222 acquires the first viscosity information (measuring step), and based on this, the first fluctuation A temporal change in the viscosity of the first generated fluid D at the outlet of the relaxation section 30 can be predicted (prediction step). The supply pumps 112 and 122 and the temperature controllers 22 and 32 may be controlled based on the predicted viscosity (control step). For example, when a laminar flow is formed in the first fluctuation reducing section 30 and a Hagen-Poiseuille flow is formed, the flow velocity distribution in the radial direction can be calculated, so the residence time distribution can be known. Therefore, when the time moving average weighted by the residence time distribution is calculated for the viscosity of the first pipe mixed fluid C acquired by the first pipe mixed fluid measurement unit 222, the first generation at the outlet of the first fluctuation reduction unit 30 An estimate of the viscosity of fluid D is obtained.
 第1変動緩和部30における第1管混合流体Cの滞留時間の分布が不明である場合には、第1変動緩和部30の入口における粘度の経時変化と第1変動緩和部30の出口における粘度の経時変化を一度実測し、その結果から第1変動緩和部30による粘度変動の低減の効果をモデル化することによって、第1生成流体Dの粘度の推移を予測してもよい。モデル化には、例えば一次遅れ関数等を用いることができる。 When the distribution of the residence time of the first pipe mixed fluid C in the first fluctuation mitigation section 30 is unknown, the change over time of the viscosity at the inlet of the first fluctuation mitigation section 30 and the viscosity at the outlet of the first fluctuation mitigation section 30 may be measured once, and the change in the viscosity of the first generated fluid D may be predicted by modeling the effect of reducing the viscosity variation by the first variation reducing section 30 from the result. For modeling, for example, a first-order lag function or the like can be used.
 変動の大きい第1管混合流体測定部222による粘度情報を基に運転条件を制御すると、ハンチングの恐れがある。一方で、第1生成流体測定部322による粘度情報を基に運転条件を制御すると、粘度が安定しているためにハンチングはしにくいが、無駄時間が長いためにスペックアウトしやすい。従って、第1管混合流体測定部222による粘度情報を基に、第1変動緩和部30の出口における第1生成流体Dの粘度を予測し、それを基にして制御をするのは有効である。 If the operating conditions are controlled based on the viscosity information from the first pipe mixed fluid measurement unit 222, which fluctuates greatly, hunting may occur. On the other hand, if the operating conditions are controlled based on the viscosity information obtained by the first generated fluid measuring unit 322, the viscosity is stable, so hunting is unlikely, but the dead time is long, so spec-out is likely to occur. Therefore, it is effective to predict the viscosity of the first generated fluid D at the outlet of the first fluctuation reducing section 30 based on the viscosity information obtained by the first tube mixed fluid measuring section 222, and to perform control based thereon. .
 また、上述の重合体製造システム1の動作の途中において、第1管混合流体測定部222及び第1生成流体測定部322は、温度情報を取得している(測定工程)。
 制御部200は、第1管混合流体測定部222及び/又は第1生成流体測定部322により取得された温度情報(第1反応情報)に基づいて、第1管型混合温調部22及び/又は第1変動緩和温調部32における温度調整条件を制御する(制御工程)。これにより、所望の性状(温度、粘度)のポリアミック酸を得ることができる。
In addition, during the operation of the polymer production system 1 described above, the first pipe mixed fluid measurement unit 222 and the first product fluid measurement unit 322 acquire temperature information (measurement step).
Based on the temperature information (first reaction information) acquired by the first tube mixed fluid measurement unit 222 and/or the first generated fluid measurement unit 322, the control unit 200 controls the first tubular mixed temperature control unit 22 and/or Alternatively, the temperature adjustment conditions in the first fluctuation mitigation temperature adjustment section 32 are controlled (control step). Thereby, a polyamic acid having desired properties (temperature, viscosity) can be obtained.
 本実施形態の重合体製造システム1によれば、以下の効果を奏する。
 重合体製造システム1は、第1重合性化合物を含む第1流体A1を供給する第1供給ポンプ112と、第2重合性化合物を含む第2流体A2を供給する第2供給ポンプ122と第1流体A1と第2流体A2とを合流させて第1合流流体Bを生成する第1合流部J1と、第1合流部J1の下流側に配置され、第1合流流体Bを撹拌して径方向の粘度の変動を均一化させることで第1管混合流体Cを生成する第1管型混合部20と、第1管型混合部20の下流側に配置され、第1管混合流体Cの軸方向の性状のムラを低減させることで第1生成流体Dを生成する第1変動緩和部30と、を備える。
According to the polymer production system 1 of this embodiment, the following effects are obtained.
The polymer production system 1 includes a first supply pump 112 that supplies a first fluid A1 containing a first polymerizable compound, a second supply pump 122 that supplies a second fluid A2 containing a second polymerizable compound, and a first a first merging portion J1 for merging the fluid A1 and the second fluid A2 to generate a first merged fluid B; and a first tubular mixing section 20 that generates the first tubular mixed fluid C by equalizing the fluctuation of the viscosity of the first tubular mixing section 20, and the axis of the first tubular mixed fluid C that is arranged downstream of the first tubular mixing section 20. and a first fluctuation reducing unit 30 that generates the first generated fluid D by reducing the unevenness of the directional property.
 本発明では、前段に配置される第1管型混合部20において混合された第1管混合流体Cを、後段に配置される第1変動緩和部30において軸方向に均一化するため、前段の第1管型混合部20では解消することができない第1管混合流体Cの管の軸方向における粘度の変動を、後段の第1変動緩和部30において解消することができ、重合体溶液を連続的且つ安定的に得ることができる。 In the present invention, the first tubular mixed fluid C mixed in the first tubular mixing section 20 arranged in the preceding stage is made uniform in the axial direction in the first fluctuation reducing section 30 arranged in the subsequent stage. Fluctuations in the viscosity of the first tubular mixed fluid C in the axial direction of the tube, which cannot be eliminated in the first tubular mixing section 20, can be eliminated in the subsequent first fluctuation reducing section 30, and the polymer solution can be continuously supplied. can be stably obtained.
 特に高粘度の重合体を製造する場合では、管型混合器を高粘度の溶液が通過する際の圧力損失が大きくなることから、ポンプは高吐出圧が必要となって送液の定量性が悪くなるため、管型混合器だけでは粘度の安定した重合体を得ることは難しい。従って、本発明は、例えば1000poise以上の高粘度の重合体を製造する場合に特に有効である。 Especially when producing a high-viscosity polymer, the pressure loss increases when the high-viscosity solution passes through the tubular mixer. Therefore, it is difficult to obtain a polymer with stable viscosity using only a tubular mixer. Therefore, the present invention is particularly effective when producing a high-viscosity polymer of, for example, 1000 poise or more.
 また、重合体製造システム1において、第1管混合流体測定部222及び/又は第1生成流体測定部322により取得された第1反応情報に基づいて、第1供給ポンプ112における供給、第2供給ポンプ122における供給、第1管型混合温調部22における温度調整、第1変動緩和温調部32における温度調整のいずれか1以上を制御する。これにより、所望の性状(温度、粘度)の重合体を得ることができる。 In addition, in the polymer production system 1, based on the first reaction information acquired by the first tube mixed fluid measurement unit 222 and/or the first produced fluid measurement unit 322, the supply in the first supply pump 112, the second supply Any one or more of supply by the pump 122, temperature adjustment by the first tubular mixing temperature control section 22, and temperature adjustment by the first fluctuation relaxation temperature control section 32 is controlled. Thereby, a polymer having desired properties (temperature, viscosity) can be obtained.
 なお、本実施形態では、第1重合性化合物及び第2重合性化合物のうち、一方がテトラカルボン酸二無水物、他方がジアミンであり、重合体としてポリアミック酸を製造する場合について説明したが、これに制限されるものではない。
 例えば、第1重合性化合物及び第2重合性化合物のうち、一方を酸無水物基末端又はアミノ基末端のポリアミック酸(プレポリマー)、他方をジアミン又はテトラカルボン酸二無水物とし、重合体としてポリアミック酸を製造するようにしてもよい。この場合、第1重合性化合物及び第2重合性化合物のうち、一方が酸無水物基末端のポリアミック酸であると、他方はジアミンである。また、第1重合性化合物及び第2重合性化合物のうち、一方がアミノ基末端のポリアミック酸であると、他方はテトラカルボン酸二無水物である。
 また、例えば、第1重合性化合物及び第2重合性化合物のうち、一方を酸無水物基末端又はアミノ基末端のポリアミック酸、他方をアミノ基末端又は酸無水物基末端のポリアミック酸とし、重合体としてポリアミック酸を製造するようにしてもよい。この場合、第1重合性化合物及び第2重合性化合物のうち、一方が酸無水物基末端のポリアミック酸であると、他方はアミノ基末端のポリアミック酸である。
In the present embodiment, one of the first polymerizable compound and the second polymerizable compound is a tetracarboxylic dianhydride and the other is a diamine, and the case of producing a polyamic acid as a polymer was described. It is not limited to this.
For example, among the first polymerizable compound and the second polymerizable compound, one is an acid anhydride group-terminated or amino group-terminated polyamic acid (prepolymer), the other is a diamine or tetracarboxylic dianhydride, and as a polymer You may make it manufacture a polyamic acid. In this case, one of the first polymerizable compound and the second polymerizable compound is an acid anhydride group-terminated polyamic acid, and the other is a diamine. Further, when one of the first polymerizable compound and the second polymerizable compound is an amino group-terminated polyamic acid, the other is a tetracarboxylic dianhydride.
Further, for example, one of the first polymerizable compound and the second polymerizable compound is an acid anhydride group-terminated or amino group-terminated polyamic acid, and the other is an amino group-terminated or an acid anhydride group-terminated polyamic acid, A polyamic acid may be produced as a coalescence. In this case, one of the first polymerizable compound and the second polymerizable compound is an acid anhydride group-terminated polyamic acid, and the other is an amino group-terminated polyamic acid.
 <第2実施形態>
 図2により、第2実施形態における重合体製造システムについて説明する。図2は、第2実施形態における重合体製造システムを示す図である。なお、第1実施形態と同様の構成部分には、同一の符号を付して示す。
<Second embodiment>
A polymer manufacturing system according to the second embodiment will be described with reference to FIG. FIG. 2 is a diagram showing a polymer production system in the second embodiment. In addition, the same code|symbol is attached|subjected and shown to the component similar to 1st Embodiment.
 本実施形態の第1変動緩和部30は、第1管型混合部20の下流側に配置される。第1変動緩和部30は撹拌機の無い円筒型の第1変動緩和タンク31aと、第1変動緩和タンク31aの外側に配置される第1変動緩和温調部32(第1温調部)と、を有する。本実施形態においては、第1変動緩和温調部32により第1管混合流体Cは重合反応に適した温度に調整される。 The first fluctuation reducing section 30 of the present embodiment is arranged downstream of the first tubular mixing section 20 . The first fluctuation damping section 30 includes a cylindrical first fluctuation damping tank 31a without a stirrer, and a first fluctuation damping temperature control section 32 (first temperature control section) arranged outside the first fluctuation damping tank 31a. , have In this embodiment, the temperature of the mixed fluid C in the first tube is adjusted to a temperature suitable for the polymerization reaction by the first fluctuation relaxation temperature control section 32 .
