JP2006181493A - Method of treating exhaust gas and treating device - Google Patents

Method of treating exhaust gas and treating device Download PDF

Info

Publication number
JP2006181493A
JP2006181493A JP2004378520A JP2004378520A JP2006181493A JP 2006181493 A JP2006181493 A JP 2006181493A JP 2004378520 A JP2004378520 A JP 2004378520A JP 2004378520 A JP2004378520 A JP 2004378520A JP 2006181493 A JP2006181493 A JP 2006181493A
Authority
JP
Japan
Prior art keywords
exhaust gas
adsorbent
arsine
phosphine
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004378520A
Other languages
Japanese (ja)
Inventor
Takashi Shimada
孝 島田
Naoki Muranaga
直樹 村永
Chitsu Arakawa
秩 荒川
Kazuaki Tonari
和昭 十七里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2004378520A priority Critical patent/JP2006181493A/en
Publication of JP2006181493A publication Critical patent/JP2006181493A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for purifying exhaust gas containing harmful ingredients efficiently and safely with excellent purification ability without causing rapid heat generation and gas generation in purifying the exhaust gas containing as the harmful ingredient organic phosphorus compound such as tertiary butylphosphine or organic arsenic compound such as tertiary butylarsine. <P>SOLUTION: The harmful ingredients in the exhaust gas are adsorbed in adsorbent by bringing the exhaust gas into contact with the adsorbent, and thereafter the harmful ingredients are decomposed into the phosphine and/or the arsine and the hydrocarbon by heating the adsorbent, and compounds generated by the decomposition of the adsorbent are desorbed. In addition, the gas containing the phosphine and/or the arsine and the hydrocarbon desorbed from the adsorbent is purified by contact with a dry type purification agent of the phosphine and/the arsine. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は排ガスの処理方法及び処理装置に関する。さらに詳細には半導体製造工程等から排出される有機燐化合物及び/または有機砒素化合物を含む排ガスを、効率よく安全に浄化することが可能な排ガスの処理方法及び処理装置に関する。   The present invention relates to an exhaust gas treatment method and a treatment apparatus. More specifically, the present invention relates to an exhaust gas treatment method and treatment apparatus capable of efficiently and safely purifying exhaust gas containing an organic phosphorus compound and / or an organic arsenic compound discharged from a semiconductor manufacturing process or the like.

高電子移動度トランジスタ(HEMT)、ヘテロ接合ハイポーラトランジスタ(HBT)等の高速デバイス、半導体レーザー、超高輝度LED、太陽電池等のオプトデバイスの製作においては、ホスフィンやアルシン等の有害原料が使用されている。また、近年、これらのガス原料に代わり、人体に対して比較的に毒性が低く、かつ取扱いが容易なターシャリーブチルホスフィン等の有機燐化合物、ターシャリーブチルアルシン等の有機砒素化合物が多く使用されるようになってきた。ターシャリーブチルホスフィン、ターシャリーブチルアルシンは、ホスフィン、アルシンと比較して毒性は低いが、これらを含む排ガスは浄化した後、大気に放出することが必要である。   Harmful raw materials such as phosphine and arsine are used in the production of high-speed devices such as high electron mobility transistors (HEMT) and heterojunction hyperpolar transistors (HBT), and opto-devices such as semiconductor lasers, ultra-bright LEDs, and solar cells. Has been. In recent years, organic gas compounds such as tertiary butylphosphine and organic arsenic compounds such as tertiary butylarsine, which are relatively low in toxicity to the human body and easy to handle, have been used in place of these gas raw materials. It has come to be. Tertiary butylphosphine and tertiary butylarsine are less toxic than phosphine and arsine, but exhaust gas containing these must be purified and then released to the atmosphere.

半導体製造工程から排出される排ガスの一般的な処理方法としては、排ガスを、水素、メタン、プロパン等を用いた焼却炉の火炎中に導入して燃焼させる燃焼法、薬液を溶解させた水溶液と接触させて浄化する湿式法、固体状の浄化剤が充填された浄化筒に導入し、浄化剤と接触させて浄化する乾式法等がある。しかし、燃焼法を適用した場合においては、ターシャリーブチルアルシンを燃焼すると有毒な亜砒酸等の粉末が生成し、後処理が困難になるという不都合があった。また、湿式法を適用した場合においては、ターシャリーブチルホスフィン、ターシャリーブチルアルシンは水にはほとんど溶けないため、これらを効率よく除去できず、湿式浄化装置の排出口から高い濃度で排出されてしまうという不都合があった。   As a general treatment method of exhaust gas discharged from the semiconductor manufacturing process, a combustion method in which exhaust gas is introduced into a flame of an incinerator using hydrogen, methane, propane, etc. and burned, an aqueous solution in which a chemical solution is dissolved, and There are a wet method for purifying by contact, a dry method for introducing into a purification cylinder filled with a solid purification agent, and purifying by contacting with the purification agent. However, when the combustion method is applied, burning tertiary butylarsine produces toxic powders such as arsenous acid, making post-treatment difficult. In addition, when the wet method is applied, tertiary butylphosphine and tertiary butylarsine are hardly soluble in water, so they cannot be removed efficiently, and are discharged at a high concentration from the outlet of the wet purification device. There was an inconvenience that it would end up.

