JPS62213822A - Treatment of gas containing arsine - Google Patents

Treatment of gas containing arsine

Info

Publication number
JPS62213822A
JPS62213822A JP61055354A JP5535486A JPS62213822A JP S62213822 A JPS62213822 A JP S62213822A JP 61055354 A JP61055354 A JP 61055354A JP 5535486 A JP5535486 A JP 5535486A JP S62213822 A JPS62213822 A JP S62213822A
Authority
JP
Japan
Prior art keywords
activated carbon
arsine
gas
ash3
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61055354A
Other languages
Japanese (ja)
Inventor
Masahiro Kataoka
片岡 政紘
Kazumi Futaki
二木 一三
Takahiro Murayama
村山 敬博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61055354A priority Critical patent/JPS62213822A/en
Publication of JPS62213822A publication Critical patent/JPS62213822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To remove arsine from gas containing arsine by retaining oxygen of more than specified rate in gas containing arsine and contacting the same with heated activated carbon. CONSTITUTION:Oxygen is added to gas containing AsH3 such as off-gas exhausted out of semi-conductor manufacturing process at a rate of mol more than 1.5 times of AsH3 to be sent into a reaction tube filled with activated carbon. At that time, activated carbon is preheated with a heater wound to the reaction tube, so that reaction temperature may be set within a range of more than 40 deg.C and less than the decomposition temperature of AsH3.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、半導体工業における■族−V族化合物半導体
のエピタキシャル膜fJTi用MO−CVD装置や、シ
リコン基板にドーピングするためのイオン注入装置の排
ガス等に含まれるアルシンを効率よく除去するアルシン
含有ガスの処理方法に関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention is applicable to MO-CVD equipment for epitaxial films fJTi of Group I-V compound semiconductors in the semiconductor industry, and ion implantation equipment for doping silicon substrates. The present invention relates to a method for processing arsine-containing gas that efficiently removes arsine contained in exhaust gas and the like.

[従来の技術] 半導体工業や化学工業等で取扱われるアルシン(ASH
3)、ホスフィン(PH3)等の金属水素化物は、許容
濃度が極めて低い猛毒ガスが多く、大気放出ガス中のA
Sf−h許容濃度は、0.05+)I)Iである。その
ため、As H3を含む排ガス中のAs1(sを許容濃
度以下まで除去することはむづかしく、種々な方法が提
案されているが、いずれの方法も効率的な除去方法とは
言いがたい。
[Conventional technology] Arsine (ASH) is used in the semiconductor industry, chemical industry, etc.
3) Metal hydrides such as phosphine (PH3) are highly toxic gases with extremely low permissible concentrations, and A
The Sf-h permissible concentration is 0.05+)I)I. Therefore, it is difficult to remove As1(s) from the exhaust gas containing AsH3 to below the permissible concentration, and various methods have been proposed, but none of them can be said to be an efficient removal method.

例えば、過マンガン酸カリウム、次亜塩素酸ナトリウム
、塩化第二鉄等の酸化剤を含む溶液による薬液洗浄法は
低濃度ASHzの除去効果が悪く、さらにひ素を含んだ
吸収液の処分にも手間を要す。
For example, chemical cleaning methods using solutions containing oxidizing agents such as potassium permanganate, sodium hypochlorite, and ferric chloride have a poor removal effect on low-concentration ASHHz, and furthermore, it is difficult to dispose of the absorbent solution containing arsenic. It takes.

また、活性炭、ゼオライト等による吸着法や、酸化剤を
担持した吸着剤を用いる除去法は、除去率が高くなかっ
たり、許容濃度以下まで低減することは出来るが、吸着
剤単位当りのAst−h除去能力が充分とはいえない。
In addition, adsorption methods using activated carbon, zeolite, etc., and removal methods using adsorbents carrying oxidizing agents, do not have high removal rates or can reduce Ast-h per unit of adsorbent. It cannot be said that the removal ability is sufficient.

