JP4833602B2 - Exhaust gas treatment method - Google Patents

Exhaust gas treatment method Download PDF

Info

Publication number
JP4833602B2
JP4833602B2 JP2005205121A JP2005205121A JP4833602B2 JP 4833602 B2 JP4833602 B2 JP 4833602B2 JP 2005205121 A JP2005205121 A JP 2005205121A JP 2005205121 A JP2005205121 A JP 2005205121A JP 4833602 B2 JP4833602 B2 JP 4833602B2
Authority
JP
Japan
Prior art keywords
arsine
exhaust gas
phosphine
purification
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005205121A
Other languages
Japanese (ja)
Other versions
JP2007021318A (en
Inventor
孝 島田
直樹 村永
秩 荒川
和昭 十七里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2005205121A priority Critical patent/JP4833602B2/en
Publication of JP2007021318A publication Critical patent/JP2007021318A/en
Application granted granted Critical
Publication of JP4833602B2 publication Critical patent/JP4833602B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は排ガスの処理方法に関する。さらに詳細には半導体製造工程等から排出される有機燐化合物及び/または有機砒素化合物を含む排ガスを、効率よく安全に浄化することが可能な排ガスの処理方法に関する。   The present invention relates to an exhaust gas treatment method. More particularly, the present invention relates to an exhaust gas treatment method capable of efficiently and safely purifying exhaust gas containing an organic phosphorus compound and / or an organic arsenic compound discharged from a semiconductor manufacturing process or the like.

高電子移動度トランジスタ(HEMT)、ヘテロ接合ハイポーラトランジスタ(HBT)等の高速デバイス、半導体レーザー、超高輝度LED、太陽電池等のオプトデバイスの製作においては、ホスフィンやアルシン等の有害原料が使用されている。また、近年、これらのガス原料に代わり、人体に対して比較的に毒性が低く、かつ取扱いが容易なターシャリーブチルホスフィン等の有機燐化合物、ターシャリーブチルアルシン等の有機砒素化合物が多く使用されるようになってきた。ターシャリーブチルホスフィン、ターシャリーブチルアルシンは、ホスフィン、アルシンと比較して毒性は低いが、これらを含む排ガスは浄化した後、大気に放出することが必要である。   Harmful raw materials such as phosphine and arsine are used in the production of high-speed devices such as high electron mobility transistors (HEMT) and heterojunction hyperpolar transistors (HBT), and opto-devices such as semiconductor lasers, ultra-bright LEDs, and solar cells. Has been. In recent years, organic gas compounds such as tertiary butylphosphine and organic arsenic compounds such as tertiary butylarsine, which are relatively low in toxicity to the human body and easy to handle, have been used in place of these gas raw materials. It has come to be. Tertiary butylphosphine and tertiary butylarsine are less toxic than phosphine and arsine, but exhaust gas containing these must be purified and then released to the atmosphere.

半導体製造工程から排出される排ガスの一般的な処理方法としては、排ガスを、水素、メタン、プロパン等を用いた焼却炉の火炎中に導入して燃焼させる燃焼法、薬液を溶解させた水溶液と接触させて浄化する湿式法、固体状の浄化剤が充填された浄化筒に導入し、浄化剤と接触させて浄化する乾式法等がある。しかし、燃焼法を適用した場合においては、ターシャリーブチルアルシンを燃焼すると有毒な亜砒酸等の粉末が生成し、後処理が困難になるという不都合があった。また、湿式法を適用した場合においては、ターシャリーブチルホスフィン、ターシャリーブチルアルシンは水にはほとんど溶けないため、これらを効率よく除去できず、湿式浄化装置の排出口から高い濃度で排出されてしまうという不都合があった。   As a general treatment method of exhaust gas discharged from the semiconductor manufacturing process, a combustion method in which exhaust gas is introduced into a flame of an incinerator using hydrogen, methane, propane, etc. and burned, an aqueous solution in which a chemical solution is dissolved, and There are a wet method for purifying by contact, a dry method for introducing into a purification cylinder filled with a solid purification agent, and purifying by contacting with the purification agent. However, when the combustion method is applied, burning tertiary butylarsine produces toxic powders such as arsenous acid, making post-treatment difficult. In addition, when the wet method is applied, tertiary butylphosphine and tertiary butylarsine are hardly soluble in water, so they cannot be removed efficiently, and are discharged at a high concentration from the outlet of the wet purification device. There was an inconvenience that the

従って、ターシャリーブチルホスフィン、ターシャリーブチルアルシン等を含む排ガスの浄化は、主に乾式法により行なわれてきた。また、従来から使用されてきた乾式浄化剤としては、例えば次の特許文献に示されるように、有効成分として酸化銅、水酸化銅を含む浄化剤、あるいはこれに酸化マンガン等の金属酸化物が加えられた浄化剤等が挙げられる。
特開平6−319945号公報 特開平7−60054号公報 特開平7−68128号公報
Therefore, purification of exhaust gas containing tertiary butyl phosphine, tertiary butyl arsine and the like has been mainly performed by a dry method. In addition, as a conventional dry cleaning agent, for example, as shown in the following patent document, a cleaning agent containing copper oxide or copper hydroxide as an active ingredient, or a metal oxide such as manganese oxide is used. The added purifier etc. are mentioned.
JP-A-6-319945 Japanese Patent Laid-Open No. 7-60054 Japanese Patent Laid-Open No. 7-68128