従って、ターシャリーブチルホスフィン、ターシャリーブチルアルシン等を含む排ガスの浄化は、主に乾式法により行なわれてきた。また、従来から使用されてきた乾式浄化剤としては、例えば次の特許文献に示されるように、有効成分として酸化銅、水酸化銅を含む浄化剤、あるいはこれに酸化マンガン等の金属酸化物が加えられた浄化剤等が挙げられる。
特開平6−319945号公報 特開平7−60054号公報 特開平7−68128号公報
Therefore, purification of exhaust gas containing tertiary butyl phosphine, tertiary butyl arsine and the like has been mainly performed by a dry method. In addition, as a conventional dry cleaning agent, for example, as shown in the following patent document, a cleaning agent containing copper oxide or copper hydroxide as an active ingredient, or a metal oxide such as manganese oxide is used. The added purifier etc. are mentioned.
JP-A-6-319945 Japanese Patent Laid-Open No. 7-60054 Japanese Patent Laid-Open No. 7-68128

しかしながら、前記のような金属酸化物を含む浄化剤を用いてターシャリーブチルホスフィン、ターシャリーブチルアルシン等を浄化した後の浄化剤は、酸素(空気)と接触すると激しく酸化反応して急激な発熱を起こし、これにより前記有害成分中の炭化水素基が燃焼して急激に多量の水蒸気及び二酸化炭素が発生し、危険な状態になるという問題点があった。そのため、これらのガスを浄化した後、浄化筒の後処理には、極めて慎重な操作が要求されるという不都合があった。また、金属酸化物を含む浄化剤を用いてターシャリーブチルホスフィン、ターシャリーブチルアルシンを浄化したときの浄化能力(浄化剤単位量当たりの有害成分の処理量)は、ホスフィン、アルシンを浄化したときの浄化能力と比較して著しく低かった。そのため浄化剤の詰め替え作業を頻繁に行なう必要があるとともに、多量の廃棄剤が発生した。   However, the purifier after purifying tertiary butylphosphine, tertiary butylarsine, etc. using a purifier containing a metal oxide as described above undergoes a violent oxidation reaction when it comes into contact with oxygen (air), resulting in rapid heat generation. As a result, the hydrocarbon group in the harmful component burns, and a large amount of water vapor and carbon dioxide are rapidly generated, resulting in a dangerous state. Therefore, after purifying these gases, the post-treatment of the purification cylinder has a disadvantage that an extremely careful operation is required. In addition, when purifying tertiary butylphosphine and tertiary butylarsine using a purifier containing metal oxide, the purification capacity (the amount of harmful components treated per unit amount of purifier) is the same as when purifying phosphine and arsine. It was significantly lower than the purification capacity. Therefore, it was necessary to refill the cleaning agent frequently, and a large amount of waste agent was generated.

従って、本発明が解決しようとする課題は、有害成分として、ターシャリーブチルホスフィン等の有機燐化合物、あるいはターシャリーブチルアルシン等の有機砒素化合物を含む排ガスの浄化において、急激な発熱及びガス発生を起こす虞がなく、優れた浄化能力で効率よく安全にこれらの有害成分を含む排ガスを浄化することが可能な手段を提供することである。   Therefore, the problem to be solved by the present invention is that rapid heat generation and gas generation are caused in the purification of exhaust gas containing organic phosphorus compounds such as tertiary butylphosphine or organic arsenic compounds such as tertiary butylarsine as harmful components. It is an object of the present invention to provide a means capable of purifying exhaust gas containing these harmful components efficiently and safely with no risk of occurrence.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、ターシャリーブチルホスフィン等の有機燐化合物、ターシャリーブチルアルシン等の有機砒素化合物は、選択的に吸着剤に吸着できること、吸着させた後、加熱することにより前記有害成分は、ホスフィン及び/またはアルシンと、炭化水素に容易に分解できること、分解後、吸着剤からこれらを脱着させ、これらを含むガスをホスフィン及び/またはアルシンの乾式浄化剤と接触させて浄化することにより、急激な発熱及びガス発生を起こす虞がなく、優れた浄化能力で効率よく安全に浄化できること等を見出し、本発明の排ガスの処理方法及び処理装置に到達した。   As a result of intensive investigations to solve these problems, the present inventors have found that organic phosphorus compounds such as tertiary butylphosphine and organic arsenic compounds such as tertiary butylarsine can be selectively adsorbed on the adsorbent. Then, by heating, the harmful components can be easily decomposed into phosphine and / or arsine and hydrocarbon, and after decomposition, they are desorbed from the adsorbent, and the gas containing them is dried by phosphine and / or arsine. It has been found that by purifying it in contact with a purifying agent, there is no risk of sudden heat generation and gas generation, and it can be efficiently and safely purified with excellent purification capacity, and the exhaust gas treatment method and treatment apparatus of the present invention are reached. did.

すなわち本発明は、有害成分として有機燐化合物及び/または有機砒素化合物を含む排ガスを、吸着剤と接触させて、該排ガス中の該有害成分を該吸着剤に吸着させた後、該吸着剤を加熱して、該有害成分を、ホスフィン及び/またはアルシンと、炭化水素に分解するとともに、該吸着剤から該分解により生じた化合物を脱着させることを特徴とする排ガスの処理方法である。
また、本発明は、有害成分として有機燐化合物及び/または有機砒素化合物を含む排ガスの処理装置であって、吸着剤が充填された加熱筒、及び、その後段にホスフィン及び/またはアルシンの浄化剤が充填された浄化筒を備えてなることを特徴とする排ガスの処理装置である。
That is, the present invention is to contact an exhaust gas containing an organic phosphorus compound and / or an organic arsenic compound as a harmful component with an adsorbent to adsorb the harmful component in the exhaust gas to the adsorbent. The exhaust gas treatment method is characterized by decomposing the harmful components into phosphine and / or arsine and hydrocarbons by heating and desorbing the compound produced by the decomposition from the adsorbent.
The present invention also relates to an exhaust gas treatment apparatus containing an organic phosphorus compound and / or an organic arsenic compound as a harmful component, and a heating cylinder filled with an adsorbent, and a phosphine and / or arsine purifier at the subsequent stage. An exhaust gas treatment apparatus comprising a purification cylinder filled with a gas.