 第1変動緩和タンク31aでは、垂直方向と水平方向の速度差によって生じる滞留時間分布により、第1管混合流体Cの軸方向(流体の流れ方向)の粘度変動を低減し、流出する第1生成流体Dの性状を安定化させ、第1管混合流体Cの軸方向の性状の変動を緩和できる。 In the first fluctuation reduction tank 31a, the viscosity fluctuation in the first tube mixed fluid C in the axial direction (fluid flow direction) is reduced by the residence time distribution caused by the difference in velocity between the vertical direction and the horizontal direction. The properties of the fluid D can be stabilized, and fluctuations in the properties of the first tube mixed fluid C in the axial direction can be alleviated.
 第1変動緩和タンク31aでは、開水路を形成し、垂直方向の上部から第1管混合流体Cが流入し、下部から第1生成流体Dが流出する。第1変動緩和タンク31aは、開水路とすることで、第1管混合流体Cの流入側の圧力は気相部の圧力となるため、第1管型混合部20以降が管路の場合に比べて、第1供給ポンプ112と、第2供給ポンプ122の吐出圧を低減することができる点で優れている。気相部は不活性ガス等で一定圧に保つことができる。 In the first fluctuation mitigation tank 31a, an open channel is formed, in which the first tube mixed fluid C flows in from the upper part in the vertical direction, and the first produced fluid D flows out from the lower part. Since the pressure on the inflow side of the first pipe mixed fluid C becomes the pressure of the gas phase portion by making the first fluctuation mitigation tank 31a an open channel, when the first pipe mixing portion 20 and subsequent ones are pipes, In comparison, it is superior in that the discharge pressures of the first supply pump 112 and the second supply pump 122 can be reduced. The gas phase portion can be kept at a constant pressure with an inert gas or the like.
 第1変動緩和タンク31aの形状に特に制限は無いが、デッドスペースが生じにくい構造が好ましく、具体的には円筒型タンクであることが好ましい。円筒型タンクの直径Dと高さLの比(L/D)が小さすぎると水平方向に十分に流体が流れずにショートパスしやすくなるため、0.5以上であることが好ましい。一方、L/Dが大きすぎると装置の設置が難しくなるため、10以下であることが好ましい。よって、0.5~10であることが好ましい。 Although there is no particular limitation on the shape of the first fluctuation mitigation tank 31a, a structure that does not easily create a dead space is preferable, and specifically, a cylindrical tank is preferable. If the ratio (L/D) of the diameter D to the height L of the cylindrical tank is too small, the fluid will not flow sufficiently in the horizontal direction and short-passing will easily occur, so it is preferably 0.5 or more. On the other hand, if the L/D is too large, it becomes difficult to install the apparatus, so it is preferably 10 or less. Therefore, it is preferably 0.5 to 10.
 第1変動緩和タンク31aの流入口は、壁面に設置されていてもよいし、挿入管でもよい。挿入管とする場合には流入口が液面中に保持されるように設置するか、流体が壁面を伝って流動するように設置し、気泡の混入を防ぐのが好ましい。第1変動緩和タンク31aの流出口は、気泡の混入を防ぐために流出口全体が液に浸る位置に設置するのが好ましい。 The inlet of the first fluctuation mitigation tank 31a may be installed on the wall surface or may be an insertion pipe. When an insertion tube is used, it is preferable to install the inflow port so that it is held in the liquid surface, or to install it so that the fluid flows along the wall surface to prevent air bubbles from entering. The outflow port of the first fluctuation reduction tank 31a is preferably installed at a position where the entire outflow port is immersed in the liquid in order to prevent air bubbles from entering.
 第1変動緩和タンク31aへの第1管混合流体Cの流入速度と第1生成流体Dの流出速度が同じであることが管理上好ましいが、変動があっても構わない。例えば、第1変動緩和タンク31aの液面高さが所定の範囲になるように第1生成流体Dの流出速度を制御してもよい。 Although it is preferable from a management point of view that the inflow velocity of the first pipe mixed fluid C into the first fluctuation mitigation tank 31a and the outflow velocity of the first generated fluid D are the same, variations may occur. For example, the outflow speed of the first generated fluid D may be controlled so that the liquid level in the first fluctuation reduction tank 31a is within a predetermined range.
 液面が低いと流出口において気相を巻き込む可能性があるため、2割以上とするのが好ましい。液面が高いと第1変動緩和タンク31a内の流れが開水路流から管水路流あるいは、開水路流と管水路流の間の遷移状態となり、第1変動緩和タンク31a内の圧力変動が生じる可能性があるので、8割以下とするのが好ましい。よって、第1変動緩和タンク31a内にある第1管混合流体Cの量を、第1変動緩和タンク31aの体積の2割から8割になるように制御することが好ましい。 If the liquid level is low, the gas phase may be involved at the outlet, so it is preferable to make it 20% or more. When the liquid level is high, the flow in the first fluctuation reducing tank 31a transitions from the open channel flow to the pipe channel flow or between the open channel flow and the pipe channel flow, causing pressure fluctuations in the first fluctuation reducing tank 31a. Since there is a possibility, it is preferable to set it to 80% or less. Therefore, it is preferable to control the amount of the first tube mixed fluid C in the first fluctuation reduction tank 31a to be 20% to 80% of the volume of the first fluctuation reduction tank 31a.
 第1変動緩和タンク31aに円筒型タンクを用いる場合は、気泡の巻き込みのリスクを低減するために、中心軸と設置面のなす角度が、75°以下で設置されていることが好ましい。一方で、角度が小さすぎると液面の更新が遅くなるため、第1変動緩和タンク31aの中心軸と設置面のなす角度45°以上であることが好ましい。よって、第1変動緩和タンク31aの中心軸と設置面のなす角度が、45°~75°で設置されていることが好ましい。 When a cylindrical tank is used as the first fluctuation mitigation tank 31a, it is preferable that the angle formed by the central axis and the installation surface is 75° or less in order to reduce the risk of entrainment of air bubbles. On the other hand, if the angle is too small, the update of the liquid level will be delayed. Therefore, it is preferable that the angle between the central axis of the first fluctuation mitigation tank 31a and the installation surface is 45° to 75°.
 第1変動緩和タンク31aは、平均滞留時間が十分に長くなるように構成される。ここで平均滞留時間とは、第1変動緩和タンク31aの溶液の体積を、第1管混合流体Cの体積流量で除した値である。第1変動緩和タンク31aの平均滞留時間が長い方が、第1変動緩和タンク31aから流出する第1生成流体Dの粘度の安定化効果が大きい。従って、第1管型混合部20から流出する第1混合流体Cの軸方向の性状の変動が大きいほど、第1変動緩和タンク31aの平均滞留時間を長くするのが好ましい。滞留時間としては、3分以上であることが好ましく、7分以上であることが、より好ましく、10分以上であることがより好ましい。第1変動緩和タンク31aの平均滞留時間が長いほど粘度変動の低減効果は大きいが、生成した重合体のロスを少なく抑えるためには平均滞留時間の合計を300分以下とするのがより好ましい。 The first fluctuation mitigation tank 31a is configured so that the average residence time is sufficiently long. Here, the average residence time is a value obtained by dividing the volume of the solution in the first fluctuation mitigation tank 31a by the volumetric flow rate of the mixed fluid C in the first pipe. The longer the average residence time in the first fluctuation mitigation tank 31a, the greater the effect of stabilizing the viscosity of the first generated fluid D flowing out of the first fluctuation mitigation tank 31a. Therefore, it is preferable to lengthen the average residence time in the first fluctuation mitigation tank 31a as the fluctuation of the properties of the first mixed fluid C flowing out of the first tubular mixing section 20 in the axial direction increases. The residence time is preferably 3 minutes or longer, more preferably 7 minutes or longer, and more preferably 10 minutes or longer. The longer the average residence time in the first fluctuation mitigation tank 31a, the greater the viscosity fluctuation reduction effect.
 第1管混合流体Cの粘度変動に応じて、第1変動緩和タンク31aが適切な平均滞留時間を持つようにするため、第1変動緩和タンク31aの溶液の容積は第1管型混合撹拌部20の容積の0.5~100倍とすることが好ましく、5~100倍とすることがより好ましい。 In order to ensure that the first fluctuation relaxation tank 31a has an appropriate average residence time according to the viscosity fluctuation of the first pipe mixed fluid C, the volume of the solution in the first fluctuation relaxation tank 31a is adjusted to the first tubular mixing stirring part It is preferably 0.5 to 100 times the volume of 20, more preferably 5 to 100 times.
 第1変動緩和タンク31aとしては、形状は特に制限されない。具体的には、内部に構造体を有していてもよい。また、第1変動緩和タンク31aにはセンサ等が設置されていてもよい。 The shape of the first fluctuation mitigation tank 31a is not particularly limited. Specifically, it may have a structure inside. Further, a sensor or the like may be installed in the first fluctuation mitigation tank 31a.
 第1変動緩和タンク31aは、内部が開水路となっており、上部側に位置する流入口から流入した第1管混合流体Cは、第1変動緩和タンク31a内における垂直方向と水平方向とで第1管混合流体Cの流通速度に差異が生じ、第1変動緩和タンク31a内における滞留時間に差異が生じるため、第1変動緩和タンク31aの軸方向の性状の変動を緩和できる。 The inside of the first fluctuation mitigation tank 31a is an open channel, and the first pipe mixed fluid C flowing in from the inlet located on the upper side flows vertically and horizontally in the first fluctuation mitigation tank 31a. Since the flow velocity of the first pipe mixed fluid C differs and the residence time in the first fluctuation reducing tank 31a differs, the fluctuation of the properties of the first fluctuation reducing tank 31a in the axial direction can be reduced.
 第1変動緩和温調部32は、第1変動緩和タンク31aを流通する第1管混合流体Cを、所望の温度条件に温調(例えば、冷却)する。 The first fluctuation mitigation temperature control unit 32 temperature-regulates (for example, cools) the first tube mixed fluid C flowing through the first fluctuation mitigation tank 31a to a desired temperature condition.
 以上の第1管型混合部20及び第1変動緩和部30においては、第1管型混合部20を前段に配置し、第1変動緩和部30を後段に配置することで、前段の第1管型混合部20において管の軸方向に粘度の変動があった場合に、後段の第1変動緩和部30において管の軸方向の粘度の変動を大幅に低減できる。 In the first tubular mixing section 20 and the first fluctuation reducing section 30 described above, the first tubular mixing section 20 is arranged in the front stage and the first fluctuation reducing section 30 is arranged in the rear stage, so that the first When there is variation in viscosity in the axial direction of the tube in the tubular mixing section 20, the variation in viscosity in the axial direction of the tube can be significantly reduced in the subsequent first variation reducing section 30. FIG.