しかしながら、前記のような金属酸化物を含む浄化剤を用いてターシャリーブチルホスフィン、ターシャリーブチルアルシン等を浄化した後の浄化剤は、酸素(空気)と接触すると激しく酸化反応して急激な発熱を起こし、これにより前記有害成分中の炭化水素基が燃焼して急激に多量の水蒸気及び二酸化炭素が発生し、危険な状態になるという問題点があった。そのため、これらのガスを浄化した後、浄化筒の後処理には、極めて慎重な操作が要求されるという不都合があった。また、金属酸化物を含む浄化剤を用いてターシャリーブチルホスフィン、ターシャリーブチルアルシンを浄化したときの浄化能力(浄化剤単位量当たりの有害成分の処理量)は、ホスフィン、アルシンを浄化したときの浄化能力と比較して著しく低かった。そのため浄化剤の詰め替え作業を頻繁に行なう必要があるとともに、多量の廃棄剤が発生した。   However, the purifier after purifying tertiary butylphosphine, tertiary butylarsine, etc. using a purifier containing a metal oxide as described above undergoes a violent oxidation reaction when it comes into contact with oxygen (air), resulting in rapid heat generation. As a result, the hydrocarbon group in the harmful component burns, and a large amount of water vapor and carbon dioxide are rapidly generated, resulting in a dangerous state. Therefore, after purifying these gases, the post-treatment of the purification cylinder has a disadvantage that an extremely careful operation is required. In addition, when purifying tertiary butylphosphine and tertiary butylarsine using a purifier containing metal oxide, the purification capacity (amount of harmful components per unit amount of purifier) is the same as when purifying phosphine and arsine. It was significantly lower than the purification capacity. Therefore, it was necessary to refill the cleaning agent frequently, and a large amount of waste agent was generated.

従って、本発明が解決しようとする課題は、有害成分として、ターシャリーブチルホスフィン等の有機燐化合物、あるいはターシャリーブチルアルシン等の有機砒素化合物を含む排ガスの浄化において、急激な発熱及びガス発生を起こす虞がなく、優れた浄化能力で効率よく安全にこれらの有害成分を含む排ガスを浄化することが可能な手段を提供することである。   Therefore, the problem to be solved by the present invention is that rapid heat generation and gas generation are caused in purification of exhaust gas containing organic phosphorus compounds such as tertiary butylphosphine or organic arsenic compounds such as tertiary butylarsine as harmful components. It is an object of the present invention to provide a means capable of purifying exhaust gas containing these harmful components efficiently and safely with no risk of occurrence.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、ターシャリーブチルホスフィン等の有機燐化合物、ターシャリーブチルアルシン等の有機砒素化合物は、加熱下、水蒸気の存在下で、シリカゲル、ゼオライト等の珪素を含む無機多孔質体と接触させることにより、ホスフィン及び/またはアルシンと、炭化水素に容易に分解できること、分解後これらを含むガスをホスフィン及び/またはアルシンの乾式浄化剤と接触させて浄化することにより、急激な発熱及びガス発生を起こす虞がなく、優れた浄化能力で効率よく安全に浄化できること等を見出し、本発明の排ガスの処理方法に到達した。 The present inventors have made intensive studies to solve these problems, organic phosphorus compounds such as tertiary butyl phosphine, an organic arsenic compound such as tertiary butyl arsine, under heating, in the presence of water vapor, silica gel, By contacting with an inorganic porous material containing silicon such as zeolite, phosphine and / or arsine and hydrocarbon can be easily decomposed, and after decomposition, the gas containing these is contacted with a phosphine and / or arsine dry cleaning agent. As a result of the purification, the inventors have found that there is no risk of sudden heat generation and gas generation, and that the purification can be performed efficiently and safely with an excellent purification capability, and the exhaust gas treatment method of the present invention has been reached.

すなわち本発明は、有害成分として有機燐化合物及び/または有機砒素化合物を含む排ガスを、加熱下、水蒸気の存在下で、シリカゲル、ゼオライト、多孔質ガラス、及び粘土系多孔質から選ばれ、かつ珪素を含む無機多孔質体と接触させて、該有害成分を、ホスフィン及び/またはアルシンと、炭化水素に分解することを特徴とする排ガスの処理方法である。 That is, the present invention is an exhaust gas containing an organic phosphorus compound and / or an organic arsenic compound as a harmful component under heating and in the presence of water vapor, selected from silica gel, zeolite, porous glass, and clay-based porous material, and silicon. In which the harmful components are decomposed into phosphine and / or arsine and hydrocarbons in contact with an inorganic porous material containing .