本発明は、ターシャリーブチルホスフィン等の有機燐化合物、ターシャリーブチルアルシン等の有機砒素化合物を、直接的に乾式浄化剤と接触させて浄化する方式ではないので、浄化した後の浄化剤は、空気(酸素)と接触しても急激な発熱及びガス発生を起こすことがなく比較的に安全である。また、本発明で使用される吸着剤は容易に再生することが可能であり、また浄化剤は優れた浄化能力で、有機燐化合物及び/または有機砒素化合物が分解して生成したホスフィン及び/またはアルシンを除去できるので、従来の方法に比べて浄化剤の詰め替え作業の頻度及び廃棄剤の発生量を大幅に少なくすることが可能である。   The present invention is not a method of purifying an organic phosphorus compound such as tertiary butylphosphine and an organic arsenic compound such as tertiary butylarsine directly in contact with a dry cleaning agent. Even if it comes into contact with air (oxygen), it is relatively safe without causing sudden heat generation and gas generation. Further, the adsorbent used in the present invention can be easily regenerated, and the purification agent has an excellent purification ability, and phosphine and / or produced by decomposition of an organic phosphorus compound and / or organic arsenic compound. Since arsine can be removed, it is possible to significantly reduce the frequency of purification agent refilling operations and the amount of waste agent generated compared to conventional methods.

本発明の排ガスの処理方法及び処理装置は、主に半導体製造工程から排出される有機燐化合物及び/または有機砒素化合物を含む排ガスの浄化に適用される。
本発明の排ガスの処理方法及び処理装置において、処理の対象となる排ガスは、例えば、水素、窒素、アルゴン、ヘリウム等をベースガスとし、ターシャリーブチルホスフィン、イソブチルホスフィン、トリメチルホスフィン、トリエチルホスフィン等の有機燐化合物、ターシャリーブチルアルシン、イソブチルアルシン、トリメチルアルシン、トリエチルアルシン等の有機砒素化合物を有害成分として含む排ガスである。尚、本発明においては、分解処理により、有機燐化合物はホスフィンと炭化水素に、有機砒素化合物はアルシンと炭化水素に分解される。
The exhaust gas treatment method and treatment apparatus of the present invention are mainly applied to purification of exhaust gas containing an organic phosphorus compound and / or an organic arsenic compound discharged from a semiconductor manufacturing process.
In the exhaust gas treatment method and treatment apparatus of the present invention, the exhaust gas to be treated is, for example, hydrogen, nitrogen, argon, helium or the like as a base gas, such as tertiary butylphosphine, isobutylphosphine, trimethylphosphine, triethylphosphine, etc. This exhaust gas contains organic arsenic compounds such as organic phosphorus compounds, tertiary butylarsine, isobutylarsine, trimethylarsine and triethylarsine as harmful components. In the present invention, the organic phosphorus compound is decomposed into phosphine and hydrocarbon, and the organic arsenic compound is decomposed into arsine and hydrocarbon by the decomposition treatment.

本発明において使用される吸着剤としては、合成ゼオライト、天然ゼオライト、活性炭、アルミナ、シリカアルミナ、シリカ等を例示することができる。これらの中でも吸着能力(吸着剤単位量当たりの有害成分の吸着量)が優れている点でゼオライトを使用することが好ましく、さらに細孔径が5Åを超え50Å未満のゼオライトを使用することが特に好ましい。ゼオライトを使用する場合は、その種類等には特に限定されることはないが、細孔径が3〜15Åの合成ゼオライトが市販されているのでこれを利用することができる。尚、活性炭を使用する場合は、活性炭の充填長をかなり長くしないと有機燐化合物、有機砒素化合物が下流側に流出するという短所がある。   Examples of the adsorbent used in the present invention include synthetic zeolite, natural zeolite, activated carbon, alumina, silica alumina, silica and the like. Among these, it is preferable to use zeolite because of its excellent adsorption capacity (adsorption amount of harmful components per unit amount of adsorbent), and it is particularly preferable to use zeolite having a pore diameter of more than 5 mm and less than 50 mm. . In the case of using zeolite, the type thereof is not particularly limited, but synthetic zeolite having a pore size of 3 to 15 mm is commercially available and can be used. In addition, when using activated carbon, unless the filling length of activated carbon is made considerably long, there exists a fault that an organic phosphorus compound and an organic arsenic compound will flow out downstream.

また、吸着剤の充填長は、排ガスの流量、有害成分の濃度、吸着剤の種類等により一概に限定できないが、合成ゼオライトを使用する場合は、通常は50〜1500mm程度、好ましくは100〜1000mm程度である。充填長が50mmより短い場合は有害成分の一部が吸着剤に吸着されずに下流側に流出する虞があり、充填長が1500mmより長い場合は圧力損失が大きくなりすぎる虞がある。吸着剤に導入する際の排ガスの空筒線速度(LV)は、通常は100cm/s以下、好ましくは1〜50cm/sである。   Further, the filling length of the adsorbent cannot be generally limited by the exhaust gas flow rate, the concentration of harmful components, the type of adsorbent, etc., but when using synthetic zeolite, it is usually about 50 to 1500 mm, preferably 100 to 1000 mm. Degree. When the filling length is shorter than 50 mm, a part of harmful components may flow out downstream without being adsorbed by the adsorbent, and when the filling length is longer than 1500 mm, the pressure loss may become too large. The cylinder linear velocity (LV) of the exhaust gas when introduced into the adsorbent is usually 100 cm / s or less, preferably 1 to 50 cm / s.