一方、活性炭の吸着力によって除去できるAS H3の
闇は、1llff、圧力によって異なるが、活性炭の重
Bkの数W【%〜10wt%であり、条件によっては吸
着したアルシンを脱着し、さらに、AS)lxを吸着し
た活性炭は、−般的な加熱再生法では完全にASH3を
離脱して再生することは困難で、安全に処理するため、
酸化剤を含む溶液等でASH3を分解した後、処分する
ことが必要である。また活性炭、ケイソウ土等に、塩化
第二鉄を主剤として担持させた吸着剤、或いは酸化銅、
酸化マンガン等の金am化物や、酸化物の他に第二、第
三成分として金属化合物を担持させた吸着剤を使用する
反応吸着法では、一般にAs H3の除去能力は、吸着
剤自重の5〜20W【%であって、化活性炭に担持させ
るという操作を要した。
On the other hand, the darkness of AS H3 that can be removed by the adsorption power of activated carbon is 1llff, and although it varies depending on the pressure, it is the number W [% to 10 wt% of the weight Bk of activated carbon. ) It is difficult to completely remove ASH3 and regenerate activated carbon that has adsorbed lx using the general heating regeneration method, so in order to safely process it,
It is necessary to dispose of ASH3 after decomposing it with a solution containing an oxidizing agent. In addition, adsorbents in which ferric chloride is supported as a main agent on activated carbon, diatomaceous earth, etc., or copper oxide,
In reactive adsorption methods that use adsorbents that support metal compounds as second and third components in addition to gold amides such as manganese oxide or oxides, the removal capacity for As H3 is generally 5 times the adsorbent's own weight. ~20 W[%], and required an operation to support it on activated carbon.

こうした事情のため、As H3の除去率が高く、しか
も除去能力の大きい効率のよい除去方法が強く望まれて
いる。
Due to these circumstances, there is a strong demand for an efficient removal method that has a high removal rate of As H3 and a large removal capacity.

[発明が解決しようとする問題点] 本発明者等は上記の事情に鑑み、効率のよいアルシンの
除去方法を開発すべく鋭意研究した結果、アルシン含有
ガスに酸素を(1在さけ、加温した活性炭に接触させる
と、カス中のAs H3濃度が著るしく減少することを
知見した。
[Problems to be Solved by the Invention] In view of the above circumstances, the present inventors conducted intensive research to develop an efficient method for removing arsine. It was found that when the As H3 concentration in the scum was brought into contact with activated carbon, the As H3 concentration in the scum was significantly reduced.

本発明は上記の知見に基づいて開発されたもので、AS
113の濃度を効率よ<0.O5ppm以下に減少させ
ることが出来、しかも、除去に使用した活性炭の取扱い
が容易なASH3の除去方法を提供することを目的とす
る。
The present invention was developed based on the above knowledge, and
Let the concentration of 113 be efficiency<0. It is an object of the present invention to provide a method for removing ASH3 that can reduce O to 5 ppm or less and also allows easy handling of the activated carbon used for removal.

[問題点を解決するための手段1 本発明は上記の目的を達成するもので、その要旨は、ア
ルシン含有ガスにアルシンに対して1.5倍モル以上の
酸素ガスを存在させ、40℃以上、アルシンの分解温度
以下の温度で活性炭と接触させるアルシン含有ガスの処
理方法にある。
[Means for Solving the Problems 1] The present invention achieves the above-mentioned object, and its gist is that oxygen gas is present in an arsine-containing gas in an amount of 1.5 times or more mole relative to arsine, and at 40°C or higher. , a method for treating an arsine-containing gas which is brought into contact with activated carbon at a temperature below the decomposition temperature of arsine.

[発明の具体的構成および作用] 以下本発明の詳細な説明する。[Specific structure and operation of the invention] The present invention will be explained in detail below.

半導体の!Il造においては、02の存在を極度に嫌う
ため、工程より排出されるAs H3含有ガスには02
が含まれていないことが多い。
Semiconductor! In Il manufacturing, the presence of 02 is extremely disliked, so 02 is added to the As H3-containing gas discharged from the process.
is often not included.

本発明の方法では、このAs H3を含有する排出ガス
に、As t−hに対して所定量の02を存在させ、活
性炭を触媒とし、所定温度で反応させて除去するが、A
S)(zの除去に所定量の02が必要なこと、J3よび
使用後の活性炭の表面分析で、ひ素、三酸化ひ素が検出
されることから、次の反応が並行して行なわれているも
のと思料する。
In the method of the present invention, a predetermined amount of 02 is present with respect to As th in the exhaust gas containing As H3, and activated carbon is used as a catalyst to react and remove A at a predetermined temperature.
S) (Since a predetermined amount of 02 is required to remove z, and arsenic and arsenic trioxide are detected in surface analysis of J3 and used activated carbon, the following reaction is being carried out in parallel. think about something.

