JPS60224937A - Engine with supercharger - Google Patents

Engine with supercharger

Info

Publication number
JPS60224937A
JPS60224937A JP59080925A JP8092584A JPS60224937A JP S60224937 A JPS60224937 A JP S60224937A JP 59080925 A JP59080925 A JP 59080925A JP 8092584 A JP8092584 A JP 8092584A JP S60224937 A JPS60224937 A JP S60224937A
Authority
JP
Japan
Prior art keywords
cooling water
engine
intake air
supercharger
air cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59080925A
Other languages
Japanese (ja)
Inventor
Haruo Okimoto
沖本 晴男
Seiji Tajima
誠司 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59080925A priority Critical patent/JPS60224937A/en
Publication of JPS60224937A publication Critical patent/JPS60224937A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/005Cooling of pump drives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To contrive the cooling water to be circulated while controlled to a required flow and improve cooling efficiency of an engine, by arranging a supercharger and an intake air cooler, which are required to be cooled respectively to almost the same extent, to be built in a cooling water circulative path provided independetly of a cooling system in the main unit of the engine. CONSTITUTION:If the first water pump 9 operates as an engine 1 starts, cooling water, before its temperature reaches a predetermined value, is allowed to flow in a bypass passage bypassing the first heat exchanger 6, circulating in the main unit 2 of the engine. And the cooling water, if its temperature reaches the predetermined value, circulates in a part between the main unit 2 of the engine and the first heat exchanger 6 through passages 8a, 8b. On the other hand, if the second water pump 11 operates, the cooling water is allowed to flow in an intake air cooler 4, turbosupercharger 3 and the second heat exchanger 7, returning to the water pump 11. In this way, the cooling water cools in the intake air cooler 4 the intake air from the turbosupercharger 3, and its bearing part 19 in the side of a turbine is cooled by the cooling water flowing in a water jacket 32.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、過給機付エンジンに関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a supercharged engine.

(従来技術) 過給機付エンジンの一例が実開昭67−.2♂号公報に
記載されている。このエンジンの過給機はターボ過給機
であり、この従来技術はタービン側軸受部近傍に冷却材
のジャケットを設け、エンジン本体と熱交換器との間で
冷却材を循環せしめる冷却水循環路中に上記ジャケット
をエンジン本体に対し直列に接続し、エンジン冷却材で
過給機を冷却しようきするものである。
(Prior art) An example of an engine with a supercharger is the 1986 Utility Model. It is described in Publication No. 2♂. The supercharger of this engine is a turbo supercharger, and this conventional technology includes a coolant jacket provided near the bearing on the turbine side, and a cooling water circulation path that circulates the coolant between the engine body and the heat exchanger. The jacket is connected in series to the engine body, and the supercharger is cooled with engine coolant.

かかる従来技術においては、エンジン本体が要求する冷
却材流量を確保するために、過給機にも大量の冷却材を
流す必要があり、過給機の過冷却を招き、例えは、ター
ボ過給機の場合は排気ガス温度が低下して2次エアや触
媒による排気ガスの浄化が困難になる憾みがある。逆に
言えば、過給機の運転状態に応じて冷却材の流量を制御
しようとしても、エンジン本体においては十分な冷却が
されず、過熱を招く不具合がある。
In such conventional technology, in order to secure the coolant flow rate required by the engine body, it is necessary to flow a large amount of coolant to the supercharger, which leads to overcooling of the supercharger. In the case of aircraft, there is a concern that the exhaust gas temperature will drop, making it difficult to purify the exhaust gas using secondary air or a catalyst. Conversely, even if an attempt is made to control the flow rate of the coolant according to the operating state of the supercharger, the engine body is not sufficiently cooled, resulting in overheating.

(発明の目的) 本発明は、過給機付エンジンにおいて、エンジン本体の
冷却システムと過給機の冷却システムとを切離し、過給
機をその冷却要求に見合った冷却水流量でもって冷却で
きるようにしようとするものであり、同時に、この過給
機と冷却の要求が略一致するエンジン関連流体を選び、
この過給機と合わせて当該エンジン関連流体を効率よ(
冷却することができるようにすることを目的とする。
(Object of the Invention) The present invention provides a supercharged engine in which the cooling system of the engine body and the cooling system of the supercharger are separated, and the supercharger can be cooled with a cooling water flow rate commensurate with its cooling requirements. At the same time, we select an engine-related fluid whose cooling requirements roughly match those of this supercharger.
Together with this supercharger, the engine-related fluid becomes more efficient (
The purpose is to be able to cool down.