また、有機燐化合物及び/または有機砒素化合物を吸着剤に吸着させる際の温度条件は200℃以下であるが、通常は室温または室温近辺の温度(0〜50℃)である。また、吸着剤と接触させる際の排ガスの圧力条件は、通常は常圧または常圧近辺の圧力(50〜200KPa(絶対圧力))であるが、10KPa(絶対圧力)のような減圧下、あるいは1000KPa(絶対圧力)のような加圧下で操作することも可能である。尚、合成ゼオライトの有機燐化合物及び/または有機砒素化合物の吸着能力は、10〜20L/L剤である。   The temperature condition for adsorbing the organic phosphorus compound and / or the organic arsenic compound to the adsorbent is 200 ° C. or lower, but is usually room temperature or a temperature around room temperature (0 to 50 ° C.). Further, the pressure condition of the exhaust gas when contacting with the adsorbent is usually normal pressure or a pressure around normal pressure (50 to 200 KPa (absolute pressure)), but under reduced pressure such as 10 KPa (absolute pressure), or It is also possible to operate under pressure such as 1000 KPa (absolute pressure). In addition, the adsorption capacity of the organic phosphorus compound and / or the organic arsenic compound of the synthetic zeolite is 10 to 20 L / L agent.

本発明においては、以上のように排ガス中の有機燐化合物及び/または有機砒素化合物を吸着剤に吸着させた後、吸着剤がヒーター等により加熱され、吸着されている前記有害成分が、ホスフィン及び/またはアルシンと、アルカン、アルケン等の炭化水素に分解されるとともに、分解により生じた前記化合物が吸着剤から脱着される。その際の加熱温度は、通常は200〜800℃、好ましくは250〜500℃である。吸着剤の温度が200℃以下の場合は有機燐化合物及び/または有機砒素化合物が分解しない虞がある。また、分解の際は、吸着剤に水素または不活性ガスを主成分とするキャリアガスを供給し、分解により生じた化合物の脱着を促進することが好ましい。   In the present invention, after the organic phosphorus compound and / or organic arsenic compound in the exhaust gas is adsorbed to the adsorbent as described above, the adsorbent is heated by a heater or the like, and the adsorbed harmful components are phosphine and In addition to being decomposed into arsine and hydrocarbons such as alkane and alkene, the compound produced by the decomposition is desorbed from the adsorbent. The heating temperature in that case is 200-800 degreeC normally, Preferably it is 250-500 degreeC. When the temperature of the adsorbent is 200 ° C. or lower, the organic phosphorus compound and / or the organic arsenic compound may not be decomposed. Further, at the time of decomposition, it is preferable to promote the desorption of the compound generated by the decomposition by supplying a carrier gas mainly containing hydrogen or an inert gas to the adsorbent.

本発明においては、通常はさらに、吸着剤から脱着したホスフィン及び/またはアルシンと炭化水素を含むガスが、ホスフィン及び/またはアルシンの乾式浄化剤と接触して浄化される。この際に使用される浄化剤としては、ホスフィン及び/またはアルシンを、充分に低濃度になるまで除去することができるものであれば特に制限されることはないが、例えば、有効成分として酸化銅、塩基性炭酸銅、または水酸化銅を含む浄化剤、あるいはこれに酸化マンガン等の金属酸化物が加えられた浄化剤、さらに有効成分として活性炭、合成ゼオライト、または天然ゼオライトからなる浄化剤等を挙げることができる。   In the present invention, the gas containing phosphine and / or arsine and hydrocarbon desorbed from the adsorbent is usually purified by contact with the phosphine and / or arsine dry cleaning agent. The purifying agent used in this case is not particularly limited as long as it can remove phosphine and / or arsine to a sufficiently low concentration. For example, copper oxide as an active ingredient can be used. , A purification agent containing basic copper carbonate or copper hydroxide, or a purification agent obtained by adding a metal oxide such as manganese oxide to this, and a purification agent comprising activated carbon, synthetic zeolite, or natural zeolite as an active ingredient Can be mentioned.

本発明において、ホスフィン及び/またはアルシンと炭化水素を含むガスを浄化する際は、これらのガスを前記の浄化剤と接触させるとともに、流量コントロールされた酸素含有ガス(空気)を浄化剤に供給することができる。その際、ホスフィン及び/またはアルシンの酸化反応が起こり発熱するが、ターシャリーブチルホスフィン、ターシャリーブチルアルシンの場合と比べて極めて穏やかであり、危険な状態になるほどの発熱ではない。また、ガスの発生はほとんど起こらない。この操作により、浄化筒の後処理の際に、浄化剤が空気と接触してもより安全となる。尚、酸素含有ガスの供給は、間欠的に行なうこともできる。   In the present invention, when purifying gases containing phosphine and / or arsine and hydrocarbons, these gases are brought into contact with the purifying agent, and a flow-controlled oxygen-containing gas (air) is supplied to the purifying agent. be able to. At that time, an oxidation reaction of phosphine and / or arsine occurs and generates heat, but it is extremely mild as compared with tertiary butylphosphine and tertiary butylarsine, and it does not generate heat to a dangerous state. Moreover, almost no gas is generated. This operation makes it safer even if the purifier comes into contact with air during the post-treatment of the purification cylinder. The oxygen-containing gas can be supplied intermittently.