/JAS H3+302→4AS +68204AS 
+302→2AS 203 (2As +13 +302→As 203 +3H2
0)使用後の活性炭に残存しているひ素化合物は、沸点
の高いひ素(昇華点615℃)、三酸化ひそ(沸点46
5℃)であるため、室温での蒸気圧は低く、使用後の活
性炭を更に酸化処理などの後処理を行なうことなく安全
に取扱うことが出来る。
/JAS H3+302→4AS +68204AS
+302→2AS 203 (2As +13 +302→As 203 +3H2
0) The arsenic compounds remaining in activated carbon after use include arsenic with a high boiling point (sublimation point 615°C) and hisotrioxide (boiling point 46°C).
5°C), the vapor pressure at room temperature is low, and used activated carbon can be safely handled without further post-treatment such as oxidation treatment.

本発明に使用する活性炭は、活性炭であればいずれも使
用出来る。例えば、石炭、石油コークス、やしがら等を
原料とする一般に市販されている活性炭、或いは最近種
々な用途に用いられる3〜5人の細孔を有する分子篩炭
素等、種類、銘柄のυJ限はない。
The activated carbon used in the present invention can be any activated carbon. For example, the υJ limit of the type and brand of commercially available activated carbon made from coal, petroleum coke, coconut shell, etc., or molecular sieve carbon with 3 to 5 pores that is recently used for various purposes, etc. do not have.

また、所定mを存在させる為に供給する酸素は、空気、
l!累富化空気、純酸素等がいずれも使用でき、そのm
は、排ガスが含有するAs H3の1.5倍モル以上、
特に1.8倍モル以上となるように添加するのが好まし
い。1.5倍モル未満では、酸素の囚が不足する。しか
し、酸素の間がアルシンに対して3倍モル以上になって
も、ASH3の除去効率はあまり上昇しない。但しAs
 H3含有ガス中に可燃性ガスが共存し、Mi添加によ
って爆発範囲に入る場合には、これを避けるため、大過
剰の空気を添加してもよい。当初からアルシン含有ガス
に、アルシンに対して1.5倍モル以上の酸素ガスを含
んでいる場合は、酸素ガスを添加しなくてもよい。
In addition, the oxygen supplied to make the predetermined m exist is air,
l! Both enriched air and pure oxygen can be used, and their m
is 1.5 times the mole or more of As H3 contained in the exhaust gas,
In particular, it is preferable to add it in an amount of 1.8 times the mole or more. If the amount is less than 1.5 times the mole, there will be a shortage of oxygen. However, even if the molar ratio of oxygen to arsine is three times or more, the removal efficiency of ASH3 does not increase much. However, As
If combustible gas coexists in the H3-containing gas and enters the explosive range due to the addition of Mi, a large excess of air may be added to avoid this. If the arsine-containing gas contains 1.5 times or more mole of oxygen gas relative to arsine from the beginning, it is not necessary to add oxygen gas.

反応温度は、40℃以上から、As H3の分解温度以
下の範囲で行なわれるが、特に50〜200℃の範囲が
好ましい。この反応は、室温でも進行するが、40℃未
満の温度では、反応速度が近く、接触時間を長くする必
要があり、実用的でないばかりでなく、As H3が物
理吸着した状態で活性炭に残留するため、使用ずみ活性
炭の取扱いが困難となる。反応温度も高くするにしたが
って反応速度が加速され、例えば200℃では、接触時
間が2秒程度でAs1−N1度が0.O5ppm以下と
なり、AS N3が破過して、流出ガス中のAs1」3
WJ度がQ、O5ppm以下となるまでに、活性炭型苗
の45%程度のASI−13が除去される。反応温度が
As)(11の分解温度(230〜240℃)以上とな
ると、アルシンが分解するので、この反応もアルシンの
除去に利用出来るが、0、O5ppm以下の濃度まで分
解するには、300℃以上の反応温度が必要となり、経
済性を失なう。
The reaction temperature ranges from 40°C or higher to the decomposition temperature of As H3 or lower, with a range of 50 to 200°C being particularly preferred. This reaction proceeds even at room temperature, but at temperatures below 40°C, the reaction rate is close and the contact time needs to be extended, which is not only impractical, but also leaves As H3 physically adsorbed on the activated carbon. This makes handling of used activated carbon difficult. The reaction rate accelerates as the reaction temperature increases. For example, at 200°C, the contact time is about 2 seconds and the As1-N1 degree is 0. O becomes less than 5 ppm, AS N3 breaks through, and As1'3 in the outflow gas
Approximately 45% of ASI-13 in the activated carbon type seedlings is removed by the time the WJ degree becomes Q, O5 ppm or less. When the reaction temperature exceeds the decomposition temperature (230 to 240°C) of As) (11), arsine decomposes, so this reaction can also be used to remove arsine. A reaction temperature of ℃ or higher is required, and economic efficiency is lost.