(発明の構成) 本発明は、水冷式の過給機をもつエンジンにおいて、こ
の過給機と冷却の要求が略一致するものとして過給機か
らの吸気を冷却する吸気冷却器を特定し、この過給機と
吸気冷却器とをエンジン本体の冷却システムに対して独
立した冷却システムに組込み、この過給機側の冷却シス
テムにおいて冷却水流量を簡単に制御することができる
ようにしたことを特徴とする。
(Structure of the Invention) In an engine having a water-cooled supercharger, the present invention specifies an intake air cooler that cools intake air from the supercharger as having substantially the same cooling requirements as that of the supercharger, The supercharger and intake air cooler are integrated into a cooling system independent of the engine cooling system, making it possible to easily control the flow rate of cooling water in the cooling system on the supercharger side. Features.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図にはターボ過給機付エンジン1の全体構成が示さ
れている。同エンジン1において、2はシリンダへノド
2a、シリンダブロック2bおよヒオイルパン2Cをも
つエンジン本体、3はエンジンの排気エネルギーを利用
して吸気を予圧する水冷式ターボ過給機、4はターボ過
給機6から吸気管5を介してエンジン本体2に供給され
る吸気を冷却する水冷式吸気冷却器である。また、6は
エンジン本体2からの冷却水を冷却する第1熱交換器(
ラジェータ)、7はターボ過給機6および冷却器4から
の冷却水を冷却する第2熱交換器(ラジェータ)である
FIG. 1 shows the overall configuration of a turbocharged engine 1. As shown in FIG. In the same engine 1, 2 is an engine body having a cylinder nozzle 2a, a cylinder block 2b, and an oil pan 2C, 3 is a water-cooled turbo supercharger that precompresses intake air using engine exhaust energy, and 4 is a turbo supercharger. This is a water-cooled intake air cooler that cools intake air supplied from the engine 6 to the engine body 2 via the intake pipe 5. In addition, 6 is a first heat exchanger (
radiator), 7 is a second heat exchanger (radiator) that cools the cooling water from the turbocharger 6 and the cooler 4.

そうして、エンジン本体2と第1熱交換器6とは、第1
熱交換器6内の冷却水をエンジン本体2へ矢符Aて示す
如く導く第1A冷却水通路8aと、エンジン本体2内の
冷却水を第1熱交換器6へ矢符Bて示す如く導く第1B
冷却水通路8bとて接続されている。そして、第1A冷
却水通路8dには第1ウオータポンプ9が介設されてお
り、エンジン本体2、第1熱交換器6、冷却水通路8a
Then, the engine main body 2 and the first heat exchanger 6 are connected to the first heat exchanger 6.
A first A cooling water passage 8a that guides the cooling water in the heat exchanger 6 to the engine main body 2 as shown by arrow A, and a first A cooling water passage 8a that guides the cooling water in the engine main body 2 to the first heat exchanger 6 as shown by arrow B. 1st B
It is connected to the cooling water passage 8b. A first water pump 9 is interposed in the first A cooling water passage 8d, and the engine main body 2, the first heat exchanger 6, and the cooling water passage 8a are interposed in the first A cooling water passage 8d.
.

8bおよび第1ウオータポンプ9て第7冷却水循環路が
構成されている。この場合、冷却水はエンジン本体2に
おいてシリンダブロック2bからシリンダヘッド2dへ
流れる。
8b and the first water pump 9 constitute a seventh cooling water circulation path. In this case, cooling water flows from the cylinder block 2b to the cylinder head 2d in the engine body 2.