 次に、第2実施形態における重合体製造システム1(ポリアミック酸製造システム)の動作を説明する。 Next, the operation of the polymer production system 1 (polyamic acid production system) in the second embodiment will be described.
 第1変動緩和部30においては、第1管混合流体Cを流入させ、垂直方向と水平方向の速度差によって生じる滞留時間分布によって第1管混合流体Cの滞留時間に分布を持たせた状態で連続的に送液する。これにより、前段の第1管型混合部20では解消することができない第1管混合流体Cの管の軸方向における粘度の変動を、後段の第1変動緩和部30において大幅に低減することができる。よって、所望の重合体を連続的に且つ安定的に得ることができる。 In the first fluctuation reducing section 30, the first pipe mixed fluid C is allowed to flow in, and the residence time of the first pipe mixed fluid C is distributed according to the residence time distribution caused by the difference in velocity between the vertical direction and the horizontal direction. Feed continuously. As a result, fluctuations in the viscosity of the first pipe mixed fluid C in the axial direction of the tube, which cannot be eliminated in the first tubular mixing section 20 in the preceding stage, can be significantly reduced in the first fluctuation reducing section 30 in the subsequent stage. can. Therefore, a desired polymer can be obtained continuously and stably.
 <第3実施形態>
 図3により、第3実施形態における重合体製造システムについて説明する。図3は、第3実施形態における重合体製造システムを示す図である。なお、第1及び第2実施形態と同様の構成部分には、同一の符号を付して示す。
<Third Embodiment>
A polymer manufacturing system according to the third embodiment will be described with reference to FIG. FIG. 3 is a diagram showing a polymer production system in the third embodiment. In addition, the same code|symbol is attached|subjected and shown to the component similar to 1st and 2nd embodiment.
 本実施形態の第1変動緩和部30は、第1管型混合部20の下流側に配置され、第1変動緩和部30に同時に流入した流体が、広い滞留時間分布によって第1変動緩和部30から長い時間差がついて流出するように設計される。具体的には、第1変動緩和部30に同時に流入した流体のうちの70%が流出するまでに、最も流速の速い流跡線を通った流体が流出してから10分以上を要するような滞留時間の分布が生じるように設計される。この広い滞留時間分布によって、第1管混合流体Cの軸方向の均一化を促進し、経時的な粘度変動の少ない第1生成流体Dを得ることができる。 The first fluctuation mitigation section 30 of the present embodiment is arranged downstream of the first tubular mixing section 20, and the fluids simultaneously flowing into the first fluctuation mitigation section 30 flow into the first fluctuation mitigation section 30 due to a wide residence time distribution. designed to drain over a long period of time from Specifically, it takes 10 minutes or more from the point at which the fluid flowing through the trajectory line with the highest flow velocity flows out until 70% of the fluid that simultaneously flows into the first fluctuation damping section 30 flows out. It is designed to produce a distribution of residence times. This wide residence time distribution promotes homogenization of the mixed fluid C in the first pipe in the axial direction, making it possible to obtain the first produced fluid D with little variation in viscosity over time.
 最も流速の速い流跡線とは、例えば第1変動緩和部30の入口の断面全体にトレーサー粒子や着色剤を入れたときに、第1変動緩和部30の出口から最初にトレーサー粒子や着色剤が流出する際に通過した流跡線を指す。また、「第1変動緩和部30に同時に流入した流体のうちの70%が流出するまでに、最も流速の速い流跡線を通った流体が流出してから10分以上を要する」とは、例えば第1変動緩和部30の入口の断面全体にトレーサー粒子や着色剤を入れたときに、第1変動緩和部30の出口から最初にトレーサー粒子や着色剤が流出してから、トレーサー粒子や着色剤の70%が流出するまでに10分以上を要することを指す。これらは、濁度計、吸光光度計等によって評価することができる。 The trajectory with the highest flow velocity is, for example, when the tracer particles and the colorant are put in the entire cross section of the entrance of the first fluctuation reduction section 30, the tracer particles and the colorant are first from the exit of the first fluctuation reduction section 30. refers to the trajectory through which the flows out. Further, the statement that ``it takes 10 minutes or more from the time the fluid flowing through the trajectory line with the highest flow velocity to flow out until 70% of the fluid that simultaneously flowed into the first fluctuation damping section 30 flows out'' means that For example, when the tracer particles and the coloring agent are put into the entire cross section of the entrance of the first fluctuation reducing section 30, the tracer particles and the coloring agent first flow out from the outlet of the first fluctuation reducing section 30, and then the tracer particles and the coloring agent It means that it takes 10 minutes or more for 70% of the agent to flow out. These can be evaluated by a turbidity meter, an absorption photometer, or the like.
 第1変動緩和部30内における第1管混合流体Cの滞留時間分布は、広いほど粘度変動の低減効果は大きい。しかし、滞留時間分布を広くしすぎると大きい装置が必要となり設備費が高額になることから、適切な滞留時間分布となるように第1変動緩和部30を設計するとよい。具体的には、第1変動緩和部30に同時に流入した流体のうちの70%が流出するまでに、最も流速の速い流跡線を通った流体が流出してから360分以内となるように設計するのがより好ましい。 The wider the residence time distribution of the first pipe mixed fluid C in the first fluctuation alleviating section 30, the greater the effect of reducing the viscosity fluctuation. However, if the residence time distribution is made too wide, a large apparatus is required and the equipment cost becomes high. Specifically, 70% of the fluid that simultaneously flowed into the first fluctuation damping section 30 will flow out within 360 minutes after the flow of the fluid that has passed through the trajectory line with the highest flow velocity has flowed out. It is more preferable to design
 滞留時間分布を広くするための第1変動緩和部30の構造としては、例えば、第1管混合流体Cを滞留時間が異なる複数の流路に分岐させてから合流させる構造が挙げられる。この場合には、第1変動緩和部30は、流入した流体を複数の流路に分岐させる第1変動緩和分岐部J2(第1分岐部)と、第1変動緩和分岐部J2によって分岐された複数の流路のそれぞれの流体の流通方向の下流側において、複数の流路のそれぞれを流通する流体を合流させる第1変動緩和合流部J3(第2合流部)と、を有している。 As a structure of the first fluctuation reducing section 30 for widening the residence time distribution, for example, there is a structure in which the first pipe mixed fluid C is branched into a plurality of flow paths with different residence times and then merged. In this case, the first fluctuation mitigation section 30 includes a first fluctuation mitigation branch section J2 (first branch section) that branches the inflowing fluid into a plurality of flow paths, and a first fluctuation mitigation branch section J2. A first fluctuation mitigation junction J3 (second junction) for joining the fluids flowing through the plurality of flow paths is provided on the downstream side of each of the plurality of flow paths in the fluid flow direction.
 図3に示す構成においては、第1変動緩和部30は第1変動緩和分岐部J2(第1分岐部)において第1管混合流体Cを滞留時間の異なる2つの流路に分配し、第1変動緩和合流部J3(第2合流部)において再度1つの流路に合流させる構造となっている。第1変動緩和部30の2つの流路は二重管で構成され、径方向の内側に配置される第1変動緩和配管部31及び第2変動緩和配管部33と、径方向の外側に配置される第1変動緩和温調部32(第1温調部)及び第2変動緩和温調部34(第1温調部)と、を有する。本実施形態においては、第1変動緩和温調部32及び第2変動緩和温調部34により第1管混合流体Cは重合反応に適した温度に調整される。 In the configuration shown in FIG. 3, the first fluctuation mitigation section 30 distributes the first pipe mixed fluid C to two flow paths having different residence times at the first fluctuation mitigation branch section J2 (first branch section). It has a structure in which it merges into one flow path again at the fluctuation mitigation confluence portion J3 (second confluence portion). The two flow paths of the first fluctuation mitigation section 30 are composed of double pipes, with a first fluctuation mitigation pipe section 31 and a second fluctuation mitigation pipe section 33 arranged radially inside, and a fluctuation relaxation pipe section 33 arranged radially outside. a first fluctuation relaxation temperature control section 32 (first temperature control section) and a second fluctuation relaxation temperature control section 34 (first temperature control section). In the present embodiment, the first pipe mixed fluid C is adjusted to a temperature suitable for the polymerization reaction by the first fluctuation relaxation temperature control section 32 and the second fluctuation relaxation temperature control section 34 .
 第1変動緩和部30を構成する配管の形状としては特に制限されない。例えば、上述のように第1変動緩和部は、内部を流れる流体を2以上の異なる流路に分岐させる第1分岐部と分岐した流路が再び合流する第1変動緩和合流部(第2合流部)を有して構成されても良く、内部に構造体を有していても良く、エルボ等によって曲がった配管を用いても良く、断面は円形でなくてもよい。また、第1変動緩和配管部31の途中にはバルブやセンサ等が設置されていてもよい。また、1つの配管の内部が仕切り等によって分けられることで、滞留時間の異なる2以上の流路を形成するようにしてもよい。 The shape of the pipe that constitutes the first fluctuation mitigation section 30 is not particularly limited. For example, as described above, the first fluctuation mitigation section includes a first branching section that branches the fluid flowing inside into two or more different flow paths, and a first fluctuation mitigation confluence section (second confluence) where the branched flow paths merge again. (part), may have a structure inside, may use a pipe bent by an elbow or the like, and may not have a circular cross section. Also, a valve, a sensor, or the like may be installed in the middle of the first fluctuation mitigating pipe section 31 . Also, the interior of one pipe may be divided by a partition or the like to form two or more flow paths having different residence times.
 第1変動緩和部30では、滞留時間の異なる流路の組み合わせによって滞留時間分布を生じさせるほか、同一の流路内における径方向の速度差によって滞留時間分布が生じるようにしてもよい。例えば、円管内を層流で流れる場合であれば、管の中心を通る流体が、流速が最も速く、滞留時間が最も短くなる。一方、管壁際を通過する流体の流速は極めて遅いため、滞留時間が非常に長くなる。1つの流路内においても、このような流跡線による滞留時間の違いによって、軸方向の性状の変動を緩和できる。 In the first fluctuation reducing section 30, in addition to generating a residence time distribution by combining flow paths with different residence times, a residence time distribution may be generated by a radial velocity difference within the same flow path. For example, in the case of laminar flow in a circular tube, the fluid passing through the center of the tube has the highest flow velocity and the shortest residence time. On the other hand, since the flow velocity of the fluid passing near the pipe wall is extremely low, the residence time is very long. Even within one flow path, the variation in properties in the axial direction can be mitigated by such a difference in residence time due to the trajectory.