本発明は、ターシャリーブチルホスフィン等の有機燐化合物、ターシャリーブチルアルシン等の有機砒素化合物を、直接的に乾式浄化剤と接触させて浄化する方式ではないので、浄化した後の浄化剤は、空気(酸素)と接触しても急激な発熱及びガス発生を起こすことがなく比較的に安全である。また、浄化剤は優れた浄化能力で、有機燐化合物及び/または有機砒素化合物が分解して生成したホスフィン及び/またはアルシンを除去できるので、有機燐化合物、有機砒素化合物を、直接的に浄化剤と接触させて浄化する従来の方法に比べて、浄化剤の詰め替え作業の頻度及び廃棄剤の発生量を大幅に少なくすることが可能である。   Since the present invention is not a method of purifying an organic phosphorus compound such as tertiary butylphosphine or an organic arsenic compound such as tertiary butylarsine by directly contacting with a dry cleaning agent, the purifying agent after purification is Even if it comes into contact with air (oxygen), it is relatively safe without causing sudden heat generation and gas generation. In addition, since the purifying agent can remove phosphine and / or arsine generated by decomposition of the organic phosphorus compound and / or the organic arsenic compound with an excellent purifying ability, the organic phosphorus compound and the organic arsenic compound can be directly removed. Compared with the conventional method of purifying by contacting with a cleaning agent, it is possible to greatly reduce the frequency of refilling operation of the cleaning agent and the amount of waste agent generated.

本発明の排ガスの処理方法は、主に半導体製造工程から排出される有機燐化合物及び/または有機砒素化合物を含む排ガスの浄化に適用される。
本発明の排ガスの処理方法において、処理の対象となる排ガスは、例えば、水素、窒素、アルゴン、ヘリウム等をベースガスとし、ターシャリーブチルホスフィン、イソブチルホスフィン、トリメチルホスフィン、トリエチルホスフィン等の有機燐化合物、ターシャリーブチルアルシン、イソブチルアルシン、トリメチルアルシン、トリエチルアルシン等の有機砒素化合物を有害成分として含む排ガスである。尚、本発明においては、分解処理により、有機燐化合物はホスフィンと炭化水素に、有機砒素化合物はアルシンと炭化水素に分解される。
The exhaust gas treatment method of the present invention is mainly applied to purification of exhaust gas containing an organic phosphorus compound and / or an organic arsenic compound discharged from a semiconductor manufacturing process.
In the exhaust gas treatment method of the present invention, the exhaust gas to be treated is based on, for example, hydrogen, nitrogen, argon, helium, etc., and an organic phosphorus compound such as tertiary butylphosphine, isobutylphosphine, trimethylphosphine, triethylphosphine, etc. The exhaust gas contains organic arsenic compounds such as tertiary butylarsine, isobutylarsine, trimethylarsine, and triethylarsine as harmful components. In the present invention, the organic phosphorus compound is decomposed into phosphine and hydrocarbon, and the organic arsenic compound is decomposed into arsine and hydrocarbon by the decomposition treatment.

本発明において使用される無機多孔質体としては、シリカゲル、ゼオライト、多孔質ガラス、粘土系多孔質体から選ばれ、かつ珪素を含む無機多孔質体である。これらの中でも後述するように粉末状の燐または砒素の発生を抑制できる点で珪素を多く含むシリカゲルを使用することが好ましい。本発明における無機多孔質体は、通常は比表面積が10m/g以上のもの、好ましくは比表面積が100m/g以上のものが使用される。 The inorganic porous material used in the present invention is an inorganic porous material selected from silica gel, zeolite, porous glass and clay-based porous material and containing silicon . Among these, as described later, it is preferable to use silica gel containing a large amount of silicon from the viewpoint that generation of powdered phosphorus or arsenic can be suppressed. The inorganic porous material in the present invention usually has a specific surface area of 10 m 2 / g or more, and preferably has a specific surface area of 100 m 2 / g or more.

本発明の排ガスの処理方法は、通常は前述の無機多孔質体が充填された加熱分解筒に、有機燐化合物及び/または有機砒素化合物を含む排ガスを導入することにより行なわれる。その際の無機多孔質体の充填長は、排ガスの流量、有害成分の濃度、無機多孔質体の種類等により一概に限定できないが、通常は50〜1500mm程度、好ましくは100〜1000mm程度である。充填長が50mmより短い場合は有害成分の一部が分解されずに下流側に流出する虞があり、充填長が1500mmより長い場合は圧力損失が大きくなりすぎる虞がある。無機多孔質体に導入する際の排ガスの空筒線速度(LV)は、通常は100cm/s以下、好ましくは1〜50cm/sである。   The exhaust gas treatment method of the present invention is usually carried out by introducing exhaust gas containing an organic phosphorus compound and / or an organic arsenic compound into a pyrolysis cylinder filled with the above-mentioned inorganic porous material. The filling length of the inorganic porous body at that time cannot be generally limited by the exhaust gas flow rate, the concentration of harmful components, the type of inorganic porous body, etc., but is usually about 50 to 1500 mm, preferably about 100 to 1000 mm. . When the filling length is shorter than 50 mm, a part of harmful components may flow out downstream without being decomposed, and when the filling length is longer than 1500 mm, the pressure loss may become too large. The cylinder linear velocity (LV) of the exhaust gas when introduced into the inorganic porous body is usually 100 cm / s or less, preferably 1 to 50 cm / s.