また、接触時間【よ、20℃lat■換算で、0.5〜
200秒であるが実用上は1〜120秒程度が好ましい
In addition, the contact time is 0.5~ in terms of 20℃ lat ■.
The time is 200 seconds, but in practice, about 1 to 120 seconds is preferable.

接触時間は、当然のことながら長い程アルシンの除去身
が増加するが、出口ガスのAS l−h 12度をo、
o5ppm+以下に保持する反応温度と接触時間は相関
があり、反応温度が所定温度範囲内で高い程、接触時間
は短かくて1む。
Naturally, the longer the contact time, the more arsine can be removed.
There is a correlation between the reaction temperature maintained at 05 ppm+ or less and the contact time; the higher the reaction temperature within a predetermined temperature range, the shorter the contact time.

工業的規模で本発明の方法を実施する場合には、Δ51
13含有ガス中のAS N311度、処理するガ ・ス
Iδ、反応温度、接触時間笠を含めて、経済的な条f1
を選択すればよい。
When carrying out the method of the invention on an industrial scale, Δ51
13, including the ASN311 degree in the gas contained, the gas Iδ to be treated, the reaction temperature, and the contact time, the economic conditions f1
All you have to do is select.

[実施例] 次に実施例、比較例を示して本発明を説明づる。[Example] Next, the present invention will be explained by showing examples and comparative examples.

実施例1 活性炭(北越炭素、ホクエツY−10)の16〜20メ
ツシュ節分は品13.70を内径:10Illl、長さ
:40tJのステンレス製反応管に充填し、N2を流し
ながら、反応管に巻いたテープヒータで170℃、4時
間加熱賦活後、ヒータを切って冷却した。次いで、アル
シン含有ガス(以下原料ガスという)を供給する前に反
応管を50℃近くまで予備加熱し、AS N3  : 
0.49%、N2 :8.84%、02:1.4%、H
−:9.8%からなる室温の原料ガス: 255cc/
a+inを圧力0.3に5F/aiGで送入し、反応管
の出口より流出させた。原料ガス供給後は、反応熱によ
って温度上界するので、反応管に巻いたヒータの出力を
下げて反応温度が約50℃となるように調節した。
Example 1 A stainless steel reaction tube with an inner diameter of 10Ill and a length of 40tJ was filled with 16 to 20 meshes of activated carbon (Hokuetsu Tanso, Hokuetsu Y-10), and was introduced into the reaction tube while flowing N2. After heating and activation at 170° C. for 4 hours using a wrapped tape heater, the heater was turned off and cooled. Next, before supplying arsine-containing gas (hereinafter referred to as raw material gas), the reaction tube was preheated to nearly 50°C, and AS N3:
0.49%, N2:8.84%, 02:1.4%, H
-: Room temperature raw material gas consisting of 9.8%: 255cc/
A+in was introduced at a pressure of 0.3 at 5F/aiG and flowed out from the outlet of the reaction tube. After the raw material gas was supplied, the temperature rose due to the heat of reaction, so the output of the heater wound around the reaction tube was lowered to adjust the reaction temperature to about 50°C.

原料ガスを送入開始した後、随時流出ガスのAs N3
.02 、N2 、N21!度を測定したところ、63
0分まではAs tla : 0.05+1 Ilm(
放出許容濃度)以下、02:0.74±0.03%、H
z:ND(但し、検出下限は0.02%)であった。し
かし、650分にAs +13  : 0.5pE1m
 。
After starting to feed the raw material gas, the AsN3 gas that flows out at any time
.. 02, N2, N21! When I measured the degree, it was 63
Astra: 0.05+1 Ilm(
Release allowable concentration) or less, 02:0.74±0.03%, H
z: ND (however, the lower limit of detection was 0.02%). However, at 650 minutes As +13: 0.5pE1m
.

(370分に3.5111)IIIとなり破過したこと
を検出した。その後、原料ガスの供給を止め、N2のみ
を導入したところ、流出N2ガス中のAs1−hcJ度
は、十数介接にQ、2flf1m以下であった。このこ
とは、破過後の活性炭から、ASI3が実質的に脱離し
ておらず、Asト13の除去が物理吸着でないことを示
している。
(3.5111 in 370 minutes) became III, and a breakthrough was detected. Thereafter, when the supply of raw material gas was stopped and only N2 was introduced, the degree of As1-hcJ in the outflowing N2 gas was less than 10-odd Q, 2flf1m. This indicates that ASI3 was not substantially desorbed from the activated carbon after breakthrough, and that Ast 13 was not removed by physical adsorption.

