JPS622127B2 - - Google Patents

Info

Publication number
JPS622127B2
JPS622127B2 JP18552181A JP18552181A JPS622127B2 JP S622127 B2 JPS622127 B2 JP S622127B2 JP 18552181 A JP18552181 A JP 18552181A JP 18552181 A JP18552181 A JP 18552181A JP S622127 B2 JPS622127 B2 JP S622127B2
Authority
JP
Japan
Prior art keywords
aftercooler
heat
regenerator
temperature side
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18552181A
Other languages
Japanese (ja)
Other versions
JPS5888409A (en
Inventor
Hisato Haraga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP18552181A priority Critical patent/JPS5888409A/en
Publication of JPS5888409A publication Critical patent/JPS5888409A/en
Publication of JPS622127B2 publication Critical patent/JPS622127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/02Hot gas positive-displacement engine plants of open-cycle type

Description

【発明の詳細な説明】 本発明はターボチヤージヤー、アフタークーラ
を装備したデイーゼルエンジンのランキングボト
ミング装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ranking bottoming device for a diesel engine equipped with a turbocharger and an aftercooler.

ターボチヤージヤー、アフタークーラを装備し
たデイーゼルエンジンの排ガスをランキンサイク
ルを通じて動力として回収し、主機関の動力と共
に取り出し、出力向上及び機関熱効率向上を図つ
たランキンボトミングエンジンの場合を考える。
Consider the case of a Rankine bottoming engine in which exhaust gas from a diesel engine equipped with a turbocharger and aftercooler is recovered as power through the Rankine cycle and extracted along with the power of the main engine to improve output and engine thermal efficiency.

ランキンサイクル用作動媒体としては、臨界温
度374℃、熱安定最高温度約600℃と高い水から、
フレオンR113の臨界温度214℃、熱安定最高温度
約175℃と低い冷媒等の数多くの作動媒体が使用
されている。
The working medium for the Rankine cycle is water, which has a critical temperature of 374℃ and a maximum thermal stability temperature of about 600℃.
Many working media are used, including Freon R113, which has a low critical temperature of 214°C and a maximum thermal stability temperature of approximately 175°C.

その中でターボチヤージヤー付のデイーゼルエ
ンジンの排ガス温度500℃程度ではトリフルオロ
エタノール(CF3CH2OH)と水(H2O)を等モ
ルづつ配合したフルオリノール50が一般に使用さ
れている。
Among them, Fluorinol 50, which is a mixture of equal moles of trifluoroethanol (CF 3 CH 2 OH) and water (H 2 O), is generally used when the exhaust gas temperature of diesel engines with turbocharging is around 500℃. .

第1図にフルオリノール50のT−S線図を示
す。第2図に従来のランキンボトミングエンジン
のシステム図を示す。
FIG. 1 shows a T-S diagram of Fluorinol 50. FIG. 2 shows a system diagram of a conventional Rankine bottoming engine.

→ フイードポンプ → 再生器吸熱側 → 蒸発器a → タービン仕事 → 再生器加熱側 → コンデンサーb である。→ Feed pump → Regenerator endothermic side → Evaporator a → Turbine work → Regenerator heating side → capacitor b It is.

第2図において蒸発器aで回収された排ガスエ
ネルギーの77%をコンデンサーbで放熱すること
になり、又冷却水とフルオリノール50の重量流量
の比は約32倍を必要とするので、冷却水用のラジ
エータcの放熱熱量と比較すると約1.2倍の容量
を必要とし、合計してラジエータcの約2.2倍の
熱容量を有する冷却器が必要で、また冷却用のフ
アン馬力もそれに伴つて大きくなる。
In Figure 2, 77% of the exhaust gas energy recovered in evaporator a is dissipated in condenser b, and the weight flow ratio of cooling water and fluorinol 50 needs to be about 32 times, so cooling water Compared to the amount of heat radiated by radiator c, a cooler with a total heat capacity of about 2.2 times that of radiator c is required, and the horsepower of the cooling fan increases accordingly. .

また、ターボチヤージヤーシステムで過給され
た空気をアフタークーラ(インタークーラ)dで
約80℃冷却していることは、排ガスエネルギーを
ターボチヤージヤーeで回収したエネルギーの約
60%程度をアフタークーラdの冷却水系でラジエ
ータcを通じて外部へ放熱している。
Additionally, the fact that the air supercharged by the turbocharger system is cooled by approximately 80°C in the aftercooler (intercooler) d means that the exhaust gas energy is approximately equal to the energy recovered by the turbocharger e.
Approximately 60% of the heat is radiated to the outside through radiator c in the cooling water system of aftercooler d.