 同一流路内における径方向の速度差によって十分な粘度変動緩和効果を得るためには、第1管混合流体Cが配管内を層流で流れるのがより好ましい。第1変動緩和配管部31及び/又は第2変動緩和配管部33内を層流で流れるためには、代表長さdとして4×断面積/浸辺長を用いた場合に、粘度μ、断面平均流速u、密度ρから計算されるレイノルズ数(ρud/μ)が、2100以下となるようにするのが好ましく、0.00001以上1000以下となるようにするのがより好ましい。また、溶液粘度が低い場合には、流れが発達するまでの助走区間が長いために速度分布を効果的に発生させられないので、第1変動緩和配管部31及び/又は第2変動緩和配管部33内を流れる第1管混合流体Cの粘度は高めである方がよい。具体的には、第1変動緩和配管部31及び/又は第2変動緩和配管部33内を流れる第1管混合流体Cの粘度は、流通時の温度において0.1poise以上100000poise以下であるのが好ましく、1poise以上10000poise以下であるのがより好ましく、5poise以上5000poise以下であるのがより好ましい。 In order to obtain a sufficient effect of alleviating viscosity fluctuations due to the difference in velocity in the radial direction within the same flow path, it is more preferable for the mixed fluid C in the first pipe to flow in a laminar flow within the pipe. In order to flow in laminar flow in the first fluctuation relaxation pipe portion 31 and / or the second fluctuation relaxation pipe portion 33, when using 4 × cross-sectional area / immersion length as the representative length d, viscosity μ, cross-section The Reynolds number (ρud/μ) calculated from the average flow velocity u and the density ρ is preferably 2100 or less, more preferably 0.00001 or more and 1000 or less. Also, when the viscosity of the solution is low, the velocity distribution cannot be effectively generated because the run-up section until the flow develops is long, so the first fluctuation relaxation pipe part 31 and / or the second fluctuation relaxation pipe part The viscosity of the first pipe mixed fluid C flowing in 33 is preferably high. Specifically, the viscosity of the first pipe mixed fluid C flowing through the first fluctuation mitigating pipe section 31 and/or the second fluctuation mitigating pipe section 33 is preferably 0.1 poise or more and 100000 poise or less at the temperature during circulation. It is preferably 1 poise or more and 10000 poise or less, and more preferably 5 poise or more and 5000 poise or less.
 図3では、第1変動緩和部30は滞留時間の異なる2つの流路によって構成される例を示しているが、これに制限されない。上述のように、1つの流路内における径方向の速度差によって、第1変動緩和部30に同時に流入した流体のうちの70%が流出するまでに、最も流速の速い流跡線を通った流体が流出してから10分以上を要するような滞留時間分布が生じるならば、第1変動緩和部30は分岐部及び合流部を含まずに、1つの配管で構成されていてもよい。一方、第1変動緩和部30の内部を乱流で流れる場合や、内部の構造体の影響等によって、径方向の速度差が小さい場合には、積極的に滞留時間分布を生じさせるため、第1変動緩和部30は3以上の配管に分岐するような構造であってもよい。 Although FIG. 3 shows an example in which the first fluctuation reducing section 30 is composed of two flow paths with different residence times, it is not limited to this. As described above, due to the radial velocity difference in one flow path, 70% of the fluid simultaneously flowing into the first fluctuation reducing section 30 passes through the trajectory line with the highest flow velocity before flowing out. If there is a residence time distribution that requires 10 minutes or more after the fluid has flowed out, the first fluctuation reducing section 30 may be configured by one pipe without including the branching section and the merging section. On the other hand, when the flow is turbulent inside the first fluctuation reducing portion 30, or when the radial velocity difference is small due to the influence of the internal structure, etc., the residence time distribution is positively generated. One fluctuation reducing section 30 may have a structure in which it branches into three or more pipes.
 第1変動緩和配管部31及び第2変動緩和配管部33は、平均滞留時間に比べて周期の短い変動であれば緩和することができるが、平均滞留時間に比べて周期が長い変動は緩和されにくい。従って、第1管型混合部20の出口で生じ得る第1管混合流体Cの平均変動周期に比べて、第1変動緩和配管部31と第2変動緩和配管部33の平均滞留時間の合計を十分に長くするのが好ましい。ただし、ここで述べる平均滞留時間とは、流路の容積の合計を、第1管混合流体Cの体積流量で除した値である。また、平均変動周期とは、第1管型混合部20の出口における第1管混合流体Cの粘度が極大値となってから、一度極小値となり、再び極大値となるまでの時間の平均的な値を意味する。第1変動緩和配管部31と第2変動緩和配管部33の平均滞留時間の合計は、第1管型混合部20の出口における第1管混合流体Cの平均変動周期の1倍以上とするのが好ましく、2倍以上とするのがより好ましい。 The first fluctuation mitigation pipe part 31 and the second fluctuation mitigation pipe part 33 can mitigate fluctuations with a shorter period than the average residence time, but they can alleviate fluctuations with a longer period than the average residence time. Hateful. Therefore, compared to the average fluctuation cycle of the first pipe mixed fluid C that can occur at the outlet of the first tubular mixing unit 20, the total average residence time of the first fluctuation reducing pipe portion 31 and the second fluctuation reducing pipe portion 33 is It should preferably be long enough. However, the average residence time mentioned here is a value obtained by dividing the total volume of the flow path by the volumetric flow rate of the mixed fluid C in the first tube. Further, the average fluctuation period is the average of the time from when the viscosity of the first tube mixed fluid C at the outlet of the first tube mixing section 20 reaches a maximum value to when it reaches a minimum value and then reaches a maximum value again. value. The sum of the average residence times of the first fluctuation mitigating pipe portion 31 and the second fluctuation mitigating pipe portion 33 should be at least 1 time the average fluctuation cycle of the first pipe mixed fluid C at the outlet of the first pipe mixing portion 20. is preferable, and more preferably twice or more.
 第1管混合流体Cの粘度変動に応じて、第1変動緩和配管部31及び第2変動緩和配管部33が適切な平均滞留時間を持つようにするため、第1変動緩和配管部31と第2変動緩和配管部33の容積の合計は、第1管型混合撹拌部20の容積の0.5~100倍とすることが好ましい。 In order for the first fluctuation relaxation pipe portion 31 and the second fluctuation relaxation pipe portion 33 to have an appropriate average residence time according to the viscosity fluctuation of the mixed fluid C in the first pipe, the first fluctuation relaxation pipe portion 31 and the second It is preferable that the total volume of the two fluctuation-mitigating pipe sections 33 is 0.5 to 100 times the volume of the first tubular mixing/stirring section 20 .
 第1変動緩和配管部31及び第2変動緩和配管部33は、気泡を含まない第1生成流体Dを得るために、気体に接触しない状態で送液されることが好ましい。ただし、これに制限されず、第1管混合流体Cに気泡を巻き込まなければ、第1変動緩和配管部31及び/又は第2変動緩和配管部33の内部に気相が存在していてもよい。 In order to obtain the first generated fluid D that does not contain air bubbles, it is preferable that the first fluctuation mitigating pipe section 31 and the second fluctuation mitigating pipe section 33 are fed without contacting gas. However, the present invention is not limited to this, and a gas phase may exist inside the first fluctuation mitigating pipe section 31 and/or the second fluctuation mitigating pipe section 33 as long as air bubbles are not involved in the first pipe mixed fluid C. .
 図1における、第1管混合流体Cを滞留時間が異なる2つの流路に分岐させてから合流させる構造においては、第1変動緩和部30に流入する第1管混合流体Cは、第1変動緩和分岐部J2において第1変動緩和配管部31と第2変動緩和配管部33とに分配される。第1変動緩和分岐部J2において分配された第1管混合流体Cは、第1変動緩和配管部31及び第2変動緩和配管部33をそれぞれ第1変動緩和合流部J3側に向かって流通し、第1変動緩和合流部J3において合流し、第1変動緩和部30から流出する。 In the structure in FIG. 1 in which the first pipe mixed fluid C is branched into two flow paths with different residence times and then merged, the first pipe mixed fluid C flowing into the first fluctuation reducing section 30 is subjected to the first fluctuation It is distributed to the first fluctuation relaxation piping section 31 and the second fluctuation relaxation piping section 33 at the relaxation branch J2. The first pipe mixed fluid C distributed at the first fluctuation mitigation branch portion J2 flows through the first fluctuation mitigation pipe portion 31 and the second fluctuation mitigation pipe portion 33 toward the first fluctuation mitigation junction J3 side, It merges at the first fluctuation mitigation junction J3 and flows out from the first fluctuation mitigation section 30 .
 第1変動緩和温調部32と第2変動緩和温調部34は、それぞれ第1変動緩和配管部31と第2変動緩和配管部33の径方向の外側に配置される配管部であり、内側を流通する第1管混合流体Cを、所望の温度条件に温調(例えば、冷却)する。これらの温調部において、第1管混合流体Cは、重合反応に適した温度に調整され、第1変動緩和配管部31及び第2変動緩和配管部33を流通される。 The first fluctuation mitigation temperature control part 32 and the second fluctuation mitigation temperature control part 34 are pipe parts arranged radially outside the first fluctuation mitigation pipe part 31 and the second fluctuation mitigation pipe part 33, respectively. The temperature of the first tube mixed fluid C flowing through is controlled (for example, cooled) to a desired temperature condition. In these temperature control units, the mixed fluid C in the first tube is adjusted to a temperature suitable for the polymerization reaction, and flows through the first fluctuation relaxation piping section 31 and the second fluctuation relaxation piping section 33 .
 圧力損失の違い等の影響によって、第1変動緩和部30を構成する複数の流路に第1管混合流体Cがそれぞれ所望の流量で分配されない場合には、第1変動緩和部30に1以上のポンプを設け、それぞれの流路を流れる第1管混合流体Cの流量を調整できるようにしてもよい。また、第1変動緩和部30に1以上の背圧弁や開度を調整できるバルブを設け、圧力損失を調整することで、第1管混合流体Cがそれぞれの流路に所望の流量で分配されるようにしてもよい。 When the first pipe mixed fluid C is not distributed at a desired flow rate to each of the plurality of flow paths constituting the first fluctuation reducing section 30 due to the influence of differences in pressure loss, etc., the first fluctuation reducing section 30 has one or more may be provided to adjust the flow rate of the first tube mixed fluid C flowing through each channel. In addition, by providing one or more back pressure valves and valves that can adjust the opening degree in the first fluctuation reducing unit 30 to adjust the pressure loss, the first pipe mixed fluid C is distributed to each flow path at a desired flow rate. You may do so.
 以上の第1管型混合部20及び第1変動緩和部30においては、第1管型混合部20を前段に配置し、第1変動緩和部30を後段に配置することで、前段の第1管型混合部20において管の軸方向に粘度の変動があった場合に、後段の第1変動緩和部30において管の軸方向の粘度の変動を大幅に低減できる。 In the first tubular mixing section 20 and the first fluctuation reducing section 30 described above, the first tubular mixing section 20 is arranged in the front stage and the first fluctuation reducing section 30 is arranged in the rear stage, so that the first When there is variation in viscosity in the axial direction of the tube in the tubular mixing section 20, the variation in viscosity in the axial direction of the tube can be significantly reduced in the subsequent first variation reducing section 30. FIG.