一方、ターボ過給機3、吸気冷却器4および第2熱交換
器7は、上記第1冷却水循環路とは独立した第2冷却水
循環路に組込まれている。すなわち、この第2冷却水循
環路は、第1熱交換器Z内の冷却水を吸気冷却器4へ導
く第、2A冷却水通路10a、吸気冷却器4からターボ
過給機3へ冷却水を導く第2B冷却水通路10b、ター
ボ過給機3から第2熱交換器7へ冷却水を導く第20冷
却水通路10cとを備え、第、!A冷却水通路10b1
こ第2ウオータポンプ11が介設されている。第2冷却
水循環路における冷却水の流れは矢符Cて示されている
On the other hand, the turbocharger 3, intake air cooler 4, and second heat exchanger 7 are incorporated into a second cooling water circulation path independent of the first cooling water circulation path. That is, this second cooling water circulation path is a 2A cooling water passage 10a that leads the cooling water in the first heat exchanger Z to the intake air cooler 4, and a second cooling water passage 10a that leads the cooling water from the intake air cooler 4 to the turbo supercharger 3. It is equipped with a 2nd B cooling water passage 10b and a 20th cooling water passage 10c that guides cooling water from the turbo supercharger 3 to the second heat exchanger 7, and a 20th cooling water passage 10c. A cooling water passage 10b1
A second water pump 11 is provided. The flow of cooling water in the second cooling water circulation path is indicated by arrow C.

そして、上記吸気冷却器4はターボ過給機6よりも高位
置にあり、両者を接続する第、2B冷却水通路10bは
、通路途中にターボ過給機6側が吸気冷却器4側よりも
高位置となる部分がないように、つまりは通路途中に上
下のうねり部がないようにターボ過給機6より吸気冷却
器4まで上方へ遍びている。
The intake air cooler 4 is located at a higher position than the turbo supercharger 6, and the 2B cooling water passage 10b connecting the two is such that the turbo supercharger 6 side is higher than the intake air cooler 4 side in the middle of the passage. It extends upward from the turbocharger 6 to the intake air cooler 4 so that there is no part that becomes a position, that is, there is no vertical undulation in the middle of the passage.

ターボ過給機6の具体的構造は第2図および第3図に示
されている。
The specific structure of the turbocharger 6 is shown in FIGS. 2 and 3.

すなわち、両端にタービンホイール15とコンプレッサ
ホイール16とが設けられた回転軸17がベアリングハ
ウジング18の軸受部19.20に回転可能に支持され
、タービンホイール15はベアリングハウジング18の
一端に固定されたタービンハウジング21の排気通路2
2に、コンプレッサホイール16はベアリングハウジン
グ18の他端に固定されたコンプレッザハウジング26
の吸気通路24にそれぞれ配置されている。
That is, a rotating shaft 17 having a turbine wheel 15 and a compressor wheel 16 at both ends is rotatably supported by a bearing portion 19.20 of a bearing housing 18, and the turbine wheel 15 is a turbine fixed to one end of the bearing housing 18. Exhaust passage 2 of housing 21
2, the compressor wheel 16 is connected to a compressor housing 26 fixed to the other end of the bearing housing 18.
are arranged in the intake passages 24 of the.

ベアリングハウジング18には、オイルを導入するオイ
ル導入路25、このオイル導入路25から分岐して各軸
受部19.20のフロートベア ’Jソングフルフロー
トメタル)26.26にオイルを供給するオイル供給路
27.28および各軸受部19.20を経たオイルを回
収するオイル回収路29からなるオイル通路と、第3図
にも示す如くベアリングハウジング18の一側の冷却水
人口60からタービン側軸受部19を回って他側の冷却
水出口61に通じるウォータジャケット62とが形成さ
れている。
The bearing housing 18 includes an oil introduction path 25 that introduces oil, and an oil supply that branches off from this oil introduction path 25 and supplies oil to the float bears 'J Song Full Float Metal) 26.26 of each bearing section 19.20. 27, 28 and an oil recovery path 29 that recovers the oil that has passed through each bearing portion 19, 20, and a cooling water passage 60 on one side of the bearing housing 18 to the turbine side bearing portion as shown in FIG. 19 and a water jacket 62 which communicates with the cooling water outlet 61 on the other side is formed.

また、ベアリングハウジング18とタービンハウジング
21の間にはヒートインシュレータ36゜66が介設さ
れて、タービンハウジング21からベアリングハウジン
グ18への熱伝導を遮断する断熱層が形成されている。
Further, a heat insulator 36.degree. 66 is interposed between the bearing housing 18 and the turbine housing 21 to form a heat insulating layer that blocks heat conduction from the turbine housing 21 to the bearing housing 18.