また、有機燐化合物及び/または有機砒素化合物を、無機多孔質体に接触させて分解する際の温度条件は、通常は150〜1000℃、好ましくは200〜600℃である。分解温度が150℃より低い場合は有害成分の一部が分解されずに下流側に流出する虞があり、1000℃を超える場合は耐熱性の高い材料が要求される不都合がある。また、分解の際の排ガスの圧力条件は、通常は常圧または常圧近辺の圧力(50〜200KPa(絶対圧力))であるが、10KPa(絶対圧力)のような減圧下、あるいは1000KPa(絶対圧力)のような加圧下で操作することも可能である。   Moreover, the temperature conditions at the time of decomposing | disassembling an organic phosphorus compound and / or an organic arsenic compound in contact with an inorganic porous body are 150-1000 degreeC normally, Preferably it is 200-600 degreeC. When the decomposition temperature is lower than 150 ° C., there is a possibility that a part of harmful components may flow out downstream without being decomposed, and when it exceeds 1000 ° C., there is a disadvantage that a material having high heat resistance is required. The pressure condition of the exhaust gas at the time of decomposition is usually normal pressure or a pressure around normal pressure (50 to 200 KPa (absolute pressure)), but under reduced pressure such as 10 KPa (absolute pressure) or 1000 KPa (absolute It is also possible to operate under pressure such as pressure.

本発明の排ガスの処理方法により、有機燐化合物、有機砒素化合物を分解する際には、分解条件により燐、砒素の粉末が生成する。このことから、例えばターシャリーブチルホスフィンを、ホスフィンと炭化水素に分解する場合は、次の(式1)(式2)の反応が起こると推測される。他の有機燐化合物及び有機砒素化合物も(式1)(式2)と同様な反応が起こると考えられる。

Figure 0004833602
When the organic phosphorus compound and the organic arsenic compound are decomposed by the exhaust gas treatment method of the present invention, phosphorus and arsenic powders are generated depending on the decomposition conditions. From this, for example, when tertiary butylphosphine is decomposed into phosphine and hydrocarbon, it is presumed that the following reactions of (Formula 1) and (Formula 2) occur. Other organic phosphorus compounds and organic arsenic compounds are considered to undergo reactions similar to those in (Formula 1) and (Formula 2).
Figure 0004833602

従って、本発明の排ガスの処理方法においては、分解条件、加熱分解筒の構成条件によっては粉末状の燐または砒素が加熱分解筒に堆積し、圧力損失が徐々に大きくなる不都合が生じる。しかしながら、本発明においては、無機多孔質体として珪素を多く含む無機多孔質体を使用、有害成分を水蒸気の存在下で分解することにより、(式2)の反応を抑制し(式1)の反応が起りやすく制御することができ、前記の条件を併せて分解処理を行なうことにより燐または砒素の発生を極めて微量まで抑制することが可能である。尚、水蒸気を供給する場合、通常はモル数換算で有機燐化合物及び有機砒素化合物の合計の0.1〜10倍程度の水蒸気、好ましくは0.5〜2倍程度の水蒸気が供給される。但し、水蒸気量の上限は、ガス全体に対して20vol%程度である。 Therefore, in the exhaust gas treatment method of the present invention, powdery phosphorus or arsenic deposits on the thermal decomposition cylinder depending on the decomposition conditions and the configuration conditions of the thermal decomposition cylinder, resulting in a disadvantage that the pressure loss gradually increases. However, in the present invention, the inorganic porous body containing a large amount of silicon is used as the inorganic porous body, and the harmful component is decomposed in the presence of water vapor to suppress the reaction of (Formula 2) (Formula 1). This reaction can easily be controlled, and the generation of phosphorus or arsenic can be suppressed to a very small amount by performing the decomposition treatment in combination with the above conditions. In addition, when supplying water vapor | steam, normally about 0.1-10 times water vapor | steam of the sum total of an organic phosphorus compound and an organic arsenic compound, Preferably about 0.5-2 times water vapor | steam is supplied in conversion of the number of moles. However, the upper limit of the water vapor amount is about 20 vol% with respect to the entire gas.