 次に、第3実施形態における重合体製造システム1(ポリアミック酸製造システム)の動作を説明する。 Next, the operation of the polymer production system 1 (polyamic acid production system) in the third embodiment will be described.
 第1変動緩和部30においては、第1管混合流体Cを流入させ、径方向の速度分布及び/又は滞留時間の異なる流路に分岐させる効果によって、第1管混合流体Cの滞留時間に分布を持たせた状態で連続的に送液する。これにより、前段の第1管型混合部20では解消することができない第1管混合流体Cの管の軸方向における粘度の変動を、後段の第1変動緩和部30において大幅に低減することができる。よって、所望の重合体を連続的に且つ安定的に得ることができる。 In the first fluctuation reducing section 30, the first pipe mixed fluid C is allowed to flow in, and the radial velocity distribution and/or the residence time distribution of the first pipe mixed fluid C is distributed by the effect of branching into flow paths with different residence times. Continuously feed the liquid while holding the As a result, fluctuations in the viscosity of the first pipe mixed fluid C in the axial direction of the tube, which cannot be eliminated in the first tubular mixing section 20 in the preceding stage, can be significantly reduced in the first fluctuation reducing section 30 in the subsequent stage. can. Therefore, a desired polymer can be obtained continuously and stably.
 ここで、上述の重合体製造システム1の動作の途中において、第1管混合流体測定部222及び第1生成流体測定部322は、粘度情報を取得している(測定工程)。
 制御部200は、第1管混合流体測定部222及び/又は第1生成流体測定部322により取得された粘度情報(第1反応情報)に基づいて、各供給ポンプ112,122と、各温調部22,32,34を制御する(制御工程)。これにより、所望の性状(温度、粘度)のポリアミック酸を得ることができる。
Here, during the operation of the polymer production system 1 described above, the first pipe mixed fluid measuring section 222 and the first produced fluid measuring section 322 acquire viscosity information (measurement step).
Based on the viscosity information (first reaction information) acquired by the first tube mixed fluid measurement unit 222 and/or the first generated fluid measurement unit 322, the control unit 200 controls the supply pumps 112 and 122 and the temperature controllers 112 and 122. Control the parts 22, 32, 34 (control process). Thereby, a polyamic acid having desired properties (temperature, viscosity) can be obtained.
 第1変動緩和部30における第1管混合流体Cの滞留時間の分布がわかる場合、第1管混合流体測定部222により第1粘度情報を取得し(測定工程)、これに基づいて第1変動緩和部30の出口における第1生成流体Dの粘度の経時変化を予測できる(予測工程)。このように予測した粘度に基づいて、各供給ポンプ112,122と、各温調部22,32,34を制御してもよい(制御工程)。例えば、第1変動緩和部30内を層流で流れ、ハーゲン・ポアズイユ流れが形成されている場合では、径方向の流速分布が計算できるため、滞留時間分布がわかる。従って、第1管混合流体測定部222によって取得した第1管混合流体Cの粘度から、滞留時間分布で重みづけをした時間移動平均を計算すると、第1変動緩和部30の出口における第1生成流体Dの粘度の予測値が得られる。また、第1変動緩和部30が2以上の流路に分岐する構造である場合には、それぞれの流路の滞留時間分布を、それぞれの流路の流量比によって重みづけした平均を考えればよい。 When the distribution of the residence time of the first pipe mixed fluid C in the first fluctuation mitigation unit 30 is known, the first pipe mixed fluid measurement unit 222 acquires the first viscosity information (measuring step), and based on this, the first fluctuation A temporal change in the viscosity of the first generated fluid D at the outlet of the relaxation section 30 can be predicted (prediction step). The supply pumps 112, 122 and the temperature controllers 22, 32, 34 may be controlled based on the predicted viscosity (control step). For example, when a Hagen-Poiseuille flow is formed by laminar flow in the first fluctuation damping section 30, the flow velocity distribution in the radial direction can be calculated, so the residence time distribution can be known. Therefore, if the time moving average weighted by the residence time distribution is calculated from the viscosity of the first pipe mixed fluid C acquired by the first pipe mixed fluid measurement unit 222, the first generation at the outlet of the first fluctuation reduction unit 30 An estimate of the viscosity of fluid D is obtained. In addition, when the first fluctuation reducing section 30 has a structure that branches into two or more flow paths, the average of the residence time distribution of each flow path, weighted by the flow rate ratio of each flow path, may be considered. .
 また、重合体製造システム1において、第1管混合流体測定部222及び/又は第1生成流体測定部322により取得された第1反応情報に基づいて、第1供給ポンプ112における供給、第2供給ポンプ122における供給、第1管型混合温調部22における温度調整、第1変動緩和温調部32における温度調整、第2変動緩和温調部34における温度調整のいずれか1以上を制御する。これにより、所望の性状(温度、粘度)の重合体を得ることができる。 In addition, in the polymer production system 1, based on the first reaction information acquired by the first tube mixed fluid measurement unit 222 and/or the first produced fluid measurement unit 322, the supply in the first supply pump 112, the second supply Any one or more of the supply by the pump 122, the temperature adjustment in the first tubular mixing temperature control section 22, the temperature adjustment in the first fluctuation relaxation temperature control section 32, and the temperature adjustment in the second fluctuation relaxation temperature control section 34 are controlled. Thereby, a polymer having desired properties (temperature, viscosity) can be obtained.
<変形例>
 以上、3つの実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲内での変形、改良等は本発明に含まれる。
<Modification>
Although the three embodiments have been described above, the present invention is not limited to the above embodiments, and includes modifications, improvements, etc. within the scope of achieving the object of the present invention.
 例えば、上述の実施形態では第1管型混合部及び第1変動緩和部において流体が混合されるように構成した。しかし、これに限定されない。上述の実施形態の構成の更に下流側に、1段又は複数段の管型混合部及び/又は変動緩和部を設けてもよい。また、第3実施形態では、第1変動緩和合流部J3において1つの流路に合流する例について説明したが、これに制限されず、例えば複数の流路に分かれた第1管混合流体Cを下流に設けたクッションタンク等に別々に流入させるようにしてもよい。 For example, in the above-described embodiment, the fluids are mixed in the first tubular mixing section and the first fluctuation reducing section. However, it is not limited to this. A one-stage or multiple-stage tubular mixing section and/or a variation reducing section may be provided further downstream of the configuration of the above-described embodiments. Further, in the third embodiment, an example of merging into one flow path at the first fluctuation mitigation confluence part J3 has been described, but the present invention is not limited to this. Alternatively, the water may flow separately into a cushion tank or the like provided downstream.
 また、本実施形態では、第1管型混合部20が第1管型混合撹拌部21と第1温度調整部22との二重管で構成される場合について説明したが、これに限定されるものではない。例えば、第1管型混合部20を第1管型混合撹拌部21のみの一重管で構成し、この第1管型混合撹拌部21を温調用の液に浸漬するようにしてもよい。 In addition, in the present embodiment, the case where the first tubular mixing section 20 is composed of a double tube of the first tubular mixing stirring section 21 and the first temperature adjusting section 22 has been described, but the present invention is limited to this. not a thing For example, the first tubular mixing section 20 may be composed of only the first tubular mixing/stirring section 21 with a single tube, and the first tubular mixing/stirring section 21 may be immersed in the temperature control liquid.
 また、上述の実施形態では、ポリアミック酸又はポリイミドを製造する重合体製造システムについて説明したが、製造する重合体はこれらに限定されない。例えば、重合体製造システムは、ウレタンモノマー、エポキシモノマー等の重付加性モノマーを用いて重合体を製造するものであってもよい。また、上述の実施形態では、第1変動緩和部30によって粘度の経時的な変動が低減される例について述べたが、変動を低減できる性状としては粘度に限定されず、他の物性について経時的な変動が生じる場合でも第1変動緩和部30による低減が可能である。 Also, in the above embodiments, the polymer production system for producing polyamic acid or polyimide was described, but the polymer to be produced is not limited to these. For example, the polymer production system may produce polymers using polyaddition monomers such as urethane monomers and epoxy monomers. Further, in the above-described embodiment, an example in which the first variation reducing unit 30 reduces the variation in viscosity over time is described, but the property that can reduce variation is not limited to viscosity, and other physical properties can be reduced over time. Even if there is a large fluctuation, it can be reduced by the first fluctuation reducing section 30 .
 上述の実施形態では、粘度測定部により第1管混合流体C、第1生成流体Dの粘度に関する粘度情報を取得して、取得した粘度情報に基づいて、流体の供給量及び/又は混合の温度条件を制御したが、これに限定されない。例えば、第1管混合流体C、第1生成流体Dの吸光度に関する吸光度情報を取得し、取得した吸光度情報に基づいて、流体の供給量及び/又は混合の温度条件を制御してもよい。 In the above-described embodiment, the viscosity information about the viscosity of the mixed fluid C in the first tube and the viscosity of the first generated fluid D is acquired by the viscosity measuring unit, and based on the acquired viscosity information, the supply amount of the fluid and/or the mixing temperature Controlled but not limited to conditions. For example, absorbance information relating to the absorbance of the first pipe mixed fluid C and the first product fluid D may be acquired, and the fluid supply amount and/or the temperature conditions for mixing may be controlled based on the acquired absorbance information.
 上述の実施形態では、第1送液ラインL1、第2送液ラインL2、第3送液ラインL3、第4送液ラインL4,第5送液ラインL5によって重合体製造システムの各部が接続されている例を示したが、これに限定されない。例えば、第4送液ラインL4を備えず、第1管型混合部20の出口と第1変動緩和部30の入口が直接接続されていてもよい。 In the above-described embodiment, each part of the polymer production system is connected by the first liquid-feeding line L1, the second liquid-feeding line L2, the third liquid-feeding line L3, the fourth liquid-feeding line L4, and the fifth liquid-feeding line L5. Although an example is shown, it is not limited to this. For example, the outlet of the first tubular mixing section 20 and the inlet of the first fluctuation reducing section 30 may be directly connected without the fourth liquid feeding line L4.
 また、上述の実施形態では、第1管型混合部20及び第1変動緩和部30の温度を制御する方法について述べたが、これに限定されない。例えば、第1管型混合部20及び/又は第1変動緩和部30の温調部は必ずしも必要ではなく、また、第1合流部J1、第1送液ラインL1、第2送液ラインL2、第3送液ラインL3、第4送液ラインL4,第5送液ラインL5のいずれか1以上に温調部が備わっていてもよい。 Also, in the above-described embodiment, the method for controlling the temperatures of the first tubular mixing section 20 and the first fluctuation reducing section 30 has been described, but the present invention is not limited to this. For example, the temperature control section of the first tubular mixing section 20 and/or the first fluctuation reducing section 30 is not necessarily required, and the first junction section J1, the first liquid feeding line L1, the second liquid feeding line L2, Any one or more of the third liquid-feeding line L3, the fourth liquid-feeding line L4, and the fifth liquid-feeding line L5 may be provided with a temperature control section.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
<実施例1>
 実施例1では、図1に示すような構造の重合体製造システム1を用いてポリアミック酸を製造した。第1タンク11には、4,4’-ジアミノジフェニルエーテルとピロメリット酸二無水物との反応により得られた、末端が酸無水物のポリアミック酸を、N,N-ジメチルホルムアミド中に溶解させた第1流体A1を収容した。また、第2タンク12には、p-フェニレンジアミンをN,N-ジメチルホルムアミド中に溶解した第2流体A2を収容した。
<Example 1>
In Example 1, a polyamic acid was produced using a polymer production system 1 having a structure as shown in FIG. In the first tank 11, a polyamic acid having an acid anhydride at the end obtained by the reaction of 4,4′-diaminodiphenyl ether and pyromellitic dianhydride was dissolved in N,N-dimethylformamide. It accommodated the first fluid A1. Also, the second tank 12 contained a second fluid A2 in which p-phenylenediamine was dissolved in N,N-dimethylformamide.