以上の結果から、Asl・13を許容濃度以下に除去で
きる。活性炭(A、C)100g当りの除去能力(以下
除去能力という)は18.8(+As l−h /10
0(l ACである。
From the above results, Asl.13 can be removed to below the allowable concentration. The removal capacity (hereinafter referred to as removal capacity) per 100g of activated carbon (A, C) is 18.8 (+As l-h /10
0(l AC.

なお、ASI−13の分析は、ASト+3検知警報計(
定電位電界法)とJISKO102(ジエチルジチオカ
ルバミン酸銀法)により、また、02、N2、ト12分
析はTCD−GC法によって行なつた。
In addition, the analysis of ASI-13 is based on AS+3 detection alarm meter (
The 02, N2, and To12 analyzes were conducted by the TCD-GC method.

比較例1 活性炭Y−10:13.7gを使用し、実施例1と同じ
反応管を用い、加熱賦活し、室温まで冷却した。次いで
、反応管を予熱せず、ASHz:0.51%、N2  
:88.3%、02:1.4%、1−1c:9.8%か
らなる室温の原料ガス=242CC/l1inを圧カニ
0.3Ky/dGで反応管に送入した。この反応管の温
度は17℃から28℃までの範囲に保持した。その間、
送入開始から410分経過するまでは、ASI3:許容
濃度以下、02 :約0.92%であったが、430分
後、As N3 : 3.3pE)mとなり破過したこ
とを検出した。その後、原料ガスの供給を止め、N2の
みを導入したところ、流出N2中のAs831度は、1
001)l)lを越える値を示し、その後十数分間温度
低下が見られなかった。これは吸着したΔSSi201
部脱着していることを示している。
Comparative Example 1 Activated carbon Y-10: 13.7 g was used, and using the same reaction tube as in Example 1, it was activated by heating and cooled to room temperature. Then, without preheating the reaction tube, ASHHz: 0.51%, N2
A raw material gas at room temperature of 242 CC/l1in consisting of : 88.3%, 02: 1.4%, and 1-1c: 9.8% was fed into the reaction tube at a pressure of 0.3 Ky/dG. The temperature of the reaction tube was maintained within the range of 17°C to 28°C. meanwhile,
Until 410 minutes had elapsed from the start of feeding, ASI3: Below the allowable concentration, 02: About 0.92%, but after 430 minutes, AsN3: 3.3pE)m, and a breakthrough was detected. After that, when the supply of raw material gas was stopped and only N2 was introduced, the As831 degree in the flowing N2 was 1
The temperature exceeded 001)l)l, and no decrease in temperature was observed for more than ten minutes thereafter. This is the adsorbed ΔSSi201
It shows that the parts are attached and detached.

以上の結果から、温度が室温では、02が十分存在して
ら、アルシンの酸化が十分でなくASf−hは甲に物理
吸着されていて、その除去船は12.5(JASトh/
100(IAcであった。
From the above results, when the temperature is room temperature, even though there is sufficient 02, the oxidation of arsine is insufficient and ASf-h is physically adsorbed on the shell, and the removal vessel is 12.5 (JASth/
100 (IAc).

比較例2 活性炭(北越炭素Y−10):3,92Gを内針:4.
4mn+、長さ:55c#Iのステンレス製反応管に充
填し、実施例1と同様に加熱賦活して室温まで冷却した
。次いで、As 1−13  : 0.5%、N2:9
0%、1−1e :9.5%からなる室温の02を含ま
ない原料ガスを250 cc/sinの速度で50℃の
反応管に導入した。送入開始後55分まではASI−+
3:許容濃度以下であったが、60分後には、1 pf
)11以上となり、破過したことを検出し、As@3除
去能力が5.8Q AS +3 /100o ・ACで
あることを示した。その後、原料ガスの供給を止め、N
2を送給したところ、流出N2中(7)As l−h 
’a度は、2001)l)1以上となった。
Comparative Example 2 Activated carbon (Hokuetsu Carbon Y-10): 3.92G inner needle: 4.
The mixture was filled into a stainless steel reaction tube of 4 mm+ length: 55 c#I, heated and activated in the same manner as in Example 1, and cooled to room temperature. Next, As 1-13: 0.5%, N2: 9
0%, 1-1e: 9.5% of raw material gas containing no 02 at room temperature was introduced into the reaction tube at 50° C. at a rate of 250 cc/sin. ASI-+ until 55 minutes after the start of feeding
3: The concentration was below the allowable level, but after 60 minutes, 1 pf
)11 or more, a breakthrough was detected, and the As@3 removal ability was 5.8Q AS +3 /100o AC. After that, the supply of raw material gas is stopped and N
2 was fed, (7) As l-h in the outflow N2
'a degree was 2001) l) 1 or more.