また、本発明においては、吸着剤を再生することにより、繰返して使用することができる。吸着剤の再生は、吸着剤を加熱するとともに、不活性ガスを供給することにより行なわれる。再生の際の吸着剤の温度は、通常は150〜800℃、好ましくは200〜500℃である。再生の際の不活性ガスの圧力は、通常は常圧または常圧近辺の圧力(50〜200KPa(絶対圧力))であるが、10KPa(絶対圧力)のような減圧下、あるいは1000KPa(絶対圧力)のような加圧下で操作することも可能である。   Moreover, in this invention, it can be repeatedly used by reproducing | regenerating an adsorbent. The regeneration of the adsorbent is performed by heating the adsorbent and supplying an inert gas. The temperature of the adsorbent during regeneration is usually 150 to 800 ° C, preferably 200 to 500 ° C. The pressure of the inert gas at the time of regeneration is usually normal pressure or a pressure around normal pressure (50 to 200 KPa (absolute pressure)), but under reduced pressure such as 10 KPa (absolute pressure) or 1000 KPa (absolute pressure). It is also possible to operate under pressure such as

本発明の排ガスの処理装置は、以上のような処理を行なうための装置であり、図1、図2に示すように、吸着剤が充填された加熱筒2、及び、その後段にホスフィン及び/またはアルシンの浄化剤が充填された浄化筒3を備えてなる装置である。しかしながら、有機燐化合物及び/または有機砒素化合物を含む排ガスを連続して処理するために、図2に示すように、加熱筒2を少なくとも2ライン配置する構成、さらに浄化筒3を少なくとも2ライン配置する構成とすることが好ましい。このような処理装置の配置により、ラインを順次切替えながら、有害成分を吸着剤に吸着、加熱、分解するとともに、吸着剤を再生することが可能となる。また、本発明においては、キャリアガスを加熱筒に供給するための配管5、酸素含有ガスを浄化筒に供給するための配管8及び気体流量制御器9を備えることもできる。   The exhaust gas treatment apparatus of the present invention is an apparatus for performing the above-described treatment. As shown in FIGS. 1 and 2, the heating cylinder 2 filled with the adsorbent, and phosphine and / or the latter stage. Or it is an apparatus provided with the purification cylinder 3 filled with the purifier of arsine. However, in order to continuously process the exhaust gas containing the organic phosphorus compound and / or the organic arsenic compound, as shown in FIG. 2, a configuration in which at least two heating cylinders 2 are arranged, and further, at least two lines in the purification cylinder 3 are arranged. It is preferable to adopt a configuration to do so. Such an arrangement of the processing apparatus makes it possible to adsorb, heat, decompose, and regenerate the adsorbent while switching the lines sequentially, and adsorb, heat, and decompose the harmful components. Moreover, in this invention, the piping 5 for supplying carrier gas to a heating cylinder, the piping 8 for supplying oxygen containing gas to a purification | cleaning cylinder, and the gas flow controller 9 can also be provided.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(処理装置の製作)
市販の合成ゼオライト(細孔径10Å相当)を、側面にヒーターを備えた内径16mm、高さ400mmの吸着筒に、充填長が200mmとなるように充填して加熱筒とした。また、有効成分として酸化銅を90wt%以上、他の金属酸化物及びバインダーを10wt%以下の割合で含む浄化剤を、内径16mm、高さ400mmの浄化筒に、充填長が200mmとなるように充填した。次に、加熱筒2個が並列で上流側となるように、浄化筒が下流側となるように配置するとともに、排ガス導入管、排出管、キャリアガス供給管、酸素含有ガス供給管等を結合して図2に示すような処理装置を製作した。
(Manufacture of processing equipment)
Commercially available synthetic zeolite (corresponding to a pore diameter of 10 mm) was filled into an adsorption cylinder having an inner diameter of 16 mm and a height of 400 mm equipped with a heater on the side surface so that the filling length was 200 mm to obtain a heating cylinder. In addition, a purifying agent containing copper oxide as an active ingredient in a proportion of 90 wt% or more and other metal oxides and binders in a proportion of 10 wt% or less is set so that the filling length becomes 200 mm in a purification cylinder having an inner diameter of 16 mm and a height of 400 mm. Filled. Next, arrange the heating cylinder downstream so that the two heating cylinders are upstream in parallel, and combine the exhaust gas introduction pipe, exhaust pipe, carrier gas supply pipe, oxygen-containing gas supply pipe, etc. Thus, a processing apparatus as shown in FIG. 2 was manufactured.

(浄化試験)
合成ゼオライトの温度が350℃となるように2個の加熱筒を昇温するとともに、窒素ガスを380ml/minの流量で3時間加熱筒に供給し、合成ゼオライトの加熱処理を行なった。その後、加熱筒を常温まで冷却した。
次に、有害成分としてターシャリーブチルホスフィン6000ppmを含む窒素ガスを、380ml/min(25℃)の流量で片方の加熱筒に導入して、合成ゼオライトにターシャリーブチルホスフィンを吸着させた。この間、合成ゼオライトの充填部下層からガスの一部を約1分間隔でサンプリングし、ターシャリーブチルホスフィンが検出されるまでの時間を測定して、吸着剤の吸着能力を得た。
(Purification test)
The temperature of the two heating cylinders was increased so that the temperature of the synthetic zeolite was 350 ° C., and nitrogen gas was supplied to the heating cylinder at a flow rate of 380 ml / min for 3 hours to heat the synthetic zeolite. Thereafter, the heating cylinder was cooled to room temperature.
Next, nitrogen gas containing 6000 ppm of tertiary butylphosphine as a harmful component was introduced into one heating cylinder at a flow rate of 380 ml / min (25 ° C.) to adsorb tertiary butylphosphine to the synthetic zeolite. During this time, a part of the gas was sampled from the lower layer of the synthetic zeolite filling portion at intervals of about 1 minute, and the time until tertiary butylphosphine was detected was measured to obtain the adsorption capacity of the adsorbent.