なお、第2図で34はシールリング、65はメカニカル
シールであり、それぞれ排気通路22、吸気通路24と
オイル通路との間をシールしている。
In FIG. 2, 34 is a seal ring, and 65 is a mechanical seal, which seal between the exhaust passage 22, the intake passage 24, and the oil passage, respectively.

そうして、上記ウォータジャケット62の冷却水入口6
0には吸気冷却器4から延設された第2B冷却水通路1
0bの下流端が接続され、ウォータジャケット32の冷
却水出口31には第、2c冷却水通路10cの上流端が
接続されている。また、吸気通路24の出口端36は吸
気管5に接続されている。
Then, the cooling water inlet 6 of the water jacket 62
0 is a 2nd B cooling water passage 1 extending from the intake air cooler 4.
The downstream end of the second cooling water passage 10c is connected to the cooling water outlet 31 of the water jacket 32, and the upstream end of the second cooling water passage 10c is connected to the cooling water outlet 31 of the water jacket 32. Further, an outlet end 36 of the intake passage 24 is connected to the intake pipe 5.

上記ターボ過給機付エンジン1において、エンジン始動
に伴って第1ウオータポンプ9が作動ず2と、冷却水温
が第7B冷却水通路8bの上流端近傍に別途設けられた
サーモスタットの開弁温度になるまでは、冷却水は第1
熱交換器6を迂回するバイパス通路(図示省略)と通っ
てエンジン本体2内で循環する。冷却水温が上記開弁温
度を越えると、冷却水はエンジン本体2と第1熱交換器
6との間て第1Aおよび第1Bの冷却水通路8a。
In the turbocharged engine 1, when the first water pump 9 does not operate 2 when the engine starts, the cooling water temperature reaches the valve opening temperature of the thermostat separately installed near the upstream end of the 7B cooling water passage 8b. Cooling water is the first
It circulates within the engine body 2 through a bypass passage (not shown) that bypasses the heat exchanger 6. When the cooling water temperature exceeds the valve opening temperature, the cooling water flows between the engine main body 2 and the first heat exchanger 6 into the first A and first B cooling water passages 8a.

8bを介して循環する。8b.

一方、第2冷却水循環路においては、第2ウオータポン
プ11の作動により、このウォータポンプ11より吐出
された冷却水が吸気冷却器4、ターボ過給機6および第
2熱交換器7を順に通ってウォータポンプ11へ戻る。
On the other hand, in the second cooling water circulation path, when the second water pump 11 is operated, the cooling water discharged from the water pump 11 passes through the intake air cooler 4, the turbo supercharger 6, and the second heat exchanger 7 in this order. and return to water pump 11.

これにより、ターボ過給機6て予圧された吸気は吸気冷
却器4て冷却されてエンジン燃焼室に供給され、吸気の
充填効率が高くなるとともに、ターボ過給機6のタービ
ン側軸受部19はウォータジャケット62を流れる冷却
水で冷却されてその過熱が防止される。
As a result, the intake air pre-pressurized by the turbocharger 6 is cooled by the intake air cooler 4 and supplied to the engine combustion chamber, and the filling efficiency of the intake air is increased, and the turbine side bearing part 19 of the turbocharger 6 is It is cooled by the cooling water flowing through the water jacket 62 to prevent it from overheating.

この場合、第2冷却水循環路のターボ過給機6と吸気冷
却器4とは、その冷却の要求が略一致しており、この冷
却要求量に見合う流量の冷却水が第2冷却水循環路を流
れる。つまり、吸気管5を流れる吸気量はターボ過給機
乙の運転状態で決まり、吸気量の上昇とターボ過給機6
の温度上昇とは略比例し、また、吸気冷却器4を通過し
た冷却水温度(例えば乙θ〜7θ°C)はターボ過給機
3を冷却するのに逸した温度でもある。従って、第2冷
却水循環路の冷却水流量を吸気冷却器4の要求する値に
設定すれば、吸気と合わせてターボ過給機3をも同時に
効率よく冷却することかできる。
In this case, the cooling requirements of the turbo supercharger 6 and the intake air cooler 4 in the second cooling water circulation path are approximately the same, and a flow rate of cooling water corresponding to this cooling demand flows through the second cooling water circulation path. flows. In other words, the amount of intake air flowing through the intake pipe 5 is determined by the operating condition of the turbo supercharger B, and the increase in the intake air amount and the turbo supercharger 6
The temperature of the cooling water passing through the intake air cooler 4 (e.g., θ to 7θ° C.) is also the temperature lost to cooling the turbo supercharger 3. Therefore, by setting the cooling water flow rate in the second cooling water circulation path to a value required by the intake air cooler 4, it is possible to efficiently cool the turbo supercharger 3 as well as the intake air.