実施例2 分子篩炭素5A(成田薬品製モルシーボンHGY−31
8’)の16〜24メツシュ破壊品:3.90を内径:
4,4mm、長さ: 55 cmの反応管に充填:、実
施例1と同様に加熱賦活した後放冷した。次いで、反応
管を約80℃に予熱し、As  トh   :0  、
 47  % 、  02:1.34  % 、  N
 2  :89.2%、f−1e:9゜0%からなる室
温の原料ガスを、266cc/1nで送入した。送入後
、反応温度が80℃以上に上昇しないように、ヒータの
電圧を調整した。送入開始後、105分までは、ASト
(3:許容限度以下、02  :0.75%であったが
、115分後にAs +3  : 2.51)r)lを
検出した。その後、実施例1と同じようにN2のみを通
したが、流出N2中のAS +3は0.15pp−以下
であった。また、この場合、除去能力は11(1:AS
 Hz /100(J ・AC,であった。
Example 2 Molecular sieve carbon 5A (Narita Pharmaceutical Molcibon HGY-31
8') 16-24 mesh broken product: 3.90 inner diameter:
A reaction tube of 4.4 mm in length and 55 cm in length was filled with the mixture, and the mixture was heated and activated in the same manner as in Example 1, and then allowed to cool. The reaction tube was then preheated to about 80°C and As h :0,
47%, 02:1.34%, N
A raw material gas at room temperature consisting of 2:89.2% and f-1e:9.0% was fed at a rate of 266 cc/1n. After feeding, the voltage of the heater was adjusted so that the reaction temperature did not rise above 80°C. Up to 105 minutes after the start of feeding, As+3: below the allowable limit, 02: 0.75%, but As+3: 2.51)r)l was detected after 115 minutes. Thereafter, only N2 was passed in the same manner as in Example 1, but the AS +3 in the outflowing N2 was 0.15 pp- or less. Also, in this case, the removal ability is 11 (1: AS
It was Hz/100 (J AC).

実施例3 実施例2の分子篩炭素:3.65+I+を用い、As 
+3  :0.5%、02  :5.2%、N2 :8
4.8%、He :9.5%の原料ガスを250cc/
n+inで送入した他は、実施例2と同じにした。
Example 3 Using the molecular sieve carbon of Example 2: 3.65+I+, As
+3: 0.5%, 02: 5.2%, N2: 8
4.8%, He:9.5% raw material gas at 250cc/
The procedure was the same as in Example 2, except that the injection was carried out at n+in.

送入開始後110分までは流出ガス中のAS N3濃度
は許容限度以下であったが、115分後に、As +−
+3  : 2ppmを検出した。この場合、ASH3
除去能力は12.3Q −As l−h /100g・
ACである。これより、原料ガス中のOz′lA度を高
くしても、除去能力はあまり変らないことがわかる。
The AS N3 concentration in the effluent gas was below the permissible limit until 110 minutes after the start of the supply, but after 115 minutes, As +-
+3: 2 ppm was detected. In this case, ASH3
Removal capacity is 12.3Q -As l-h /100g・
It is AC. This shows that even if the degree of Oz'lA in the raw material gas is increased, the removal ability does not change much.

実施例4 活性炭(北越炭素Y−10):13.450を用い、A
Sトh :Q、98%、Oz:2.5%、N2 ニア7
.9%、l−1e:18.6%の原料ガスを152CC
/l1linの速度で送入した他は、実施例1と同じに
した。送入開始後、1050分までは流出ガス中のAS
I−13は許容濃度以下、02 :1.11%であった
が、1080分後A3H3:2.51)Ellllを検
出した。この場合、除去能力=37、Ba ・ASH3
/1000゜・ACであった。
Example 4 Using activated carbon (Hokuetsu Carbon Y-10): 13.450, A
Sth: Q, 98%, Oz: 2.5%, N2 near 7
.. 9%, l-1e: 18.6% raw material gas at 152CC
The procedure was the same as in Example 1 except that the flow rate was 1/1 lin. AS in the outflow gas until 1050 minutes after the start of supply
I-13 was below the allowable concentration, 02:1.11%, but A3H3:2.51)Ellll was detected after 1080 minutes. In this case, removal ability = 37, Ba ・ASH3
/1000° AC.