本発明においては、通常はさらに、ホスフィン及び/またはアルシンと炭化水素を含む分解処理後のガスが、乾式浄化剤と接触して浄化される。この際に使用される乾式浄化剤としては、ホスフィン及び/またはアルシンを、充分に低濃度になるまで除去することができるものであれば特に制限されることはないが、例えば、有効成分として酸化銅、塩基性炭酸銅、または水酸化銅を含む浄化剤、あるいはこれに酸化マンガン等の金属酸化物が加えられた浄化剤、さらに有効成分として活性炭、合成ゼオライト、または天然ゼオライトからなる浄化剤等を挙げることができる。   In the present invention, usually, the gas after the decomposition treatment containing phosphine and / or arsine and hydrocarbon is purified by contact with a dry cleaning agent. The dry cleaning agent used in this case is not particularly limited as long as it can remove phosphine and / or arsine to a sufficiently low concentration. Purifiers containing copper, basic copper carbonate, or copper hydroxide, or cleaners to which metal oxides such as manganese oxide are added, and cleaners made of activated carbon, synthetic zeolite, or natural zeolite as active ingredients Can be mentioned.

本発明において、ホスフィン及び/またはアルシンと炭化水素を含むガスを浄化するときは、これらを含むガスが前記の浄化剤が充填された浄化筒に導入されるが、その際に流量コントロールされた酸素含有ガス(空気)を浄化剤に供給することができる。酸素含有ガスを供給すると、ホスフィン及び/またはアルシンの酸化反応が起こり発熱するが、ターシャリーブチルホスフィン、ターシャリーブチルアルシンの場合と比べて極めて穏やかであり、危険な状態になるほどの発熱ではない。また、ガスの発生はほとんど起こらない。この操作により、浄化筒の後処理の際に、浄化剤が空気と接触してもより安全となる。尚、酸素含有ガスの供給は、間欠的に行なうこともできる。   In the present invention, when purifying a gas containing phosphine and / or arsine and hydrocarbon, the gas containing these is introduced into a purification cylinder filled with the above-mentioned purifying agent. The contained gas (air) can be supplied to the purifier. When an oxygen-containing gas is supplied, an oxidation reaction of phosphine and / or arsine occurs to generate heat, but it is extremely mild as compared with tertiary butyl phosphine and tertiary butyl arsine, and does not generate enough heat to be in a dangerous state. Moreover, almost no gas is generated. This operation makes it safer even if the purifier comes into contact with air during the post-treatment of the purification cylinder. The oxygen-containing gas can be supplied intermittently.

本発明の排ガスに使用される処理装置は、以上のような処理を行なうための装置であり、図1に示すように、無機多孔質体が充填された加熱分解筒2、及びその後段にホスフィン及び/またはアルシンの乾式浄化剤が充填された浄化筒3を備えてなる装置である。本発明においては、さらに水蒸気含有ガスを加熱分解筒に供給するための配管5が備えられ、酸素含有ガスを浄化筒に供給するための配管6及び気体流量制御器7を備えることもできる。また、加熱分解筒に導入されるガスと加熱分解筒から排出されるガスは、熱交換器を通過させて熱効率の向上を図ることもできる。
また、有機燐化合物及び/または有機砒素化合物を含む排ガスを連続して処理するために、これらを2ライン以上配置する構成とすることもできる。このような処理装置の配置により、ラインを順次切替えながら排ガスを浄化処理することが可能となる。
The processing apparatus used for the exhaust gas of the present invention is an apparatus for performing the above-described processing. As shown in FIG. 1, the pyrolysis cylinder 2 filled with the inorganic porous material, and the phosphine in the subsequent stage. And / or a purification cylinder 3 filled with an arsine dry cleaning agent. In the present invention, a pipe 5 for supplying the steam-containing gas to the pyrolysis cylinder is further provided , and a pipe 6 and a gas flow rate controller 7 for supplying the oxygen-containing gas to the purification cylinder can also be provided. Further, the gas introduced into the thermal decomposition cylinder and the gas discharged from the thermal decomposition cylinder can be passed through the heat exchanger to improve the thermal efficiency.
Moreover, in order to process continuously the exhaust gas containing an organic phosphorus compound and / or an organic arsenic compound, it can also be set as the structure which arrange | positions these two or more lines. Such an arrangement of the processing apparatuses makes it possible to purify the exhaust gas while sequentially switching the lines.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(処理装置の製作)
無機多孔質体として市販のシリカゲル(100〜200meshの球状粒子、比表面積400m/g)を、側面にヒーターを備えた内径18mm、高さ400mmの加熱分解筒2に、充填長が200mmとなるように充填した。また、有効成分として酸化銅を90wt%以上、他の金属酸化物及びバインダーを10wt%以下の割合で含む浄化剤を、内径40mm、高さ300mmの浄化筒3に、充填長が100mmとなるように充填した。次に、加熱分解筒が上流側、浄化筒が下流側となるように配置するとともに、排ガス導入管1、処理後ガス排出管4、水蒸気含有ガス供給管5、酸素含有ガス供給管6、冷却器8等を結合して、図1に示すような処理装置を製作した。
(Manufacture of processing equipment)
Commercially available silica gel (100-200 mesh spherical particles, specific surface area 400 m 2 / g) as an inorganic porous body, filling length 200 mm in pyrolysis cylinder 2 having an inner diameter of 18 mm and a height of 400 mm equipped with a heater on the side surface Filled. Further, a purification agent containing 90 wt% or more of copper oxide as an active ingredient and 10 wt% or less of another metal oxide and a binder is added to the purification cylinder 3 having an inner diameter of 40 mm and a height of 300 mm so that the filling length becomes 100 mm. Filled. Next, the pyrolysis cylinder is arranged on the upstream side, and the purification cylinder is arranged on the downstream side, and the exhaust gas introduction pipe 1, the post-treatment gas discharge pipe 4, the steam-containing gas supply pipe 5, the oxygen-containing gas supply pipe 6, and the cooling A processing apparatus as shown in FIG.