ターシャリーブチルホスフィンが検出された後、これを含む窒素ガスの導入を他の一方の加熱筒に変更した。また、合成ゼオライトの温度が350℃となるように有害成分を吸着済みの加熱筒を昇温するとともに、キャリアガス供給管から窒素ガスを380ml/minの流量で加熱筒に供給して、ターシャリーブチルホスフィンを、ホスフィンと炭化水素に分解し、合成ゼオライトからこれら化合物を脱着させた。その後、加熱筒を常温まで冷却し、加熱筒の切り替えを行ない、この操作を繰返した。   After the tertiary butylphosphine was detected, the introduction of nitrogen gas containing this was changed to the other heating cylinder. In addition, the temperature of the heating cylinder having adsorbed harmful components is raised so that the temperature of the synthetic zeolite becomes 350 ° C., and nitrogen gas is supplied from the carrier gas supply pipe to the heating cylinder at a flow rate of 380 ml / min. Butylphosphine was decomposed into phosphine and hydrocarbon, and these compounds were desorbed from the synthetic zeolite. Thereafter, the heating cylinder was cooled to room temperature, the heating cylinder was switched, and this operation was repeated.

一方、前記の操作と同時に、5000ppmの酸素を含む窒素ガスを、380ml/min(25℃)の流量で浄化筒に供給した。この間、浄化筒から排出されたガスの一部を約10分間隔でサンプリングし、ホスフィンが検出されるまでの時間を測定して、浄化剤の浄化能力を得た。また、浄化剤の温度を測定した。吸着剤の吸着能力、浄化剤の浄化能力及び発熱温度(到達最高温度−浄化開始直前の温度)を表1に示す。尚、浄化筒からホスフィンが検出されるまでに、加熱筒の切り替えを11回行なった。   On the other hand, simultaneously with the above operation, nitrogen gas containing 5000 ppm of oxygen was supplied to the purification cylinder at a flow rate of 380 ml / min (25 ° C.). During this time, a part of the gas discharged from the purification cylinder was sampled at intervals of about 10 minutes, and the time until phosphine was detected was measured to obtain the purification ability of the purification agent. In addition, the temperature of the purifier was measured. Table 1 shows the adsorption capacity of the adsorbent, the purification capacity of the cleaning agent, and the heat generation temperature (maximum reached temperature−temperature immediately before the start of purification). The heating cylinder was switched 11 times before phosphine was detected from the purification cylinder.

実施例1の浄化試験における有害成分をターシャリーブチルアルシンに替えたほかは実施例1と同様にして浄化試験を行なった。尚、浄化筒からアルシンが検出されるまでに、加熱筒の切り替えを10回行なった。その結果を表1に示す。   A purification test was conducted in the same manner as in Example 1 except that the harmful component in the purification test of Example 1 was replaced with tertiary butylarsine. The heating cylinder was switched 10 times until arsine was detected from the purification cylinder. The results are shown in Table 1.

[比較例1]
(処理装置の製作)
有効成分として酸化銅を90wt%以上、他の金属酸化物及びバインダーを10wt%以下の割合で含む実施例1で使用した浄化剤と同様の浄化剤を、内径16mm、高さ400mmの浄化筒に、充填長が200mmとなるように充填した。次に、排ガス導入管、排出管、酸素含有ガス供給管等を結合して処理装置を製作した。
[Comparative Example 1]
(Manufacture of processing equipment)
A purifying agent similar to the purifying agent used in Example 1 containing 90 wt% or more of copper oxide as an active ingredient and 10 wt% or less of another metal oxide and binder is applied to a purifying cylinder having an inner diameter of 16 mm and a height of 400 mm. The filling length was 200 mm. Next, a treatment apparatus was manufactured by combining an exhaust gas introduction pipe, a discharge pipe, an oxygen-containing gas supply pipe, and the like.

(浄化試験)
続いて、有害成分としてターシャリーブチルホスフィン6000ppmを含む窒素ガス、及び5000ppmの酸素を含む窒素ガスを、各々380ml/min(25℃)の流量で浄化筒に導入して浄化を行なった。この間、浄化筒から排出されたガスの一部を約1分間隔でサンプリングし、ホスフィンが検出されるまでの時間を測定して、浄化剤の浄化能力を得た。また、浄化剤の温度を測定した。浄化剤の浄化能力及び発熱温度(到達最高温度−浄化開始直前の温度)を表1に示す。
(Purification test)
Subsequently, nitrogen gas containing 6000 ppm of tertiary butylphosphine as a harmful component and nitrogen gas containing 5000 ppm of oxygen were introduced into the purification cylinder at a flow rate of 380 ml / min (25 ° C.) for purification. During this time, a part of the gas discharged from the purification cylinder was sampled at intervals of about 1 minute, and the time until phosphine was detected was measured to obtain the purification ability of the purification agent. In addition, the temperature of the purifier was measured. Table 1 shows the purification ability and heat generation temperature (maximum reached temperature−temperature immediately before the start of purification) of the purification agent.

[比較例2]
比較例1の浄化試験における有害成分をターシャリーブチルアルシンに替えたほかは比較例1と同様にして浄化試験を行なった。その結果を表1に示す。
[Comparative Example 2]
A purification test was conducted in the same manner as in Comparative Example 1 except that the harmful component in the purification test of Comparative Example 1 was replaced with tertiary butylarsine. The results are shown in Table 1.

Figure 2006181493
Figure 2006181493

以上のように、本発明の実施例は、急激な発熱を起こすことがなく比較的に安全である。また、浄化剤は優れた浄化能力で、有機燐化合物及び/または有機砒素化合物が分解して生成したホスフィン及び/またはアルシンを除去できることがわかる。   As described above, the embodiment of the present invention is relatively safe without causing sudden heat generation. Further, it can be seen that the purifying agent can remove phosphine and / or arsine generated by decomposition of the organic phosphorus compound and / or the organic arsenic compound with an excellent purifying ability.