実施例5 活性炭(北越炭素Y−10):/1.OQを用い、反応
管を約140℃まで予熱した後、Δ5t−h:0.47
%、02  : 1’、 0%、N2  :89.3%
、1−18:9.2%からなる室温の原料ガスを送入し
、反応管を140℃に調整した他は、実施例1と同じに
した。送入開始後280分までは、ASH3:許容81
度以下、02:0.41%、llz:NDであったが、
300分後にAs +3  : 2ppn+を検出した
。この場合、除去能カニ28.4!J ・AS +3 
/100(1・ACである。
Example 5 Activated carbon (Hokuetsu Tanso Y-10): /1. After preheating the reaction tube to about 140°C using OQ, Δ5t-h: 0.47
%, 02: 1', 0%, N2: 89.3%
, 1-18:9.2% was introduced at room temperature, and the reaction tube was adjusted to 140° C., but the same procedure as in Example 1 was carried out. ASH3: Permissible 81 until 280 minutes after the start of feeding
degree or less, 02:0.41%, llz:ND,
As +3:2ppn+ was detected 300 minutes later. In this case, the removal capacity is 28.4! J・AS +3
/100 (1 AC.

実施例6 活性炭(北越炭素Y−10):3.81(Jを用い、反
応管を約200℃まで予熱後、ASI−+3:0.49
%、02:1.37%、N2 :88.8%、He :
9.3%からなる室温の原料ガスを255 cc/si
nで送入し、反応温度を200℃に調整した他は、実施
例1と同じにした。送入開始後、420分では、ASH
3:許容濃度以下、02  :0.69%、N2:ND
であったが450分後にAs +3 : 51)DIを
検出した。この場合、除去能力は、45o ・As l
−13/ 100Q ・ACである。
Example 6 Activated carbon (Hokuetsu Carbon Y-10): 3.81 (using J, after preheating the reaction tube to about 200°C, ASI-+3: 0.49
%, 02: 1.37%, N2: 88.8%, He:
255 cc/si of room temperature raw material gas consisting of 9.3%
The procedure was the same as in Example 1, except that the reaction temperature was adjusted to 200°C. 420 minutes after the start of sending, ASH
3: Below permissible concentration, 02: 0.69%, N2: ND
However, As +3:51) DI was detected after 450 minutes. In this case, the removal ability is 45o ・As l
-13/100Q ・AC.

実施例7 活性炭(北越炭素Y−10>3.90を用い、反応管を
約14.0℃まで予熱した後、AsH2:0.48%、
02 :0.75%、N2 :89.6%、1−1e:
9.2%からなる室温の原料ガスを送入した他は、実施
例5と同じにした。送入開始後275分までG41、A
s1−13許容濃度以下、02 :0.11%、H2:
NDであったが、300分後にAs H3: 2.5p
po+を検出した。この場合ASi13除去能カニ28
.O(+ ・ASH3/10017ACである。
Example 7 After preheating the reaction tube to about 14.0°C using activated carbon (Hokuetsu Carbon Y-10>3.90), AsH2: 0.48%,
02: 0.75%, N2: 89.6%, 1-1e:
The procedure was the same as in Example 5 except that a room temperature raw material gas containing 9.2% was introduced. G41, A until 275 minutes after the start of feeding
s1-13 below allowable concentration, 02: 0.11%, H2:
ND, but after 300 minutes As H3: 2.5p
po+ was detected. In this case, ASi13 removal ability crab28
.. O(+ ・ASH3/10017AC.

[効果] 以上述べたように、本発明のAS 83含有ガスの処理
方法は、AsH2の除去能力が大きく、しかも、除去さ
れたAsトhは、毒性の高いASt13としては、はと
んど活性炭に吸着、残存していないので、活性炭のあと
処理が簡単となり、AsH2を多聞に使用する半導体工
業の進展に寄与すること、極めて、大なるものである。
[Effects] As described above, the method for treating AS 83-containing gas of the present invention has a large ability to remove AsH2, and moreover, the removed As, as highly toxic ASt13, is mostly activated carbon. Since the activated carbon is not adsorbed or remains, post-processing of the activated carbon becomes easy, and this will greatly contribute to the progress of the semiconductor industry, which uses AsH2 extensively.