 まず、第1合流部J1において、第1供給ポンプ112により供給された第1流体A1と、第2供給ポンプ122により供給された第2流体A2とを合流させて混合し、第1合流流体Bを生成した。次いで、第1管型混合部20において、第1合流流体Bを気体に接触しない状態で撹拌し、第1管型混合部20の出口からは、管の径方向に性状のムラの無い第1管混合流体Cが流出した。 First, in the first junction J1, the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122 are merged and mixed to form a first merged fluid B generated. Next, in the first tubular mixing section 20, the first merged fluid B is stirred without coming into contact with gas, and from the outlet of the first tubular mixing section 20, the first mixed fluid B having uniform properties in the radial direction of the tube is discharged. Tube mixed fluid C flowed out.
 より具体的には、第1管型混合部20として、Kenics mixer型のスタティックミキサー(内径8mm、長さ670mm)を用いて、第1合流流体Bを気体に接触しない状態で撹拌した。第1供給ポンプ112と第2供給ポンプ122による供給量の合計は1.0cc/sとし、これらのポンプによる原料の供給比率を調整することで、所望の粘度の重合体溶液を得た。第1管型混合部20の出口では、重合反応が終わっており、径方向の性状は一様な第1管混合流体Cが得られていたが、オンライン粘度計による測定から、粘度の最大値と最小値の差が400poise程度である粘度の変動が生じていた。第1管混合流体Cの粘度の平均値は2100poiseであった。 More specifically, a Kenics mixer type static mixer (inner diameter 8 mm, length 670 mm) was used as the first tubular mixing section 20 to stir the first merged fluid B without contacting the gas. The total amount supplied by the first supply pump 112 and the second supply pump 122 was set to 1.0 cc/s, and a polymer solution having a desired viscosity was obtained by adjusting the material supply ratio of these pumps. At the outlet of the first tubular mixing section 20, the polymerization reaction was completed, and the first tubular mixed fluid C was obtained with uniform properties in the radial direction. and a minimum value difference of about 400 poise. The average viscosity of the mixed fluid C in the first tube was 2100 poise.
 第1変動緩和部30としては、内径30mm、長さ900mmの中空の円筒管を用いた。第1管型混合部20から流出した第1管混合流体Cを、体積流量1.0cc/sで第1変動緩和部30に流入させた。第1変動緩和部30内で生じた流速分布により、第1管混合流体Cの軸方向の混合が進行し、第1変動緩和部30の出口からは粘度の平均値が2100poiseであり、粘度変動の低減された第1生成流体Dが流出した。オンライン粘度計による測定から、第1生成流体Dの粘度の最大値と最小値の差は80poise程度であった。従って、第1管型混合部20の出口における流体の経時的な粘度変動を、第1変動緩和部30を設けることによって大幅に低減できることが分かった。 A hollow cylindrical tube with an inner diameter of 30 mm and a length of 900 mm was used as the first fluctuation reducing section 30 . The first tubular mixed fluid C flowing out of the first tubular mixing section 20 was allowed to flow into the first fluctuation reducing section 30 at a volumetric flow rate of 1.0 cc/s. Due to the flow velocity distribution generated in the first fluctuation reducing section 30, mixing in the axial direction of the first pipe mixed fluid C proceeds, and the average viscosity from the outlet of the first fluctuation reducing section 30 is 2100 poise, and the viscosity fluctuation of the first generated fluid D flowed out. Measurement by an on-line viscometer revealed that the difference between the maximum value and the minimum value of the viscosity of the first generated fluid D was about 80 poise. Therefore, it was found that the temporal viscosity fluctuation of the fluid at the outlet of the first tubular mixing section 20 can be significantly reduced by providing the first fluctuation reducing section 30 .
<実施例2>
 実施例2では、図2に示すような構造の重合体製造システム1を用いてポリアミック酸を製造した。第1タンク11には、4,4’-ジアミノジフェニルエーテルとピロメリット酸二無水物との反応により得られた末端が酸無水物のポリアミック酸をN,N-ジメチルホルムアミド中に溶解させた第1流体A1を収容した。また、第2タンク12には、p-フェニレンジアミンをN,N-ジメチルホルムアミド中に溶解した第2流体A2を収容した。
<Example 2>
In Example 2, a polyamic acid was produced using a polymer production system 1 having a structure as shown in FIG. In the first tank 11, a first polyamic acid having acid anhydride ends obtained by the reaction of 4,4′-diaminodiphenyl ether and pyromellitic dianhydride was dissolved in N,N-dimethylformamide. Fluid A1 was accommodated. Also, the second tank 12 contained a second fluid A2 in which p-phenylenediamine was dissolved in N,N-dimethylformamide.
 まず、第1合流部J1において、第1供給ポンプ112により供給された第1流体A1と、第2供給ポンプ122により供給された第2流体A2とを合流させて混合し、第1合流流体Bを生成した。次いで、第1管型混合部20において、第1合流流体Bを気体に接触しない状態で撹拌し、第1管型混合部20の出口からは、管の径方向に性状のムラの無い第1管混合流体Cが流出した。 First, in the first junction J1, the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122 are merged and mixed to form a first merged fluid B generated. Next, in the first tubular mixing section 20, the first merged fluid B is stirred without coming into contact with gas, and from the outlet of the first tubular mixing section 20, the first mixed fluid B having uniform properties in the radial direction of the tube is discharged. Tube mixed fluid C flowed out.
 より具体的には、Kenics mixer型のスタティックミキサー(内径8mm、長さ670mm)を用いて、第1流体A1と第2流体A2とを供給量の合計を1.0cc/sとして合流させて混合し、第1合流流体Bを生成した。次いで、第1管型混合部20において、第1合流流体Bを気体に接触しない状態で撹拌し、第1管型混合部20の出口からは、管の径方向に性状のムラの無い第1管混合流体Cを得た。第1管型混合部20の出口では、重合反応が終わっており、径方向の性状は一様な第1管混合流体Cが得られていたが、オンライン粘度計による測定から、粘度の最大値と最小値の差が800poiseである粘度の変動が生じていた。第1管混合流体Cの粘度の平均値は1800poiseであった。 More specifically, using a Kenics mixer type static mixer (inner diameter 8 mm, length 670 mm), the first fluid A1 and the second fluid A2 are combined and mixed at a total supply amount of 1.0 cc/s. and the first merged fluid B was generated. Next, in the first tubular mixing section 20, the first merged fluid B is stirred without coming into contact with gas, and from the outlet of the first tubular mixing section 20, the first mixed fluid B having uniform properties in the radial direction of the tube is discharged. A pipe mixed fluid C was obtained. At the outlet of the first tubular mixing section 20, the polymerization reaction was completed, and the first tubular mixed fluid C was obtained with uniform properties in the radial direction. and the minimum value difference is 800 poise. The average viscosity of the mixed fluid C in the first tube was 1800 poise.
 第1変動緩和部30の第1変動緩和タンク31aとして、内径80mm、容量500mlの円筒形タンクを用い、円筒形タンクの中心軸が設置面に対して60°をなすように設置した。第1管型混合部20から流出した第1管混合流体Cの一部を、体積流量0.2cc/sで第1変動緩和タンク31aの上部より流入させた。また、第1変動緩和タンク31aの底部より同流量で第1生成流体Dを流出させた。第1変動緩和タンク31a内での平均滞留時間は11minであった。
 第1変動緩和タンク31a内で生じた流速分布により、第1管混合流体Cの軸方向の混合が進行し、第1変動緩和タンク31aの出口からは粘度の平均値が1800poiseであり、粘度変動の少ない第1生成流体Dが流出した。オンライン粘度計による測定から、第1生成流体Dの粘度の最大値と最小値の差は40poiseであった。従って、第1管型混合部20の出口における流体の経時的な粘度変動は、第1変動緩和部30を設けることによって大幅に低減された。
A cylindrical tank having an inner diameter of 80 mm and a capacity of 500 ml was used as the first variation mitigation tank 31a of the first variation mitigation unit 30, and the central axis of the cylindrical tank was installed at an angle of 60° to the installation surface. A portion of the first pipe mixed fluid C flowing out from the first tubular mixing section 20 was allowed to flow in from the upper portion of the first fluctuation damping tank 31a at a volumetric flow rate of 0.2 cc/s. Further, the first generated fluid D was caused to flow out at the same flow rate from the bottom portion of the first fluctuation mitigation tank 31a. The average residence time in the first fluctuation mitigation tank 31a was 11 minutes.
Due to the flow velocity distribution generated in the first fluctuation relaxation tank 31a, the axial mixing of the mixed fluid C in the first pipe progresses, and the average value of the viscosity from the outlet of the first fluctuation relaxation tank 31a is 1800 poise, and the viscosity fluctuation The first generated fluid D with a small amount flowed out. Measurement by an on-line viscometer revealed that the difference between the maximum value and the minimum value of the viscosity of the first generated fluid D was 40 poise. Therefore, the temporal viscosity fluctuation of the fluid at the outlet of the first tubular mixing section 20 is significantly reduced by providing the first fluctuation reducing section 30 .
<実施例3>
 実施例3では、図3に示すような構造の重合体製造システム1を用いてポリアミック酸を製造した。第1タンク11には、4,4’-ジアミノジフェニルエーテルとピロメリット酸二無水物との反応により得られた末端が酸無水物のポリアミック酸をN,N-ジメチルホルムアミド中に溶解させた第1流体A1を収容した。また、第2タンク12には、p-フェニレンジアミンをN,N-ジメチルホルムアミド中に溶解した第2流体A2を収容した。
<Example 3>
In Example 3, a polyamic acid was produced using a polymer production system 1 having a structure as shown in FIG. In the first tank 11, a first polyamic acid having acid anhydride ends obtained by the reaction of 4,4′-diaminodiphenyl ether and pyromellitic dianhydride was dissolved in N,N-dimethylformamide. Fluid A1 was accommodated. Also, the second tank 12 contained a second fluid A2 in which p-phenylenediamine was dissolved in N,N-dimethylformamide.