本発明の排ガスの処理装置の一例を示す構成図The block diagram which shows an example of the processing apparatus of the waste gas of this invention 本発明の図1以外の排ガスの処理装置の一例を示す構成図The block diagram which shows an example of the waste gas processing apparatus other than FIG. 1 of this invention

符号の説明Explanation of symbols

1 排ガス導入管
2 加熱筒
3 浄化筒
4 処理後ガス排出管
5 キャリアガス供給管
6 再生排ガス排出管
7 冷却器
8 酸素含有ガス供給管
9 気体流量制御器
DESCRIPTION OF SYMBOLS 1 Exhaust gas introduction pipe 2 Heating cylinder 3 Purification cylinder 4 Gas exhaust pipe after processing 5 Carrier gas supply pipe 6 Regenerated exhaust gas exhaust pipe 7 Cooler 8 Oxygen-containing gas supply pipe 9 Gas flow controller

Claims (15)

有害成分として有機燐化合物及び/または有機砒素化合物を含む排ガスを、吸着剤と接触させて、該排ガス中の該有害成分を該吸着剤に吸着させた後、該吸着剤を加熱して、該有害成分を、ホスフィン及び/またはアルシンと、炭化水素に分解するとともに、該吸着剤から該分解により生じた化合物を脱着させることを特徴とする排ガスの処理方法。   An exhaust gas containing an organic phosphorus compound and / or an organic arsenic compound as a harmful component is brought into contact with an adsorbent to adsorb the harmful component in the exhaust gas to the adsorbent, and then the adsorbent is heated, A method for treating exhaust gas, comprising decomposing a harmful component into phosphine and / or arsine and a hydrocarbon and desorbing a compound generated by the decomposition from the adsorbent. 分解により生じた化合物の吸着剤からの脱着は、吸着剤にキャリアガスを供給しながら行なう請求項1に記載の排ガスの処理方法。   The exhaust gas treatment method according to claim 1, wherein the desorption of the compound generated by the decomposition from the adsorbent is performed while supplying a carrier gas to the adsorbent. キャリアガスが、水素または不活性ガスを主成分とするガスである請求項2に記載の排ガスの処理方法。   The exhaust gas treatment method according to claim 2, wherein the carrier gas is a gas containing hydrogen or an inert gas as a main component. 炭化水素が、アルカンまたはアルケンである請求項1に記載の排ガスの処理方法。   The exhaust gas treatment method according to claim 1, wherein the hydrocarbon is alkane or alkene. 吸着剤が合成ゼオライトまたは天然ゼオライトである請求項1に記載の排ガスの処理方法。   The exhaust gas treatment method according to claim 1, wherein the adsorbent is synthetic zeolite or natural zeolite. 有機燐化合物が、ターシャリーブチルホスフィン、イソブチルホスフィン、トリメチルホスフィン、またはトリエチルホスフィンである請求項1に記載の排ガスの処理方法。   The method for treating exhaust gas according to claim 1, wherein the organic phosphorus compound is tertiary butylphosphine, isobutylphosphine, trimethylphosphine, or triethylphosphine. 有機砒素化合物が、ターシャリーブチルアルシン、イソブチルアルシン、トリメチルアルシン、またはトリエチルアルシンである請求項1に記載の排ガスの処理方法。   The exhaust gas treatment method according to claim 1, wherein the organic arsenic compound is tertiary butyl arsine, isobutyl arsine, trimethyl arsine, or triethyl arsine. さらに、吸着剤から脱着したホスフィン及び/またはアルシンと炭化水素を含むガスを、ホスフィン及び/またはアルシンの乾式浄化剤と接触させて浄化する請求項1に記載の排ガスの処理方法。   The exhaust gas treatment method according to claim 1, wherein the gas containing phosphine and / or arsine and hydrocarbon desorbed from the adsorbent is purified by contacting with a phosphine and / or arsine dry cleaning agent. 流量コントロールされた酸素含有ガスを、ホスフィン及び/またはアルシンの乾式浄化剤に供給しながら浄化を行なう請求項8に記載の排ガスの処理方法。   9. The exhaust gas treatment method according to claim 8, wherein purification is performed while supplying a flow-controlled oxygen-containing gas to a phosphine and / or arsine dry purification agent. 有害成分として有機燐化合物及び/または有機砒素化合物を含む排ガスの処理装置であって、吸着剤が充填された加熱筒、及び、その後段にホスフィン及び/またはアルシンの浄化剤が充填された浄化筒を備えてなることを特徴とする排ガスの処理装置。   An exhaust gas treatment apparatus containing an organic phosphorus compound and / or an organic arsenic compound as harmful components, a heating cylinder filled with an adsorbent, and a purification cylinder filled with a phosphine and / or arsine purification agent in the subsequent stage An exhaust gas treatment apparatus comprising: 吸着剤が合成ゼオライトまたは天然ゼオライトである請求項10に記載の排ガスの処理装置。   The exhaust gas treatment apparatus according to claim 10, wherein the adsorbent is synthetic zeolite or natural zeolite. ホスフィン及び/またはアルシンの浄化剤が、有効成分として酸化銅、塩基性炭酸銅、または水酸化銅を含む浄化剤である請求項10に記載の排ガスの処理装置。   The exhaust gas treatment apparatus according to claim 10, wherein the phosphine and / or arsine purification agent is a purification agent containing copper oxide, basic copper carbonate, or copper hydroxide as an active ingredient. ホスフィン及び/またはアルシンの浄化剤が、有効成分として活性炭、合成ゼオライト、または天然ゼオライトからなる浄化剤である請求項10に記載の排ガスの処理装置。   The exhaust gas treatment apparatus according to claim 10, wherein the phosphine and / or arsine purification agent is a purification agent comprising active carbon, synthetic zeolite, or natural zeolite as an active ingredient. さらに、キャリアガスを加熱筒に供給するための配管を備えた請求項10に記載の排ガスの処理装置。   The exhaust gas treatment apparatus according to claim 10, further comprising a pipe for supplying the carrier gas to the heating cylinder. さらに、酸素含有ガスを浄化筒に供給するための配管及び気体流量制御器を備えた請求項10に記載の排ガスの処理装置。
The exhaust gas treatment apparatus according to claim 10, further comprising a pipe for supplying an oxygen-containing gas to the purification cylinder and a gas flow rate controller.
JP2004378520A 2004-12-28 2004-12-28 Method of treating exhaust gas and treating device Pending JP2006181493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004378520A JP2006181493A (en) 2004-12-28 2004-12-28 Method of treating exhaust gas and treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378520A JP2006181493A (en) 2004-12-28 2004-12-28 Method of treating exhaust gas and treating device