Claims (1)

【特許請求の範囲】[Claims] アルシン含有ガスにアルシンに対して1.5倍モル以上
の酸素ガスを存在させ、40℃以上、アルシン熱分解温
度以下の温度で活性炭と接触させることを特徴とするア
ルシン含有ガスの処理方法。
1. A method for treating an arsine-containing gas, which comprises causing the arsine-containing gas to contain oxygen gas in an amount of 1.5 times or more moles relative to arsine, and contacting the arsine-containing gas with activated carbon at a temperature of 40° C. or higher and arsine thermal decomposition temperature or lower.
JP61055354A 1986-03-13 1986-03-13 Treatment of gas containing arsine Pending JPS62213822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61055354A JPS62213822A (en) 1986-03-13 1986-03-13 Treatment of gas containing arsine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61055354A JPS62213822A (en) 1986-03-13 1986-03-13 Treatment of gas containing arsine

Publications (1)

Publication Number Publication Date
JPS62213822A true JPS62213822A (en) 1987-09-19

Family

ID=12996160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61055354A Pending JPS62213822A (en) 1986-03-13 1986-03-13 Treatment of gas containing arsine

Country Status (1)

Country Link
JP (1) JPS62213822A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674462A (en) * 1994-07-25 1997-10-07 Calgon Carbon Corporation Method for the removal of non-metal and metalloid hydrides
JP2006181493A (en) * 2004-12-28 2006-07-13 Japan Pionics Co Ltd Method of treating exhaust gas and treating device
JP2009228106A (en) * 2008-03-25 2009-10-08 Taiyo Nippon Sanso Corp Method for collecting metal arsenic
US10220369B2 (en) 2015-08-11 2019-03-05 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
US11857942B2 (en) 2012-06-11 2024-01-02 Calgon Carbon Corporation Sorbents for removal of mercury

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674462A (en) * 1994-07-25 1997-10-07 Calgon Carbon Corporation Method for the removal of non-metal and metalloid hydrides
JP2006181493A (en) * 2004-12-28 2006-07-13 Japan Pionics Co Ltd Method of treating exhaust gas and treating device
JP2009228106A (en) * 2008-03-25 2009-10-08 Taiyo Nippon Sanso Corp Method for collecting metal arsenic
US11857942B2 (en) 2012-06-11 2024-01-02 Calgon Carbon Corporation Sorbents for removal of mercury
US10220369B2 (en) 2015-08-11 2019-03-05 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
US10967357B2 (en) 2015-08-11 2021-04-06 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas

Similar Documents

Publication Publication Date Title
KR870001854B1 (en) Process for the preparation of secondary amines
KR100318353B1 (en) How to purify exhaust gas
EP0419356B1 (en) Process for removing gaseous hydrids on a solid carrier consisting of metal oxides
US3284158A (en) Method of and apparatus for removing sulfur compounds from gases
US4434144A (en) Absorption of CO2 and/or H2 S utilizing solutions containing two different activators
JPS62213822A (en) Treatment of gas containing arsine
US4238465A (en) Removal of phosgene from boron trichloride
WO2018173150A1 (en) Method for wet desulfurization from hydrogen sulfide-containing gas
TW460310B (en) Particle composition, process and apparatus thereof for removing moisture from gas selected from the group consisting nitrogen trifluoride gas and fluorine gas
JPH026318A (en) Method of removing n type doping impurity from liquefied or gaseous substance generated by vapor phase precipitation of silicon
JP2691927B2 (en) How to remove harmful components
JPH119933A (en) Method for removing nitrogen oxide from gas
JPH09313940A (en) Ammonia oxidation decomposition catalyst
JP2001054722A (en) Removal of waste gas in semiconductor production
JP3912157B2 (en) Ammonium fluoride-containing wastewater treatment method
JPS5917155B2 (en) Method for removing carbonyl sulfide from gaseous streams
JP3260786B2 (en) Steam purification method
JP3292251B2 (en) Steam purification method
JP3362918B2 (en) Exhaust gas purification method
JPH11207300A (en) Decomposition of dioxine
KR100214762B1 (en) Exhaust gas conditioning method
JP3279608B2 (en) Steam purification method
JP2521133B2 (en) Purification method of acetylene gas
JPH1142422A (en) Device for making ammonia-containing waste gas harmless
JP2910419B2 (en) Method for purifying hydrogen chloride containing a hydrolyzable organosilane compound