 まず、第1合流部J1において、第1供給ポンプ112により供給された第1流体A1と、第2供給ポンプ122により供給された第2流体A2とを合流させて混合し、第1合流流体Bを生成した。次いで、第1管型混合部20において、第1合流流体Bを気体に接触しない状態で撹拌し、第1管型混合部20の出口からは、管の径方向に性状のムラの無い第1管混合流体Cが流出した。 First, in the first junction J1, the first fluid A1 supplied by the first supply pump 112 and the second fluid A2 supplied by the second supply pump 122 are merged and mixed to form a first merged fluid B generated. Next, in the first tubular mixing section 20, the first merged fluid B is stirred without coming into contact with gas, and from the outlet of the first tubular mixing section 20, the first mixed fluid B having uniform properties in the radial direction of the tube is discharged. Tube mixed fluid C flowed out.
 より具体的には、第1管型混合部20として、Kenics mixer型のスタティックミキサー(内径8mm、長さ670mm)を用いて、第1合流流体Bを気体に接触しない状態で撹拌した。第1供給ポンプ112と第2供給ポンプ122による供給量の合計は1.0cc/sとし、これらのポンプによる原料の供給比率を調整することで、所望の粘度の重合体溶液を得た。第1管型混合部20の出口では、重合反応が終わっており、径方向の性状は一様な第1管混合流体Cが得られていたが、オンライン粘度計による測定から、粘度の最大値と最小値の差が400poise程度である粘度の変動が生じていた。第1管混合流体Cの粘度の平均値は2100poiseであった。 More specifically, a Kenics mixer type static mixer (inner diameter 8 mm, length 670 mm) was used as the first tubular mixing section 20 to stir the first merged fluid B without contacting the gas. The total amount supplied by the first supply pump 112 and the second supply pump 122 was set to 1.0 cc/s, and a polymer solution having a desired viscosity was obtained by adjusting the material supply ratio of these pumps. At the outlet of the first tubular mixing section 20, the polymerization reaction was completed, and the first tubular mixed fluid C was obtained with uniform properties in the radial direction. and a minimum value difference of about 400 poise. The average viscosity of the mixed fluid C in the first tube was 2100 poise.
 第1変動緩和部30としては、第1変動緩和配管部31が内径30mm、長さ1000mmの中空の円筒管、第2変動緩和配管部33が内径20mm、長さ200mmの中空の円筒管を用いて、第1変動緩和部30に同時に流入した流体のうちの70%が流出するまでに、最も流速の速い流跡線を通った流体が流出してから13分を要するように構成した。第1管型混合部20から流出した第1管混合流体Cを、体積流量1.0cc/sで第1変動緩和部30に流入させた。第1変動緩和部30内で生じた滞留時間分布により、第1管混合流体Cの軸方向の混合が進行し、第1変動緩和部30の出口からは粘度の平均値が2100poiseであり、粘度変動の少ない第1生成流体Dが流出した。オンライン粘度計による測定から、第1生成流体Dの粘度の最大値と最小値の差は80poise程度であった。従って、第1管型混合部20の出口における流体の経時的な粘度変動を、第1変動緩和部30を設けることによって大幅に低減できることが分かった。 As the first fluctuation relaxation section 30, the first fluctuation relaxation piping section 31 uses a hollow cylindrical tube with an inner diameter of 30 mm and a length of 1000 mm, and the second fluctuation relaxation piping section 33 uses a hollow cylindrical tube with an inner diameter of 20 mm and a length of 200 mm. 13 minutes after the fluid flowing through the trajectory line with the highest flow velocity flows out until 70% of the fluids simultaneously flowing into the first fluctuation damping section 30 flow out. The first tubular mixed fluid C flowing out of the first tubular mixing section 20 was allowed to flow into the first fluctuation reducing section 30 at a volumetric flow rate of 1.0 cc/s. Due to the residence time distribution generated in the first fluctuation reducing section 30, mixing in the axial direction of the first pipe mixed fluid C progresses, and the average value of the viscosity from the outlet of the first fluctuation reducing section 30 is 2100 poise, and the viscosity The first generated fluid D with little fluctuation flowed out. Measurement by an on-line viscometer revealed that the difference between the maximum value and the minimum value of the viscosity of the first generated fluid D was about 80 poise. Therefore, it was found that the temporal viscosity fluctuation of the fluid at the outlet of the first tubular mixing section 20 can be significantly reduced by providing the first fluctuation reducing section 30 .
1   重合体製造システム
11  第1タンク
12  第2タンク
20  第1管型混合部
21  第1管型混合撹拌部
22  第1管型混合温調部(第1温調部)
30  第1変動緩和部
31  第1変動緩和配管部
31a 第1変動緩和タンク
32  第1変動緩和温調部(第1温調部)
33  第2変動緩和配管部
34  第2変動緩和温調部(第1温調部)
111 第1タンク用開閉弁
112 第1供給ポンプ(第1供給部)
113 第1流量測定部
121 第2タンク用開閉弁
122 第2供給ポンプ(第2供給部)
123 第2流量測定部
200 制御部
222 第1管混合流体測定部(第1測定部)
322 第2生成流体測定部(第1測定部)
A1  第1流体
A2  第2流体
B   第1合流流体
C   第1管混合流体
D   第1生成流体
L   送液ライン
L1  第1送液ライン
L2  第2送液ライン
L3  第3送液ライン
L4  第4送液ライン
L5  第5送液ライン
J1  第1合流部
J2  第1変動緩和分岐部(第1分岐部)
J3  第2変動緩和合流部(第2合流部)
1 polymer production system 11 first tank 12 second tank 20 first tubular mixing section 21 first tubular mixing stirring section 22 first tubular mixing temperature control section (first temperature control section)
30 First fluctuation mitigation section 31 First fluctuation mitigation piping section 31a First fluctuation mitigation tank 32 First fluctuation mitigation temperature control section (first temperature control section)
33 Second fluctuation mitigation piping section 34 Second fluctuation mitigation temperature control section (first temperature control section)
111 first tank on-off valve 112 first supply pump (first supply unit)
113 First flow rate measurement unit 121 Second tank on-off valve 122 Second supply pump (second supply unit)
123 Second flow measurement unit 200 Control unit 222 First pipe mixed fluid measurement unit (first measurement unit)
322 second generated fluid measurement unit (first measurement unit)
A1 First fluid A2 Second fluid B First merged fluid C First tube mixed fluid D First generated fluid L Liquid sending line L1 First liquid sending line L2 Second liquid sending line L3 Third liquid sending line L4 Fourth sending Liquid line L5 Fifth liquid feeding line J1 First junction J2 First fluctuation mitigation branch (first branch)
J3 Second Fluctuation Mitigation Junction (Second Junction)

Claims (19)

  1.  重付加性の第1重合性化合物を含む第1流体と、前記第1重合性化合物と重付加する重付加性の第2重合性化合物を含む第2流体とを原料として重合体を製造する重合体製造システムであって、
     前記第1流体を供給する第1供給部と、
     前記第2流体を供給する第2供給部と、
     前記第1流体と前記第2流体とを合流させて第1合流流体を生成する第1合流部と、
     前記第1合流部の下流側に配置され、前記第1合流流体の径方向の混合を進めて第1管混合流体を生成する第1管型混合部と、
     前記第1管型混合部の下流側に配置され、前記第1管混合流体の軸方向の性状の変動を低減することで第1生成流体を生成する第1変動緩和部と、を備える、
     重合体製造システム。
    A first fluid containing a first polyaddition polymerizable compound and a second fluid containing a second polyaddition polymerizable compound that polyadditions with the first polymerizable compound are used as raw materials to produce a polymer. A combined manufacturing system,
    a first supply unit that supplies the first fluid;
    a second supply unit that supplies the second fluid;
    a first merging section for merging the first fluid and the second fluid to generate a first merged fluid;
    a first tubular mixing section disposed downstream of the first merging section for promoting radial mixing of the first merged fluid to generate a first tubular mixed fluid;
    a first fluctuation reducing section disposed downstream of the first tubular mixing section and configured to reduce fluctuations in axial properties of the first tubular mixed fluid to generate a first product fluid;
    Polymer production system.
  2.  前記第1合流流体、前記第1管混合流体、前記第1生成流体のいずれか1以上における物理量及び/又は組成に関する第1反応情報を取得する第1測定部を更に備える、
     請求項1に記載の重合体製造システム。
    further comprising a first measurement unit that acquires first reaction information relating to physical quantities and/or compositions in any one or more of the first merged fluid, the first tube mixed fluid, and the first generated fluid;
    The polymer production system according to claim 1.
  3.  前記第1測定部は、粘度計、温度計、圧力計、ポンプ圧計、吸光度計、赤外分光計、近赤外分光計、密度計、色差計、屈折率計、分光光度計、導電率計、濁度計、超音波センサ、及び蛍光X線分析装置からなる群より選択される1以上を有する、
     請求項2に記載の重合体製造システム。
    The first measurement unit includes a viscometer, a thermometer, a pressure gauge, a pump pressure gauge, an absorbance meter, an infrared spectrometer, a near-infrared spectrometer, a density meter, a color difference meter, a refractometer, a spectrophotometer, and a conductivity meter. , having one or more selected from the group consisting of a turbidimeter, an ultrasonic sensor, and a fluorescent X-ray analyzer,
    The polymer production system according to claim 2.
  4.  前記第1流体、前記第2流体、前記第1合流流体、前記第1管混合流体、前記第1生成流体のいずれか1以上の温度を調整するための第1温調部を更に備える、
     請求項2に記載の重合体製造システム。
    further comprising a first temperature control unit for adjusting the temperature of any one or more of the first fluid, the second fluid, the first merged fluid, the first tube mixed fluid, and the first generated fluid,
    The polymer production system according to claim 2.
  5.  前記第1変動緩和部は、内部を流れる流体の平均滞留時間が3分以上の配管である、
     請求項1~4のいずれか1項に記載の重合体製造システム。
    The first fluctuation mitigation section is a pipe having an average residence time of 3 minutes or more for the fluid flowing inside,
    The polymer production system according to any one of claims 1-4.
  6.  前記第1変動緩和部が1以上の管状部材によって構成され、
     前記管状部材のそれぞれの平均滞留時間の合計が7分以上である、
     請求項1~4のいずれか1項に記載の重合体製造システム。
    The first fluctuation reducing section is configured by one or more tubular members,
    the total average residence time of each of said tubular members is 7 minutes or more;
    The polymer production system according to any one of claims 1-4.
  7.  前記第1管混合流体の物理量及び/又は組成に関する第1管混合流体反応情報を取得する第1管混合流体測定部を、前記第1管型混合部と前記第1変動緩和部との間に備え、
     前記第1生成流体の物理量及び/又は組成に関する第1生成流体反応情報を取得する第1生成流体測定部を、前記第1変動緩和部の出口またはその下流に更に備え、
     前記第1変動緩和部の容積は、前記第1管型混合部の容積の0.5~100倍である、
     請求項1~4のいずれか1項に記載の重合体製造システム。
    a first tube mixed fluid measuring unit for acquiring first tube mixed fluid reaction information related to the physical quantity and/or composition of the first tube mixed fluid is provided between the first tubular mixing unit and the first fluctuation reducing unit; prepared,
    further comprising a first generated fluid measurement unit for obtaining first generated fluid reaction information related to the physical quantity and/or composition of the first generated fluid, at the outlet of the first fluctuation mitigation unit or downstream thereof;
    The volume of the first fluctuation reducing section is 0.5 to 100 times the volume of the first tubular mixing section.