本実施例においては、エンジン運転状態(スロットル開
度、エンンン冷却水温、排気カス温度など)を検出し、
その検出値に基いて第2ウオータポンプ11の回転数を
制御し、第2冷却水循環路の冷却水流量を制御している
。従って、冷却水流量の制御により、ターボ過給機乙の
過熱や過冷却が防止されるとともに、吸気温度が吸気量
にかかわらず略一定となり、吸気の充填効率も安定する
In this embodiment, the engine operating state (throttle opening, engine cooling water temperature, exhaust gas temperature, etc.) is detected,
Based on the detected value, the rotation speed of the second water pump 11 is controlled, and the flow rate of the cooling water in the second cooling water circulation path is controlled. Therefore, by controlling the cooling water flow rate, overheating and overcooling of the turbo supercharger B are prevented, and the intake air temperature becomes substantially constant regardless of the intake air amount, and the intake air filling efficiency is also stabilized.

そして、ターボ過給機6を作動していてその後、エンジ
ンの運転を停止せしめると、この所謂キールオフ後は、
第2ウオータポンプ11による冷却水の流れがなくなる
ため、ターボ過給機乙の作動中に生じた熱がこのターボ
過給機乙に滞留した状態となり、これにより、特に高負
荷運転直後は、滞留熱によりウォータジャケット62の
冷却水か沸騰状態となり、気泡を生しることがある。し
かしながら、吸気冷却器4かターボ過給機6よりも高位
置にあって、第、2B冷却水通路10bがターボ過給機
6より吸気冷却器4まて1一方へ延ひていることから、
上記気泡は第、l 73冷却水通路10bを介して吸気
冷却器4に導かれ、この冷却器4内に溜ることになる。
Then, when the turbo supercharger 6 is operating and then the engine operation is stopped, after this so-called keel-off,
Since the flow of cooling water by the second water pump 11 is stopped, the heat generated during the operation of the turbocharger B remains in the turbocharger B, and as a result, especially immediately after high-load operation, the heat is The heat may cause the cooling water in the water jacket 62 to boil, creating bubbles. However, since the intake air cooler 4 is located at a higher position than the turbo supercharger 6, and the 2B cooling water passage 10b extends from the turbo supercharger 6 to one side of the intake air cooler 4 and 1,
The air bubbles are led to the intake air cooler 4 through the first cooling water passage 10b and are accumulated in the air cooler 4.

従って、この冷却器4は蓄圧室として機能し、ターボ過
給*、3のウオークジャケット62内およびその前後の
通路部での水圧1−ケ1が防止され、水漏れや冷却水管
の破裂も生しない。
Therefore, this cooler 4 functions as a pressure accumulation chamber, and water pressure 1-ke1 is prevented in the walk jacket 62 of the turbocharger*3 and in the passages before and after it, and water leakage and rupture of the cooling water pipes are also prevented. do not.

そして、吸気冷却器4に至る気泡(蒸気)はその冷却器
4内の冷却水との接触により凝縮して水圧も下がる。
Then, the bubbles (steam) reaching the intake air cooler 4 condense upon contact with the cooling water in the cooler 4, and the water pressure also decreases.

なお、上記実施例では、吸気冷却器4をターボ過給機6
の上流に設けたが、ターボ過給機乙の冷却効率を高める
ために、ターボ過給機3を吸気冷却器4の上流に設けて
もよい。
In the above embodiment, the intake air cooler 4 is connected to the turbo supercharger 6.
Although the turbocharger 3 is provided upstream of the intake air cooler 4, the turbocharger 3 may be provided upstream of the intake air cooler 4 in order to improve the cooling efficiency of the turbocharger B.