(浄化試験)
シリカゲルの温度が350℃となるように加熱分解筒を昇温した。次に、有害成分としてターシャリーブチルホスフィン10000ppmを含む窒素ガスを、127ml/min(25℃)の流量で排ガス導入管から導入して、加熱分解筒でターシャリーブチルホスフィンをホスフィンと炭化水素に分解し、浄化筒でガス中のホスフィンを捕捉除去した。
(Purification test)
The pyrolysis cylinder was heated up so that the temperature of the silica gel was 350 ° C. Next, nitrogen gas containing 10,000 ppm of tertiary butylphosphine as a harmful component is introduced from the exhaust gas introduction pipe at a flow rate of 127 ml / min (25 ° C.), and the tertiary butylphosphine is decomposed into phosphine and hydrocarbons by a thermal decomposition cylinder. Then, phosphine in the gas was captured and removed by the purification cylinder.

ターシャリーブチルホスフィンを含む窒素ガスの処理中、10000ppmの水蒸気を含む窒素ガスを、127ml/min(25℃)の流量で加熱分解筒に供給し、20000ppmの酸素を含む窒素ガスを127ml/min(25℃)の流量で浄化筒に供給した。
尚、加熱分解筒から排出されたガスは、浄化筒に供給される前に50℃以下となるように冷却器により冷却した。
During the treatment of nitrogen gas containing tertiary butylphosphine, nitrogen gas containing 10,000 ppm of water vapor is supplied to the pyrolysis cylinder at a flow rate of 127 ml / min (25 ° C.), and nitrogen gas containing 20000 ppm of oxygen is 127 ml / min ( (25 ° C.).
Note that the gas discharged from the pyrolysis cylinder was cooled by a cooler so that the temperature was 50 ° C. or less before being supplied to the purification cylinder.

この間、加熱分解筒と浄化筒の間から、ガスの一部を約5分間隔でサンプリングして、ターシャリーブチルホスフィン、ブテン、ブタンの濃度を測定し、ターシャリーブチルホスフィンの分解率を測定するとともに、ブテン、ブタンの含有比率から燐の生成状況を推測した。また、浄化筒の出口から、ガスの一部を約5分間隔でサンプリングして、ホスフィンが検出されるまでの時間を測定し、浄化剤の浄化能力(浄化剤単位量当たりの有害成分の処理量)を求めた。また、浄化剤の発熱温度(到達最高温度−浄化開始直前の温度)を測定した。これらの結果を表1に示す。   During this time, a part of the gas is sampled at intervals of about 5 minutes from between the thermal decomposition cylinder and the purification cylinder, and the concentrations of tertiary butylphosphine, butene and butane are measured, and the decomposition rate of tertiary butylphosphine is measured. At the same time, the production status of phosphorus was estimated from the content ratio of butene and butane. Also, from the outlet of the purification cylinder, a part of the gas is sampled at intervals of about 5 minutes, and the time until the phosphine is detected is measured, and the purification capacity of the purification agent (treatment of harmful components per unit amount of the purification agent) Amount). Further, the exothermic temperature of the purifier (the highest temperature reached—the temperature immediately before the start of purification) was measured. These results are shown in Table 1.

[実施例2]
実施例1の浄化試験における有害成分をターシャリーブチルアルシンに替えたほかは実施例1と同様にして浄化試験を行なった。その結果を表1に示す。
[Example 2]
A purification test was conducted in the same manner as in Example 1 except that the harmful component in the purification test of Example 1 was replaced with tertiary butylarsine. The results are shown in Table 1.

[実施例3〜5、参考例
実施例1における無機多孔質体を、各々市販の合成ゼオライト(細孔径10Å相当)、多孔質ガラス(100〜200meshの粒状、平均細孔径40Å、比表面積200m/g)、粘土系多孔質体(平均50meshの粒状珪藻土、比表面積300m/g)、活性炭(8〜30meshの粒状、比表面積1000m/g)に替えたほかは実施例1と同様にして浄化試験を行なった。その結果を表1に示す。
[Examples 3 to 5, Reference Example ]
Each of the inorganic porous bodies in Example 1 is a commercially available synthetic zeolite (corresponding to a pore diameter of 10 mm), porous glass (100-200 mesh granules, average pore diameter of 40 mm, specific surface area 200 m 2 / g), clay-based porous body. A purification test was carried out in the same manner as in Example 1 except that the average diatomaceous earth with 50 mesh, specific surface area of 300 m 2 / g, and activated carbon (8-30 mesh with specific surface area of 1000 m 2 / g) were used. The results are shown in Table 1.