    The polymer production system according to any one of claims 1-4.
  8.  前記第1変動緩和部の容積は、前記第1管型混合部の容積の5~100倍である、
     請求項1~4のいずれか1項に記載の重合体製造システム。
    The volume of the first fluctuation reducing section is 5 to 100 times the volume of the first tubular mixing section.
    The polymer production system according to any one of claims 1-4.
  9.  前記第1変動緩和部は、最も流速の速い流跡線を通過した流体の滞留時間が3分以上の配管である、
     請求項1~4のいずれか1項に記載の重合体製造システム。
    The first fluctuation mitigation section is a pipe in which the residence time of the fluid that has passed through the trajectory line with the highest flow velocity is 3 minutes or more,
    The polymer production system according to any one of claims 1-4.
  10.  前記第1変動緩和部が1以上の管状部材によって構成され、
     前記管状部材の内部を流れる流体の断面平均流速が0.01m/s以下であり、
     前記管状部材のそれぞれの長さの合計が0.7m以上の配管である、
     請求項1~4のいずれか1項に記載の重合体製造システム。
    The first fluctuation reducing section is configured by one or more tubular members,
    The cross-sectional average flow velocity of the fluid flowing inside the tubular member is 0.01 m/s or less,
    The total length of each of the tubular members is a pipe of 0.7 m or more,
    The polymer production system according to any one of claims 1-4.
  11.  前記第1変動緩和部は、内部を流れる流体のレイノルズ数が、代表長さとして4×断面積/浸辺長を用いた場合に2100以下となる、
     請求項1~10のいずれか1項に記載の重合体製造システム。
    The Reynolds number of the fluid flowing inside the first fluctuation reducing portion is 2100 or less when using 4 × cross-sectional area / immersion side length as a representative length.
    The polymer production system according to any one of claims 1-10.
  12.  前記第1変動緩和部は駆動型の撹拌機を持たず、流体が開水路を形成する
     請求項1に記載の重合体製造システム。
    2. The polymer manufacturing system according to claim 1, wherein the first fluctuation damping section does not have a driven stirrer, and the fluid forms an open channel.
  13.  前記第1変動緩和部に同時に流入した流体のうちの70%が流出するまでに、最も流速の速い流跡線を通った流体が流出してから10分以上を要する、
     請求項1に記載の重合体製造システム。
    It takes 10 minutes or more after the fluid flowing through the trajectory line with the highest flow velocity flows out until 70% of the fluid that simultaneously flows into the first fluctuation damping section flows out.
    The polymer production system according to claim 1.
  14.  前記第1重合性化合物及び前記第2重合性化合物が下記(a)~(c)のいずれかを満たし、前記重合体としてポリアミック酸を製造する、
     請求項1~13のいずれか1項に記載の重合体製造システム。
    (a)前記第1重合性化合物及び前記第2重合性化合物のうち、一方がテトラカルボン酸二無水物であり、他方がジアミンである。
    (b)前記第1重合性化合物及び前記第2重合性化合物のうち、一方が酸無水物末端又はアミノ基末端のポリアミック酸であり、他方がジアミン又はテトラカルボン酸二無水物である。
    (c)前記第1重合性化合物及び前記第2重合性化合物のうち、一方が酸無水物末端又はアミノ基末端のポリアミック酸であり、他方がアミノ基末端又は酸無水物末端のポリアミック酸である。
    The first polymerizable compound and the second polymerizable compound satisfy any one of the following (a) to (c), and a polyamic acid is produced as the polymer,
    The polymer production system according to any one of claims 1-13.
    (a) One of the first polymerizable compound and the second polymerizable compound is a tetracarboxylic dianhydride and the other is a diamine.
    (b) One of the first polymerizable compound and the second polymerizable compound is an acid anhydride-terminated or amino group-terminated polyamic acid, and the other is a diamine or a tetracarboxylic dianhydride.
    (c) one of the first polymerizable compound and the second polymerizable compound is an acid anhydride-terminated or amino group-terminated polyamic acid, and the other is an amino group-terminated or an acid anhydride-terminated polyamic acid; .
  15.  製造されたポリアミック酸をイミド化するイミド化部を更に備え、前記重合体としてポリイミドを製造する、
     請求項14に記載の重合体製造システム。
    Further comprising an imidization unit for imidizing the produced polyamic acid, producing polyimide as the polymer,
    15. The polymer production system according to claim 14.
  16.  前記第1測定部は、前記第1合流流体、前記第1管混合流体、前記第1生成流体のいずれか1以上における前記第1反応情報を取得し、
     取得した前記第1反応情報に基づいて、前記第1供給部における流体供給、前記第2供給部における流体供給、前記第1温調部における温度調整からなる群より選択されるいずれか1以上を制御する制御部を更に備える、
     請求項4に記載の重合体製造システム。
    the first measurement unit acquires the first reaction information in any one or more of the first merged fluid, the first tube mixed fluid, and the first generated fluid;
    any one or more selected from the group consisting of fluid supply in the first supply unit, fluid supply in the second supply unit, and temperature adjustment in the first temperature control unit based on the acquired first reaction information; Further comprising a control unit for controlling
    The polymer production system according to claim 4.
  17.  前記第1測定部は、前記第1合流流体及び/又は前記第1管混合流体における前記第1反応情報を取得し、
     取得した前記第1反応情報に基づいて、前記第1生成流体の性状を予測し、予測した前記第1生成流体の性状に基づいて、前記第1供給部における流体供給、前記第2供給部における流体供給、前記第1温調部における温度調整からなる群より選択されるいずれか1以上を制御する制御部を更に備える、
     請求項4に記載の重合体製造システム。
    The first measurement unit acquires the first reaction information in the first merged fluid and/or the first tube mixed fluid,
    Based on the obtained first reaction information, the property of the first generated fluid is predicted, and based on the predicted property of the first generated fluid, the fluid supply in the first supply unit and the second supply unit Further comprising a control unit that controls any one or more selected from the group consisting of fluid supply and temperature adjustment in the first temperature control unit,
    The polymer production system according to claim 4.
  18.  請求項1~17のいずれか1項に記載の重合体製造システムを用いた、重合体の製造方法。 A method for producing a polymer using the polymer production system according to any one of claims 1 to 17.
  19.  請求項1~17のいずれか1項に記載の重合体製造システムを用いた、ポリアミック酸溶液及び/又はポリイミドの製造方法。 A method for producing a polyamic acid solution and/or polyimide using the polymer production system according to any one of claims 1 to 17.
PCT/JP2022/010836 2021-03-18 2022-03-11 Polymer production system and polymer production method WO2022196554A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280014130.3A CN116888188A (en) 2021-03-18 2022-03-11 Polymer production system and polymer production method
KR1020237027204A KR20230157305A (en) 2021-03-18 2022-03-11 Polymer manufacturing systems and methods for making polymers

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-044377 2021-03-18
JP2021044379 2021-03-18
JP2021044377 2021-03-18
JP2021-044378 2021-03-18
JP2021-044379 2021-03-18
JP2021044378 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022196554A1 true WO2022196554A1 (en) 2022-09-22

Family

ID=83320322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010836 WO2022196554A1 (en) 2021-03-18 2022-03-11 Polymer production system and polymer production method

Country Status (2)

Country Link
KR (1) KR20230157305A (en)
WO (1) WO2022196554A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214912A (en) * 1986-03-14 1987-09-21 Hitachi Chem Co Ltd Manufacture of polyimide film
JP2019183116A (en) * 2018-03-30 2019-10-24 株式会社カネカ Polymer manufacturing system and manufacturing method
JP2021004342A (en) * 2019-06-27 2021-01-14 株式会社カネカ Continuous production system and production method for polyamic acid solution
JP2021017542A (en) * 2019-07-23 2021-02-15 株式会社カネカ Polymer production system and production method
JP2021031501A (en) * 2019-08-13 2021-03-01 株式会社カネカ Polymer production system and polymer production process
JP2021031609A (en) * 2019-08-27 2021-03-01 株式会社カネカ System and method of producing polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214912A (en) * 1986-03-14 1987-09-21 Hitachi Chem Co Ltd Manufacture of polyimide film
JP2019183116A (en) * 2018-03-30 2019-10-24 株式会社カネカ Polymer manufacturing system and manufacturing method
JP2021004342A (en) * 2019-06-27 2021-01-14 株式会社カネカ Continuous production system and production method for polyamic acid solution
JP2021017542A (en) * 2019-07-23 2021-02-15 株式会社カネカ Polymer production system and production method
JP2021031501A (en) * 2019-08-13 2021-03-01 株式会社カネカ Polymer production system and polymer production process
JP2021031609A (en) * 2019-08-27 2021-03-01 株式会社カネカ System and method of producing polymer

Also Published As

Publication number Publication date
KR20230157305A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
CN101538336B (en) Stirred-tank reactor and method for carrying out a polymerisation reaction using said type of stirred-tank reactor
WO2022196554A1 (en) Polymer production system and polymer production method
JP2022145602A (en) System of producing polymer, and method of producing polymer
JP7349275B2 (en) Continuous production system and method for polyamic acid solution
JP2022145601A (en) System of producing polymer, and method of producing polymer
JP2022145603A (en) System of producing polymer, and method of producing polymer
JP2021017542A (en) Polymer production system and production method
JP2021031609A (en) System and method of producing polymer
JP7336302B2 (en) Polymer production system and production method
JP7249803B2 (en) Polymer production system and production method
JP7199993B2 (en) Polymer production system and production method
JP7296273B2 (en) Polymer production system and polymer production method
JP7249802B2 (en) Polymer production system and production method
JP2022149968A (en) Polymer production system, and production method
JP2020090600A (en) Polymer production system, and production method
JP7349239B2 (en) Polymer manufacturing system and polymer manufacturing method
JP7249801B2 (en) Polyamic acid production system and production method, and polyimide production system and production method
JP7396831B2 (en) Abnormality detection system and abnormality detection method, polymer production system and polymer production method using the same
US20210002427A1 (en) System and method for manufacturing polyamic acid, and system and method for manufacturing polyimide
JP2022125383A (en) Solution sending device, solution sending system and solution sending method
JP2022074242A (en) Mixer, adjustment method of solution, and continuous reaction process
JP2022074243A (en) Mixer, adjustment method of solution, and continuous reaction system
JP2020090599A (en) Polymer production system, and production method
JP2022125382A (en) Solution sending device, solution sending system and solution sending method
JP2021036016A (en) System and method of producing polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280014130.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771302

Country of ref document: EP

Kind code of ref document: A1