また、第2冷却水循環路での冷却水流量の制御は、第2
ウオータポンプ11の下流に流量制御弁を設けて吐出冷
却水の一部を第2ウオータポンプ11の上流側に戻す方
式や、ターボ過給機6および吸気冷却器4をバイパスす
る通路を設けてこの通路に可変式絞り弁を設は流量を制
御する方式などを採用してもよい。
In addition, the control of the cooling water flow rate in the second cooling water circulation path is controlled by the second cooling water circulation path.
This can be achieved by providing a flow control valve downstream of the water pump 11 to return a portion of the discharged cooling water to the upstream side of the second water pump 11, or by providing a passage that bypasses the turbo supercharger 6 and the intake air cooler 4. A variable throttle valve may be provided in the passage to control the flow rate.

さらに、上記実施例ではターボ過給機を用いたが、電動
モータやエンジン出力軸からの回転を用いて過給する機
械式過給機においても本発明を利用できることはもちろ
んである。
Furthermore, although a turbo supercharger was used in the above embodiment, it goes without saying that the present invention can also be applied to a mechanical supercharger that supercharges using rotation from an electric motor or an engine output shaft.

また、キーオフ後も第2ウオータポンプ11を所定時間
引き続いて作動し、冷却水を循環させて過給機での熱の
滞留を防止してもよい。
Further, the second water pump 11 may be operated for a predetermined period of time even after the key is turned off to circulate the cooling water and prevent heat from accumulating in the supercharger.

さらに、過給機と吸気冷却器とは第2冷却水循環路に並
列に組込んでもよい。
Furthermore, the supercharger and the intake air cooler may be installed in parallel in the second cooling water circulation path.

(発明の効果) 本発明によれば、それぞれ冷却の要求が略一致する過給
機と吸気冷却器とをエンジン本体の冷却系とは独立した
冷却水循環路をこ組込んだから、過給機および吸気冷却
器の要求に応じた流量に制御して冷却水を循環せしめる
ことが容易となり、冷却効率を向上させることができる
とともに、過給機の過熱や過冷却の防止、吸気温度の制
御による吸気充填効率の安定化を図ることができる。
(Effects of the Invention) According to the present invention, a cooling water circulation path independent from the cooling system of the engine body is incorporated into the supercharger and the intake air cooler, which have substantially the same cooling requirements. It becomes easy to circulate cooling water by controlling the flow rate according to the requirements of the intake air cooler, improving cooling efficiency, preventing overheating and overcooling of the supercharger, and controlling the intake air temperature. Filling efficiency can be stabilized.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様を例示し、第1図はターボ過給
機付エンジンの全体構成図、第2図はターボ過給機の縦
断面図、第3図は第2図のト」線での断面図である。 1・・・・・・ターボ過給機付エンジン、2・・・・・
・エンジン本体、6・・・・・・ターボ過給機、4・・
・・・・吸気冷却器、6 、7−−−−−−熱交換器、
8a 、 8b 、I Qa、10b。 10c・・・・・・冷却水通路、9,11・旧・・ウォ
ータポンプ、18・・・・・・ベアリングハウジング、
62・・・・・・ウオータジャケット
The drawings illustrate embodiments of the present invention; FIG. 1 is an overall configuration diagram of a turbocharged engine, FIG. 2 is a vertical sectional view of the turbocharger, and FIG. FIG. 1...Engine with turbo supercharger, 2...
・Engine body, 6... Turbo supercharger, 4...
...Intake air cooler, 6, 7---Heat exchanger,
8a, 8b, IQa, 10b. 10c... Cooling water passage, 9, 11 Old... Water pump, 18... Bearing housing,
62...Water jacket

Claims (1)