この熱量はラジエータcの冷却熱量の約20%を
しめることになり、ラジエータcを大きくしフア
ン馬力を大きくしている。
This amount of heat accounts for approximately 20% of the cooling heat amount of radiator c, so radiator c is made larger to increase fan horsepower.

更に従来型のシステムでは排ガス出口温度は
136℃と低く硫酸腐食の問題がある。
Furthermore, in conventional systems, the exhaust gas outlet temperature is
There is a problem of sulfuric acid corrosion at a low temperature of 136℃.

本発明は上記の事情に鑑みなされたものであつ
て、その目的とするところは、ラジエータの熱交
換容量を約20%低減させフアン馬力も低減させる
ことができるし、加熱部の熱交換容量を約15%低
減でき、しかも硫酸腐食の問題のないデイーゼル
エンジンのランキンボトミング装置を提供するこ
とにある。
The present invention was developed in view of the above circumstances, and its purpose is to reduce the heat exchange capacity of the radiator by approximately 20%, reduce fan horsepower, and reduce the heat exchange capacity of the heating section. The object of the present invention is to provide a Rankine bottoming device for a diesel engine that can reduce the amount of water by about 15% and is free from the problem of sulfuric acid corrosion.

以下、本発明を第3図および第4図を参照して
説明する。
The present invention will be explained below with reference to FIGS. 3 and 4.

図面中1はエンジン、2はターボチヤージヤ
ー、3はフイードポンプ、4はアフタークーラ、
5はラジエータ、6はタービン、7は蒸発器、1
1は再生器、10はコンデンサーであつて、アフ
タークーラ4と再生器11とは一体型になされて
いる。
In the drawing, 1 is the engine, 2 is the turbocharger, 3 is the feed pump, 4 is the aftercooler,
5 is a radiator, 6 is a turbine, 7 is an evaporator, 1
1 is a regenerator, 10 is a condenser, and the aftercooler 4 and the regenerator 11 are integrated.

フイードポンプ3の吐出側は再生器11の一方
の低温側11aに接続してあり、再生器11の一
方の高温側11bは蒸発器7の一方の低温側7a
に接続してあり、蒸発器7の一方の高温側7bは
タービン6の入口側に接続してあり、タービン6
の出口側は再生器11の他方の高温側11cに接
続してあり、再生器11の他方の低温側11dは
コンデンサー10の一方の高温側10aに接続し
てあり、コンデンサー10の一方の低温側10b
はフイードポンプ3の吸込側に接続してある。
The discharge side of the feed pump 3 is connected to one low temperature side 11a of the regenerator 11, and one high temperature side 11b of the regenerator 11 is connected to one low temperature side 7a of the evaporator 7.
One high temperature side 7b of the evaporator 7 is connected to the inlet side of the turbine 6.
The outlet side of is connected to the other high temperature side 11c of the regenerator 11, the other low temperature side 11d of the regenerator 11 is connected to one high temperature side 10a of the condenser 10, and the other low temperature side of the condenser 10 is connected to the high temperature side 11c of the condenser 10. 10b
is connected to the suction side of the feed pump 3.

ターボチヤージヤー2のコンプレツサ8の吐出
側はアフタークーラ4の他方の高温側4aに接続
してあり、アフタークーラ4の他方の低温側4b
はエンジン1の吸気側に接続してあり、エンジン
1の排気側はターボチヤージヤー2のタービン9
の入口側に接続してあり、タービン9の出口側は
蒸発器7の他方の高温側7cに接続してあり、蒸
発器7の他方の低温側7dは大気に開口してい
る。
The discharge side of the compressor 8 of the turbocharger 2 is connected to the other high temperature side 4a of the aftercooler 4, and is connected to the other low temperature side 4b of the aftercooler 4.
is connected to the intake side of engine 1, and the exhaust side of engine 1 is connected to turbine 9 of turbocharger 2.
The outlet side of the turbine 9 is connected to the other high temperature side 7c of the evaporator 7, and the other low temperature side 7d of the evaporator 7 is open to the atmosphere.

エンジン1の冷却部の出口側はラジエータ5の
高温側5aに接続してあり、ラジエータ5の低温
側5bはエンジン1の冷却部の入口側に接続して
ある。
The outlet side of the cooling section of the engine 1 is connected to the high temperature side 5a of the radiator 5, and the low temperature side 5b of the radiator 5 is connected to the inlet side of the cooling section of the engine 1.

しかして、ターボチヤージヤー2のコンプレツ
サ8を出た高温空気はアフタークーラ4の高温側
4aに入り、これの低温側4bからエンジン1の
吸気側に入る。アフタークーラ4で開放された熱
は再生器11を流れるランキンサイクルの作動媒
体を加熱する。
The high-temperature air leaving the compressor 8 of the turbocharger 2 enters the high-temperature side 4a of the aftercooler 4, and enters the intake side of the engine 1 from the low-temperature side 4b. The heat released by the aftercooler 4 heats the Rankine cycle working medium flowing through the regenerator 11.