Publications (1)

Publication Number Publication Date
JP2006181493A true JP2006181493A (en) 2006-07-13

Family

ID=36734981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378520A Pending JP2006181493A (en) 2004-12-28 2004-12-28 Method of treating exhaust gas and treating device

Country Status (1)

Country Link
JP (1) JP2006181493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021318A (en) * 2005-07-14 2007-02-01 Japan Pionics Co Ltd Treatment method and apparatus of exhaust gas

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191413A (en) * 1986-02-18 1987-08-21 Mitsui Toatsu Chem Inc Purification of silicon hydride
JPS62213822A (en) * 1986-03-13 1987-09-19 Showa Denko Kk Treatment of gas containing arsine
JPH074506B2 (en) * 1987-06-01 1995-01-25 日本パイオニクス株式会社 Exhaust gas purification method
JPH08141359A (en) * 1994-11-21 1996-06-04 Nippon Sanso Kk Method and apparatus for removing harmful material in harmful gas
JPH08155258A (en) * 1994-11-30 1996-06-18 Furukawa Co Ltd Waste gas treating agent
JPH08206445A (en) * 1995-11-10 1996-08-13 Japan Pionics Co Ltd Purification of exhaust gas
JPH10174842A (en) * 1996-12-20 1998-06-30 Nippon Sanso Kk Harmful effect removing method of harmful gas
JP2001353420A (en) * 2000-04-10 2001-12-25 Osaka Oxygen Ind Ltd Recovery of specific material gas for semiconductor from exhaust gas generated from apparatus for producing compound semiconductor
JP2004327893A (en) * 2003-04-28 2004-11-18 Sumitomo Chem Co Ltd Phosphorus trap for semiconductor production system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191413A (en) * 1986-02-18 1987-08-21 Mitsui Toatsu Chem Inc Purification of silicon hydride
JPS62213822A (en) * 1986-03-13 1987-09-19 Showa Denko Kk Treatment of gas containing arsine
JPH074506B2 (en) * 1987-06-01 1995-01-25 日本パイオニクス株式会社 Exhaust gas purification method
JPH08141359A (en) * 1994-11-21 1996-06-04 Nippon Sanso Kk Method and apparatus for removing harmful material in harmful gas
JPH08155258A (en) * 1994-11-30 1996-06-18 Furukawa Co Ltd Waste gas treating agent
JPH08206445A (en) * 1995-11-10 1996-08-13 Japan Pionics Co Ltd Purification of exhaust gas
JPH10174842A (en) * 1996-12-20 1998-06-30 Nippon Sanso Kk Harmful effect removing method of harmful gas
JP2001353420A (en) * 2000-04-10 2001-12-25 Osaka Oxygen Ind Ltd Recovery of specific material gas for semiconductor from exhaust gas generated from apparatus for producing compound semiconductor
JP2004327893A (en) * 2003-04-28 2004-11-18 Sumitomo Chem Co Ltd Phosphorus trap for semiconductor production system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021318A (en) * 2005-07-14 2007-02-01 Japan Pionics Co Ltd Treatment method and apparatus of exhaust gas

Similar Documents

Publication Publication Date Title
JP4927331B2 (en) Adsorption composition for removing carbon monoxide from a material stream and method for removing the same
JP2009183950A (en) Process for purifying exhaust gas
TW200417512A (en) Carbon dioxide purification for the semiconductor industry
JP3725196B2 (en) Nitrogen-containing molecular sieve activated carbon, its production method and use
TWI264322B (en) Processing method of gas and processing apparatus of gas
CS251591A3 (en) Process and apparatus for cleaning an adsorbent containing carbon
CN107774239A (en) For removing the renovation process of oxygenatedchemicals adsorbent in low-carbon alkene
CN108187613A (en) One kind is suitable for the regenerated Adsorption of Organic agent of high-temperature S removal
JP2008088043A (en) Treating method and purifying method of inert gas, and gas treating cylinder
JP2015134319A (en) Water treatment system
JP2014217833A (en) Wastewater treatment system
JP2008212845A (en) Carbon monoxide adsorbent, gas purification method, and gas purifier
JP4450944B2 (en) Perfluorocarbon recovery method and decomposition method
JP4833602B2 (en) Exhaust gas treatment method
JP2006181493A (en) Method of treating exhaust gas and treating device
JP6332586B2 (en) Water treatment device and water treatment system
JP2015150519A (en) waste water treatment system
JP6379339B2 (en) Gas purification method
JP6549969B2 (en) Air purification apparatus and air purification method
CN106943864A (en) A kind of method that carbon material selective absorbing purifies acetylene
JP2004098014A (en) Method for treating gas containing volatile organic compound
JP2000093798A (en) Catalyst for decomposing organic chlorine compound, its production, and method for treating exhaust gas
JP4101955B2 (en) Ammonia purification method
JP2008136935A (en) Selective treatment method of trifluoromethane, treatment unit and sample treatment system using it
JP3459994B2 (en) Method and apparatus for regenerating adsorbent for removing harmful substances in exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101021