【特許請求の範囲】[Claims] (ハ ベアリングハウジングに冷却用のウォータジャケ
ットが設けられた過給機を有するエンジンにおいて、上
記過給機からエンジン本体へ供給される吸気を冷却水で
冷却する吸気冷却器とこの冷却水を冷却する熱交換器と
の間で冷却水を循環せしめる冷却水循環路がエンジン本
体の冷却系に対して独立して構成され、この冷却水循環
路に上記過給機のウォータシャケ、トが接続されている
ことを特徴とする過給機付エンジン。
(C) In an engine that has a supercharger with a cooling water jacket provided in the bearing housing, an intake air cooler that cools the intake air supplied from the supercharger to the engine body with cooling water, and an intake air cooler that cools this cooling water. A cooling water circulation path that circulates cooling water between the heat exchanger and the engine body cooling system is configured independently of the cooling system of the engine body, and the water sink of the supercharger is connected to this cooling water circulation path. A supercharged engine featuring
JP59080925A 1984-04-20 1984-04-20 Engine with supercharger Pending JPS60224937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59080925A JPS60224937A (en) 1984-04-20 1984-04-20 Engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59080925A JPS60224937A (en) 1984-04-20 1984-04-20 Engine with supercharger

Publications (1)

Publication Number Publication Date
JPS60224937A true JPS60224937A (en) 1985-11-09

Family

ID=13732004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59080925A Pending JPS60224937A (en) 1984-04-20 1984-04-20 Engine with supercharger

Country Status (1)

Country Link
JP (1) JPS60224937A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323212A2 (en) * 1987-12-28 1989-07-05 Honda Giken Kogyo Kabushiki Kaisha Cooling control system for internal combustion engines equipped with supercharges
EP0323210A2 (en) * 1987-12-28 1989-07-05 Honda Giken Kogyo Kabushiki Kaisha Cooling control system
JPH01177418A (en) * 1987-12-28 1989-07-13 Honda Motor Co Ltd Fail-safe controller for internal combustion engine with turbocharger
FR2993604A1 (en) * 2012-07-19 2014-01-24 Peugeot Citroen Automobiles Sa Supercharged combustion engine e.g. petrol engine, for car, has compressed air flow cooling loop and coolant loop provided in connection with each other such that coolant liquid flow passes from one loop to another loop
JP2014047713A (en) * 2012-08-31 2014-03-17 Toyota Motor Corp Cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323212A2 (en) * 1987-12-28 1989-07-05 Honda Giken Kogyo Kabushiki Kaisha Cooling control system for internal combustion engines equipped with supercharges
EP0323210A2 (en) * 1987-12-28 1989-07-05 Honda Giken Kogyo Kabushiki Kaisha Cooling control system
JPH01177418A (en) * 1987-12-28 1989-07-13 Honda Motor Co Ltd Fail-safe controller for internal combustion engine with turbocharger
FR2993604A1 (en) * 2012-07-19 2014-01-24 Peugeot Citroen Automobiles Sa Supercharged combustion engine e.g. petrol engine, for car, has compressed air flow cooling loop and coolant loop provided in connection with each other such that coolant liquid flow passes from one loop to another loop
JP2014047713A (en) * 2012-08-31 2014-03-17 Toyota Motor Corp Cooling device

Similar Documents

Publication Publication Date Title
RU2589556C2 (en) Engine system and method of reducing production cost thereof
EP3064733B1 (en) Engine cooling system
EP2286068B1 (en) Cooling arrangement for a supercharged internal combustion engine
US4918923A (en) Internal combustion engine turbosystem and method
US5669338A (en) Dual circuit cooling systems
CN1914412B (en) Arrangement for cooling exhaust gas and charge air
US3232044A (en) Supercharging apparatus
CN101302958A (en) Cooling device of internal combustion engine
GB2316445A (en) Cooling system for EGR, integral with main engine cooling system
US8695543B2 (en) Internal combustion engine cooling unit
CN102312714B (en) Cooling device of turbocharger of engine for vehicle
JPS6227248B2 (en)
JPS60204923A (en) Water cooling type cooling apparatus of overcharge type internal combustion engine
JPH102256A (en) Exhaust gas recirculation system (egr) for engine
CN104727927A (en) Engine cooling system
CN105275570A (en) Supercharging miniaturized engine dual-cooling system
CN108343500A (en) A kind of car engine cooling system
JP6477616B2 (en) Exhaust purification system cooling system
KR101534701B1 (en) Engine system having aluminum turbine housing
JPS60224937A (en) Engine with supercharger
JP6477615B2 (en) Exhaust purification system cooling system
US3797562A (en) Cooling systems of supercharged diesel engines
JPH0477137B2 (en)
JPS60224938A (en) Engine with turbosupercharger
CN105156196A (en) Cooling system of engine