[比較例1]
(処理装置の製作)
有効成分として酸化銅を90wt%以上、他の金属酸化物及びバインダーを10wt%以下の割合で含む実施例1で使用した浄化剤と同様の浄化剤を、内径40mm、高さ300mmの浄化筒に、充填長が100mmとなるように充填した。次に、排ガス導入管、排出管、酸素含有ガス供給管等を結合して処理装置を製作した。
[Comparative Example 1]
(Manufacture of processing equipment)
A purifying agent similar to the purifying agent used in Example 1 containing 90 wt% or more of copper oxide as an active ingredient and 10 wt% or less of another metal oxide and a binder in a purifying cylinder having an inner diameter of 40 mm and a height of 300 mm. The filling length was 100 mm. Next, a treatment apparatus was manufactured by combining an exhaust gas introduction pipe, a discharge pipe, an oxygen-containing gas supply pipe, and the like.

(浄化試験)
続いて、有害成分としてターシャリーブチルホスフィン10000ppmを含む窒素ガス、及び10000ppmの酸素を含む窒素ガスを、各々127ml/min(25℃)の流量で浄化筒に導入して浄化を行なった。この間、浄化筒から排出されたガスの一部を約5分間隔でサンプリングし、ターシャリーブチルホスフィンが検出されるまでの時間を測定し、浄化剤の浄化能力(浄化剤単位量当たりの有害成分の処理量)を求めた。また、浄化剤の発熱温度(到達最高温度−浄化開始直前の温度)を測定した。これらの結果を表1に示す。
(Purification test)
Subsequently, nitrogen gas containing 10,000 ppm of tertiary butylphosphine as a harmful component and nitrogen gas containing 10,000 ppm of oxygen were introduced into the purification cylinder at a flow rate of 127 ml / min (25 ° C.) for purification. During this time, a part of the gas discharged from the purification cylinder is sampled at intervals of about 5 minutes, the time until tertiary butylphosphine is detected is measured, and the purification capacity of the purification agent (hazardous components per unit amount of the purification agent) The amount of processing was determined. Further, the exothermic temperature of the purifier (the highest temperature reached—the temperature immediately before the start of purification) was measured. These results are shown in Table 1.

[比較例2]
比較例1の浄化試験における有害成分をターシャリーブチルアルシンに替えたほかは比較例1と同様にして浄化試験を行なった。その結果を表1に示す。
[Comparative Example 2]
A purification test was conducted in the same manner as in Comparative Example 1 except that the harmful component in the purification test of Comparative Example 1 was replaced with tertiary butylarsine. The results are shown in Table 1.

Figure 0004833602
Figure 0004833602

以上のように、本発明の実施例は、急激な発熱を起こすことがなく比較的に安全である。また、浄化剤は優れた浄化能力で、有機燐化合物及び/または有機砒素化合物が分解して生成したホスフィン及び/またはアルシンを除去できることがわかる。   As described above, the embodiment of the present invention is relatively safe without causing sudden heat generation. Further, it can be seen that the purifying agent can remove phosphine and / or arsine generated by decomposition of the organic phosphorus compound and / or the organic arsenic compound with an excellent purifying ability.

本発明の排ガスの処理方法に使用される装置の一例を示す構成図The block diagram which shows an example of the apparatus used for the processing method of the waste gas of this invention

符号の説明Explanation of symbols

1 排ガス導入管
2 加熱分解筒
3 浄化筒
4 処理後ガス排出管
5 水蒸気含有ガス供給管
6 酸素含有ガス供給管
7 気体流量制御器
8 冷却器
DESCRIPTION OF SYMBOLS 1 Exhaust gas introduction pipe 2 Heat decomposition cylinder 3 Purification cylinder 4 Gas exhaust pipe after processing 5 Steam-containing gas supply pipe 6 Oxygen-containing gas supply pipe 7 Gas flow controller 8 Cooler

Claims (5)