すなわち、アフタークーラ4の冷却器をランキ
ンサイクルの作動媒体の加熱器として利用するこ
とになる。
That is, the cooler of the aftercooler 4 is used as a heater for the working medium of the Rankine cycle.

このために、ラジエータ5の熱交換容量を約20
%低減させ、フアン馬力も低減できることにな
る。
For this purpose, the heat exchange capacity of radiator 5 is increased to approximately 20
%, and fan horsepower can also be reduced.

また、加熱部の熱交換容量を約15%低減でき伝
熱面積に換算すると20%の低減になる。
Additionally, the heat exchange capacity of the heating section can be reduced by approximately 15%, resulting in a 20% reduction in heat transfer area.

また硫酸腐食の危険性をさけるために最小限必
要とされる温度レベル170゜〜200℃まで上げよう
とすると排熱回収率 ターボ出口温度−大気温度/排ガス出口温度
−大気温度 を悪くし、結果的にランキンボトミングシステム
の効率を悪くする。
In addition, if you try to raise the temperature to the minimum required level of 170° to 200°C to avoid the risk of sulfuric acid corrosion, the exhaust heat recovery rate will deteriorate. This makes the Rankin bottoming system less efficient.

しかし、本発明に係るランキンボトミング装置
では第4図に示すように排ガス出口温度を136℃
(Pass)から200℃(Pass)に上げた場合、
上式で定義される排熱回収率は低下するが、排熱
回収しきれなかつた分を空気を180℃から100℃ま
で冷却するための熱量で回収することになり、ラ
ンキンサイクルに供給される熱量は変わらず結果
的にはランキンボトミングシステムの効率自体は
変わらない。
However, in the Rankine bottoming device according to the present invention, the exhaust gas outlet temperature is set to 136°C as shown in Figure 4.
When increasing from (Pass) to 200℃ (Pass),
Although the exhaust heat recovery rate defined by the above formula decreases, the amount of heat that cannot be recovered will be recovered with the amount of heat needed to cool the air from 180℃ to 100℃, which will be supplied to the Rankine cycle. The amount of heat does not change, and as a result, the efficiency of the Rankin bottoming system itself does not change.

なお、第4図は従来のランキンボトミング装置
と本発明に係るランキンボトミング装置の、フル
オリノール50を作動媒体としたランキンサイクル
を利用した場合の排熱回収線図を示す。第4図に
おいてPassは従来のランキンボトミング装置
の場合、Passは本発明に係るランキンボトミ
ング装置の場合である。
Incidentally, FIG. 4 shows exhaust heat recovery diagrams of a conventional Rankine bottoming device and a Rankine bottoming device according to the present invention when using a Rankine cycle using fluorinol 50 as a working medium. In FIG. 4, Pass is the case of the conventional Rankine bottoming device, and Pass is the case of the Rankine bottoming device according to the present invention.

またREは再生器11の熱交換熱量、RE+RC
は再生器11+アフタークーラ4の熱交換熱量、
Eは蒸発器7の熱交換器である。
In addition, R E is the amount of heat exchanged in the regenerator 11, R E +R C
is the heat exchange heat amount of regenerator 11 + aftercooler 4,
G E is a heat exchanger of the evaporator 7.

本発明は以上詳述したようにアフタークーラ4
を再生器11と一体型にすると共にアフタークー
ラ4をランキンサイクルの作動流体の加熱器とし
たから、ラジエータ5の熱交換容量を約20%低減
させフアン馬力も低減させることができるし、加
熱部の熱交換容量を約15%低減でき、更には硫酸
腐食の危険性を防止することができる。
As described in detail above, the present invention provides an aftercooler 4.
Since the aftercooler 4 is integrated with the regenerator 11 and the aftercooler 4 is used as a heater for the Rankine cycle working fluid, the heat exchange capacity of the radiator 5 can be reduced by about 20%, and the fan horsepower can also be reduced. It is possible to reduce the heat exchange capacity by approximately 15% and furthermore prevent the risk of sulfuric acid corrosion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフルオリノール50のT−S線図、第2
図は従来のデイーゼルエンジンのランキンボトミ
ング装置の構成説明図、第3図は本発明一実施例
の構成説明図、第4図は排熱回収線図である。 4はアフタークーラ、1は再生器。
Figure 1 is the T-S diagram of Fluorinol 50, Figure 2 is the T-S diagram of Fluorinol 50.
FIG. 3 is an explanatory diagram of the configuration of a conventional Rankine bottoming device for a diesel engine, FIG. 3 is an explanatory diagram of the configuration of an embodiment of the present invention, and FIG. 4 is an exhaust heat recovery diagram. 4 is an aftercooler, 1 is a regenerator.

Claims (1)

【特許請求の範囲】[Claims] 1 アフタークーラ4を再生器11と一体型にす
ると共にアフタークーラ4をランキンサイクルの
作動流体の加熱器としたことを特徴とするデイー
ゼルエンジンのランキンボトミング装置。
1. A Rankine bottoming device for a diesel engine, characterized in that an aftercooler 4 is integrated with a regenerator 11, and the aftercooler 4 is used as a heater for Rankine cycle working fluid.
JP18552181A 1981-11-20 1981-11-20 Ranking bottoming device of diesel engine Granted JPS5888409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18552181A JPS5888409A (en) 1981-11-20 1981-11-20 Ranking bottoming device of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18552181A JPS5888409A (en) 1981-11-20 1981-11-20 Ranking bottoming device of diesel engine

Publications (2)

Publication Number Publication Date
JPS5888409A JPS5888409A (en) 1983-05-26
JPS622127B2 true JPS622127B2 (en) 1987-01-17

Family

ID=16172240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18552181A Granted JPS5888409A (en) 1981-11-20 1981-11-20 Ranking bottoming device of diesel engine

Country Status (1)

Country Link
JP (1) JPS5888409A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962056B2 (en) 2002-11-13 2005-11-08 Carrier Corporation Combined rankine and vapor compression cycles
US7146813B2 (en) 2002-11-13 2006-12-12 Utc Power, Llc Power generation with a centrifugal compressor
US6880344B2 (en) 2002-11-13 2005-04-19 Utc Power, Llc Combined rankine and vapor compression cycles
US6892522B2 (en) 2002-11-13 2005-05-17 Carrier Corporation Combined rankine and vapor compression cycles
US6989989B2 (en) 2003-06-17 2006-01-24 Utc Power Llc Power converter cooling
US7013644B2 (en) 2003-11-18 2006-03-21 Utc Power, Llc Organic rankine cycle system with shared heat exchanger for use with a reciprocating engine
US7017357B2 (en) 2003-11-18 2006-03-28 Carrier Corporation Emergency power generation system
US7100380B2 (en) * 2004-02-03 2006-09-05 United Technologies Corporation Organic rankine cycle fluid
US7665304B2 (en) 2004-11-30 2010-02-23 Carrier Corporation Rankine cycle device having multiple turbo-generators
US9103249B2 (en) 2012-02-29 2015-08-11 Caterpillar Inc. Flywheel mechanical energy derived from engine exhaust heat
JP2015086778A (en) * 2013-10-30 2015-05-07 いすゞ自動車株式会社 Engine cooling system
JP2015086779A (en) * 2013-10-30 2015-05-07 いすゞ自動車株式会社 Engine cooling system

Also Published As

Publication number Publication date
JPS5888409A (en) 1983-05-26

Similar Documents

Publication Publication Date Title
RU2566207C2 (en) Off-heat recovery system with partial recuperation
US7013644B2 (en) Organic rankine cycle system with shared heat exchanger for use with a reciprocating engine
US9074492B2 (en) Energy recovery arrangement having multiple heat sources
JPS622127B2 (en)
JP2015086779A (en) Engine cooling system
US4069672A (en) Waste heat converter for an internal combustion engine
JP6186866B2 (en) Engine cooling system
CN106703994B (en) A kind of gas turbine integrates the power assembly system of rankine cycle
CN109186116B (en) Air circulation heat pump system adopting turbocharger
JPH0354327A (en) Surplus power utilizing system
CN111527297A (en) Device for converting thermal energy from heat lost from an internal combustion engine
CN108716435A (en) A kind of pressurization system of internal combustion engine of integrated waste heat recovery
JPH0213131B2 (en)
RU168451U1 (en) Deep-cooled Combined Engine Air Supply System
JPH0278736A (en) Gas turbine equipment
JP3400701B2 (en) Waste heat absorption cogeneration system
CN110631281A (en) Natural cooling refrigerating system
JP2012067656A (en) Egr gas cooling device
JPS6032532Y2 (en) Engine-driven heat pump hot water generator
JP2013217222A (en) Rankine-cycle device
CN212778032U (en) Efficient heat recovery condensation constant device
CN212479398U (en) Gas inlet system of distributed energy station gas internal combustion engine cooled by using chilled water
CN216924819U (en) Skid-mounted integrated device for combined heat and power supply
CN208885382U (en) A kind of air-cooled integral type cooler of water cooling for internal combustion engine
JPS60224937A (en) Engine with supercharger