有害成分として有機燐化合物及び/または有機砒素化合物を含む排ガスを、加熱下、水蒸気の存在下で、シリカゲル、ゼオライト、多孔質ガラス、及び粘土系多孔質から選ばれ、かつ珪素を含む無機多孔質体と接触させて、該有害成分を、ホスフィン及び/またはアルシンと、炭化水素に分解することを特徴とする排ガスの処理方法。 Inorganic porous material containing silicon, selected from silica gel, zeolite, porous glass, and clay-based porous material under heating and in the presence of water vapor , exhaust gas containing organic phosphorus compound and / or organic arsenic compound as harmful components A method for treating exhaust gas, which comprises decomposing the harmful components into phosphine and / or arsine and hydrocarbons in contact with a body. 有機燐化合物が、ターシャリーブチルホスフィン、イソブチルホスフィン、トリメチルホスフィン、またはトリエチルホスフィンである請求項1に記載の排ガスの処理方法。   The method for treating exhaust gas according to claim 1, wherein the organic phosphorus compound is tertiary butylphosphine, isobutylphosphine, trimethylphosphine, or triethylphosphine. 有機砒素化合物が、ターシャリーブチルアルシン、イソブチルアルシン、トリメチルアルシン、またはトリエチルアルシンである請求項1に記載の排ガスの処理方法。   The exhaust gas treatment method according to claim 1, wherein the organic arsenic compound is tertiary butyl arsine, isobutyl arsine, trimethyl arsine, or triethyl arsine. さらに、分解により生成したホスフィン及び/またはアルシンと炭化水素を含むガスを、ホスフィン及び/またはアルシンの乾式浄化剤と接触させて該ガスからホスフィン及び/またはアルシンを除去する請求項1に記載の排ガスの処理方法。   The exhaust gas according to claim 1, further comprising contacting a gas containing phosphine and / or arsine and hydrocarbon generated by decomposition with a phosphine and / or arsine dry cleaning agent to remove phosphine and / or arsine from the gas. Processing method. 流量コントロールされた酸素含有ガスを、ホスフィン及び/またはアルシンの乾式浄化剤に供給しながら浄化を行なう請求項に記載の排ガスの処理方法。 5. The exhaust gas treatment method according to claim 4 , wherein purification is performed while supplying a flow-controlled oxygen-containing gas to a phosphine and / or arsine dry purification agent.
JP2005205121A 2005-07-14 2005-07-14 Exhaust gas treatment method Expired - Fee Related JP4833602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205121A JP4833602B2 (en) 2005-07-14 2005-07-14 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205121A JP4833602B2 (en) 2005-07-14 2005-07-14 Exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2007021318A JP2007021318A (en) 2007-02-01
JP4833602B2 true JP4833602B2 (en) 2011-12-07

Family

ID=37782771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205121A Expired - Fee Related JP4833602B2 (en) 2005-07-14 2005-07-14 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP4833602B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568672B2 (en) 2009-03-27 2013-10-29 Sued-Chemie Catalysts Japan Inc. Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride
CN110813232A (en) * 2019-11-04 2020-02-21 北京敬科科技发展有限公司 Sulfur-resistant adsorbent for purifying yellow phosphorus tail gas and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415135A (en) * 1987-07-09 1989-01-19 Nissan Girdler Catalyst Honeycomb molded body and process for removing harmful component by using the molded body
JPH08141359A (en) * 1994-11-21 1996-06-04 Nippon Sanso Kk Method and apparatus for removing harmful material in harmful gas
JP2604989B2 (en) * 1994-11-30 1997-04-30 古河機械金属株式会社 Exhaust gas treatment agent
JP2006181493A (en) * 2004-12-28 2006-07-13 Japan Pionics Co Ltd Method of treating exhaust gas and treating device

Also Published As

Publication number Publication date
JP2007021318A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
KR100962695B1 (en) Method and apparatus for treating exhaust gas
JP4616497B2 (en) Desulfurization apparatus and desulfurization method
CA2990085C (en) Method and apparatus for removing nitrogen oxide and sulfur dioxide from gas streams
JP4350081B2 (en) Exhaust gas treatment method and apparatus
JP2009183950A (en) Process for purifying exhaust gas
JP2008546525A (en) Method and apparatus for detoxifying treatment
KR101097240B1 (en) Method and apparatus for treating exhaust gas
JP6332599B2 (en) Water treatment system
JP4833602B2 (en) Exhaust gas treatment method
JP2019534771A (en) Method for cryogenic gas purification and catalyst for use in the method
KR101960536B1 (en) Semiconductor dry scrubber system
KR100455009B1 (en) Cleaning method of exhaust gas containing ammonia/hydrogen mixtures and the apparatus therefor
KR100808618B1 (en) Process and apparatus for treating gas containing fluorine-containing compounds and co
KR100934304B1 (en) Fluorocarbon Decomposition Agent and Decomposition Method
TWI306776B (en) Method and apparatus for treating exhaust gases containing fluorine-containing compounds
JP6520557B2 (en) Exhaust gas purification apparatus and method, and apparatus for supplying carbon dioxide-containing gas and heat to a plant for crop production
JP2009149460A (en) Surface modification method of carbonaceous material, and carbonaceous material or activated carbon fiber
JP4156312B2 (en) Fluorocarbon decomposition treatment agent and decomposition treatment method
JP2006181493A (en) Method of treating exhaust gas and treating device
JP2002370014A (en) Exhaust gas treatment system
JP3908818B2 (en) Exhaust gas treatment method
JP3228459B2 (en) Decomposition method of halide gas
JP2009028647A (en) Exhaust gas treating method and device
KR20220086927A (en) Dust collector for the simultaneous treatment of dust and volatile organic compounds from exhaust gas
KR101448475B1 (en) Absorption material for removing PFC and acid gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees