JPS6221231A - Vapor-phase growing device - Google Patents

Vapor-phase growing device

Info

Publication number
JPS6221231A
JPS6221231A JP15988385A JP15988385A JPS6221231A JP S6221231 A JPS6221231 A JP S6221231A JP 15988385 A JP15988385 A JP 15988385A JP 15988385 A JP15988385 A JP 15988385A JP S6221231 A JPS6221231 A JP S6221231A
Authority
JP
Japan
Prior art keywords
susceptor
temperature
gaseous
substance
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15988385A
Other languages
Japanese (ja)
Inventor
Kenji Maruyama
研二 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15988385A priority Critical patent/JPS6221231A/en
Publication of JPS6221231A publication Critical patent/JPS6221231A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control easily and rapidly the feed amount of substance to be fed in a non-gaseous state by a method wherein the non-gaseous deposited substance feeding unit is provided with an additional heating means. CONSTITUTION:Reaction gas heating means 2 are provided on the outer side of a reaction tube 1 made of quartz and so forth, and a susceptor 3 which supports a wafer 5, a non-gaseous deposited substance feeding unit 4 (an example: an mercury reservoir) and the additional heating means 7 of the unit 4 is provided on the outer side of the tube 1. The feed amount of the non-gaseous deposited substance to be fed from the unit 4 can be controlled in a capacity and rapidly by the means 7. Moreover, as the susceptor 3 is formed of a conductive substance and alternating magnetic flux sources 8 for induction heating are provided in the vicinity of the susceptor 3, the temperature of the susceptor 3 can be controlled independently. Accordingly, the temperatures of the wall surface of the tube 1, the unit 4 and the susceptor 3 can be controlled independently.

Description

【発明の詳細な説明】 〔概要〕 Hg等高蒸気圧の物質を非気体状態で供給する方式の気
相成長に好適な気相成長装置である。
DETAILED DESCRIPTION OF THE INVENTION [Summary] This is a vapor phase growth apparatus suitable for vapor phase growth in which a substance with a high vapor pressure such as Hg is supplied in a non-gaseous state.

非気体状態で供給されるHg等高蒸気圧の物質の供給装
置に、付加的加熱手段を設け、この非気体状態で供給さ
れるHg等高蒸気圧の物質の供給量の制御を容易に迅速
になしうるようにしたものである。さらに、ウェーハを
支持するサセプタを導電性物質をもって形成し、この近
傍に高周波コイル等誘導加熱用交番磁束源を設け、サセ
プタの温度を他の領域の温度から独立・迅速に制御しう
るようにしたものである。
An additional heating means is provided in the supply device for a substance with a high vapor pressure such as Hg that is supplied in a non-gaseous state, and the amount of the substance with a high vapor pressure such as Hg that is supplied in a non-gaseous state can be easily and quickly controlled. It was designed so that it could be done. Furthermore, the susceptor that supports the wafer is made of a conductive material, and an alternating magnetic flux source for induction heating such as a high-frequency coil is installed in the vicinity of the susceptor, so that the temperature of the susceptor can be controlled quickly and independently from the temperature of other regions. It is something.

〔産業上の利用分野〕[Industrial application field]

本発明は、気相成長装置に関する。特に、Hg等高蒸気
圧の物質を構成物質の一つとする化合物半導体例えばH
g、lCdxTe等を気相成長するために、Hg等高蒸
気圧の物質を非気体状態で供給する気体成長法例えばメ
タルオーガニックCVD法等の実施に好適な気相成長装
置に関する。
The present invention relates to a vapor phase growth apparatus. In particular, compound semiconductors that have high vapor pressure substances such as Hg as one of their constituents, such as H
The present invention relates to a vapor phase growth apparatus suitable for carrying out a gas growth method such as a metal organic CVD method, in which a substance with a high vapor pressure such as Hg is supplied in a non-gaseous state in order to grow materials such as Hg, lCdxTe, etc. in a vapor phase.

〔従来の技術〕[Conventional technology]

従来技術に係る気相成長装置の一例を第2図に示す0図
において、1は反応管であり石英等よりなり、ガス送入
口11と、ガス排出口12と、ウェーハの装入・取出し
装置13とが設けられている。
An example of a vapor phase growth apparatus according to the prior art is shown in FIG. 13 are provided.

2は反応管加熱手段であり、抵抗加熱装置、高周波誘導
加熱装置等が一般である。3はウェー/\5を支持する
サセプタであり、グラファイト、石英等よりなる。4は
非気体状堆積物質(液状物質)供給装置であり、例えば
Hg等を供給するための容器である。
2 is a reaction tube heating means, which is generally a resistance heating device, a high frequency induction heating device, or the like. A susceptor 3 supports the wafer/\5 and is made of graphite, quartz, or the like. 4 is a non-gaseous deposited substance (liquid substance) supply device, which is a container for supplying, for example, Hg or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

と記せるとおり、従来技術に係る気相成長装置にあって
は1反応管加熱手段としては単一のヒータが使用されて
おり1反応管の所望の領域を任意の温度に制御しうるよ
うにされていない、特に。
As can be described, in the conventional vapor phase growth apparatus, a single heater is used as a means for heating one reaction tube, and a desired region of one reaction tube can be controlled to an arbitrary temperature. Especially not.

壁面の温度と、ウェーハの温度(サセプタの温度)と、
Hg溜め(非気体状堆積物質供給装置)の温度とを独立
に制御するようにされていない。
The wall temperature, the wafer temperature (susceptor temperature),
The temperature of the Hg reservoir (non-gaseous deposited material supply device) is not controlled independently.

ところで、Hg等高蒸気圧の物質を構成物質の一つとす
る化合物半導体例えばHg 1− 、Cd 、 T e
等を気相成長するときは、ウェーハの温度を比較的高く
例えば350〜450℃程度に保つことが望ましい。
By the way, compound semiconductors that have high vapor pressure substances such as Hg as one of their constituents, such as Hg 1-, Cd, T e
When vapor phase growth is performed, it is desirable to keep the temperature of the wafer relatively high, for example, about 350 to 450°C.

一方、I(g溜め(非気体状堆積物質供給装置)の温度
は比較的低く例えば230〜320℃程度に保つことが
望ましい、そして、壁面の温度はウェーハの温度とHg
溜め(非気体状堆積物質供給装置)の温度との中間の温
度に保つことが望ましい、堆積半導体の組成はウェーハ
の温度によって規定されるので、この温度が最も重要で
あり、壁面の温度が高いとこの面で堆積がなされ不経済
であり、壁面の温度が低いと蒸気圧特にHg蒸気圧が所
望の値からずれて堆積物の組成が不所望の値となり、t
ag溜め(非気体状堆積物質供給装置)の温度が高いと
Hg蒸気圧が上がりすぎるからである。
On the other hand, it is desirable to maintain the temperature of the I (g reservoir (non-gaseous deposition material supply device) at a relatively low level, for example, around 230 to 320 degrees Celsius, and the temperature of the wall surface is equal to the temperature of the wafer and Hg
It is desirable to maintain a temperature intermediate to that of the reservoir (non-gaseous deposition material supply device); this temperature is most important, since the composition of the deposited semiconductor is determined by the wafer temperature, and the temperature of the wall surface is high. Deposition occurs on this surface, which is uneconomical, and if the temperature of the wall surface is low, the vapor pressure, especially Hg vapor pressure, deviates from the desired value and the composition of the deposit becomes an undesired value.
This is because if the temperature of the ag reservoir (non-gaseous deposited material supply device) is high, the Hg vapor pressure will rise too much.

要するに、Hg等高蒸気圧の物質を構成物質の一つとす
る化合物半導体例えばHg1−、cd、Te等を気相成
長するときは、壁面の温度と、ウェーハの温度(サセプ
タの温度)と、)Ig溜め(非気体状堆積物質供給装置
)の温度とを独立に制御することができることが望まし
い。
In short, when growing a compound semiconductor such as Hg1-, CD, Te, etc., in a vapor phase, which has a high vapor pressure substance such as Hg as one of its constituents, the temperature of the wall surface, the temperature of the wafer (temperature of the susceptor), It is desirable to be able to control the temperature of the Ig reservoir (non-gaseous deposition material supply device) independently.

本発明の目的は、この要請に応えて、堆積物質の一部に
高蒸気圧の物質を例えばHgが含まれ、これが非気体状
で供給される場合の気相成長に好適な気相成長装置、特
にHg1□Cd□Te等のメタルオーガニックCVD法
等に好適な気相成長装置を提供することにある。′ 〔問題点を解決するための手段〕 上記の目的を達成するために本発明が採った手段は、反
応管lと反応管加熱手段2と、ウェーハを支持するサセ
プタ3と非気体状堆積物質供給装置4とを有する気相成
長装置の非気体状堆積物質供給装置4に付加的加熱手段
7を追加したことにある。
In response to this demand, an object of the present invention is to provide a vapor phase growth apparatus suitable for vapor phase growth when a part of the deposited material contains a substance with a high vapor pressure, such as Hg, and is supplied in a non-gaseous state. In particular, it is an object of the present invention to provide a vapor phase growth apparatus suitable for metal organic CVD methods such as Hg1□Cd□Te. [Means for Solving the Problems] The means taken by the present invention to achieve the above object are as follows: a reaction tube 1, a reaction tube heating means 2, a susceptor 3 for supporting a wafer, and a non-gaseous deposited substance. The present invention consists in that an additional heating means 7 is added to the non-gaseous deposition material supply device 4 of the vapor phase growth apparatus having the supply device 4.

さらに、上記のサセプタ3をグラファイト等導電性物質
とし、このサセプタ3の近傍に誘導加熱用交番磁束源8
を設けるとさらに効果的である。
Furthermore, the susceptor 3 is made of a conductive material such as graphite, and an alternating magnetic flux source 8 for induction heating is provided near the susceptor 3.
It is even more effective if .

〔作用〕[Effect]

Hg等高蒸気圧の物質を構成物質の一つとする化合物半
導体例えばHg1□Cdx丁e等を気相成長するときに
、壁面の温度と、ウェーハの温度(サセプタの温度)と
、Hg溜め(非気体状堆積物質供給装置りの温度とを独
立に制御することが望ましいことは上記のとおりである
When performing vapor phase growth of a compound semiconductor such as Hg1□CdxDx, which has a high vapor pressure substance such as Hg as one of its constituents, the temperature of the wall surface, the temperature of the wafer (temperature of the susceptor), and the Hg reservoir (non- As mentioned above, it is desirable to control the temperature of the gaseous deposition material supply device independently.

高蒸気圧物質が非気体状で供給される場合、上記の要請
に応えるためには、Hg溜め(非気体状堆積物質供給装
置)に付加的加熱手段を設けておき、これの温度を壁面
の温度と独立に制御しうるようにしておくことが最も容
易であり、かつ、迅速な温度制御が可能であり、応答性
向上の点からも望ましい、さらに、サセプタを導電性と
しておき、その近傍に高周波磁束源をおいて誘導加熱方
式をもってウェーハの温度も壁面の温度と独立に制御し
うるようにしておくことが有利である。
When the high vapor pressure substance is supplied in a non-gaseous state, in order to meet the above requirements, an additional heating means is provided in the Hg reservoir (non-gaseous deposited material supply device), and the temperature of the Hg reservoir is adjusted to the temperature of the wall surface. It is easiest to control the temperature independently of the temperature, and it is also possible to control the temperature quickly, which is desirable from the standpoint of improving responsiveness. It is advantageous to use an induction heating method using a high frequency magnetic flux source so that the temperature of the wafer can be controlled independently of the temperature of the wall surface.

〔実施例〕〔Example〕

以下、図面を参照しつ一1本発明の一実施例に係る気相
成長装置についてさらに説明する。
Hereinafter, a vapor phase growth apparatus according to an embodiment of the present invention will be further described with reference to the drawings.

第1図参照 図において、1は反応管であり石英等よりなり、ガス送
入口11と、ガス排出口12と、ウェーハの装入・取出
し装713とが設けられている。2は反応管加熱手段で
あり、この例においては抵抗加熱方式である。3はウェ
ーハ5を支持するサセプタであり、この例においては、
導電性とするためグラファイト製である。4は非気体状
堆積物質(液状物質)供給装置であり、この例において
は、Hg溜めである。7が本発明の要旨に係る付加的加
熱手段であり、この例においては抵抗加熱装置である。
Referring to FIG. 1, a reaction tube 1 is made of quartz or the like, and is provided with a gas inlet 11, a gas outlet 12, and a wafer loading/unloading device 713. 2 is a reaction tube heating means, which in this example is of a resistance heating type. 3 is a susceptor that supports the wafer 5, and in this example,
It is made of graphite to make it conductive. 4 is a non-gaseous deposited material (liquid material) supply device, which in this example is an Hg reservoir. 7 is an additional heating means according to the gist of the invention, which in this example is a resistance heating device.

8が本発明の実施例に係る誘導加熱用交番磁束源であり
、この例においては高周波コイルである。
8 is an alternating magnetic flux source for induction heating according to an embodiment of the present invention, which is a high frequency coil in this example.

上記の構造を有する気相成長装置を使用して、CdTe
基板上にHg1□CdxTe層を形成するにあったでは
、サセプタ3にGdTe基板5を11し、ガス送入口1
1からCdとTeとを気体状で(メチル化カドミウムと
エチル化カドミウムとの形態で)流速1〜50履/秒を
もって供給しながら、反応管加熱手段2と付加加熱手段
7と誘導加熱用交番磁束源8とをあわせて使用しながら
、非気体状堆積物質(液状物質)供給装置(Hg溜め)
4の温度と反応管壁面の温度とCdTe基板5の温度と
を独立に制御する。そして、非気体状堆積物質(液状物
質)供給装置(Hg溜め)4の温度を230〜320℃
とし、反応管壁面の温度を350〜450℃とし、Cd
Te基板5の温度をその中間とする。
Using a vapor phase growth apparatus having the above structure, CdTe
In order to form a Hg1□CdxTe layer on the substrate, a GdTe substrate 5 is placed on the susceptor 3, and a gas inlet 1 is placed on the susceptor 3.
While supplying Cd and Te in gaseous form (in the form of methylated cadmium and ethylated cadmium) from 1 to 1 at a flow rate of 1 to 50 l/sec, the reaction tube heating means 2, additional heating means 7, and an alternating box for induction heating are supplied. While using it together with the magnetic flux source 8, a non-gaseous deposited substance (liquid substance) supply device (Hg reservoir)
4, the temperature of the reaction tube wall surface, and the temperature of the CdTe substrate 5 are independently controlled. Then, the temperature of the non-gaseous deposited substance (liquid substance) supply device (Hg reservoir) 4 is set to 230 to 320°C.
The temperature of the wall surface of the reaction tube was 350 to 450°C, and Cd
The temperature of the Te substrate 5 is set at an intermediate temperature.

その結果、壁面に不所望の堆積がなされることがな(、
CdTe基板5上に所望の組!(X値の)のHg、、C
d、Te層が堆積する。
As a result, undesirable deposits on the walls are prevented (
Desired set on CdTe substrate 5! (X value) of Hg,,C
d, Te layer is deposited.

〔発明の効果〕〔Effect of the invention〕

以上説明せるとおり、本発明に係る気相成長装置におい
ては、非気体状堆積物質供給装置に付加的加熱手段が設
けられているので、非気体状堆積物質供給装置の温度と
反応管壁面の温度とサセプタの温度とを、それぞれ独立
に制御することができる。そのため、Hg等高蒸気圧の
物質を構成物質の一つとする化合物半導体例えばHg、
−、CdxTe等を気相成長する目的をもってなす、H
,等高蒸気圧の物質を非気体状態で供給する気体成長法
例えばメタルオーガニックCVD法等の実施に好適であ
る。さらに、本発明の実施例に係る気相成長装置におい
ては、サセプタの温度も制御しうるようにされているの
で、−上記の効果はさらに向上する。
As explained above, in the vapor phase growth apparatus according to the present invention, since the non-gaseous deposited material supplying device is provided with an additional heating means, the temperature of the non-gaseous deposited material supplying device and the temperature of the reaction tube wall surface are and the temperature of the susceptor can be controlled independently. Therefore, compound semiconductors that have high vapor pressure substances such as Hg as one of their constituents, such as Hg,
-, H for the purpose of vapor phase growth of CdxTe, etc.
, is suitable for implementation of a gas growth method such as a metal organic CVD method in which a substance with an equal high vapor pressure is supplied in a non-gaseous state. Furthermore, in the vapor phase growth apparatus according to the embodiment of the present invention, the temperature of the susceptor can also be controlled, so that the above-mentioned effects are further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る気相成長装置の構成
図である。 第2図は、従来技術に係る気相成長装置の構成図である
。 l・・・反応管、 11−・・ガス送入口、12・舎・
ガス排出口、 13・1111ウエーハの装入・取出し
装置、 2・・・反応管加熱手段、3・伊・サセプタ、
 4・・・非気体状堆積物質供給装置、  5・φ争つ
ェーハ、 7・・拳付加的加熱手段、 8・・・誘導加
熱用交番磁束源。 一゛・ 代理人 弁理士 井桁貞−′1テ、C2層。 −ビ之−・ノ′
FIG. 1 is a block diagram of a vapor phase growth apparatus according to an embodiment of the present invention. FIG. 2 is a configuration diagram of a vapor phase growth apparatus according to the prior art. l...Reaction tube, 11-...Gas inlet, 12-Shell...
Gas outlet, 13. 1111 Wafer loading/unloading device, 2. Reaction tube heating means, 3. Susceptor,
4. Non-gaseous deposited material supply device, 5. φ heating device, 7. Additional heating means, 8. Alternating magnetic flux source for induction heating. 1. Agent Patent Attorney Sada Igeta -'1 Te, C2 layer. -Bino-・ノ'

Claims (1)

【特許請求の範囲】 [1]反応管(1)と、 該反応管(1)を囲んで設けられ該反応管(1)を加熱
する反応管加熱手段(2)と、 前記反応管(1)中に設けられるサセプタ(3)と、 非気体状堆積物質供給装置(4)とを具備してなる気相
成長装置において、 前記非気体状堆積物質供給装置(4)には、付加的加熱
手段(7)が具備されてなることを特徴とする気相成長
装置。 [2]前記サセプタ(3)は導電性物質よりなり、該サ
セプタ(3)の近傍には誘導加熱用交番磁束源(8)が
具備されてなることを特徴とする特許請求の範囲第1項
記載の気相成長装置。
[Scope of Claims] [1] A reaction tube (1); a reaction tube heating means (2) provided surrounding the reaction tube (1) for heating the reaction tube (1); ), and a non-gaseous deposited material supply device (4), wherein the non-gaseous deposited material supply device (4) is provided with additional heating. A vapor phase growth apparatus characterized by comprising means (7). [2] The susceptor (3) is made of a conductive material, and an alternating magnetic flux source (8) for induction heating is provided near the susceptor (3). The vapor phase growth apparatus described.
JP15988385A 1985-07-19 1985-07-19 Vapor-phase growing device Pending JPS6221231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15988385A JPS6221231A (en) 1985-07-19 1985-07-19 Vapor-phase growing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15988385A JPS6221231A (en) 1985-07-19 1985-07-19 Vapor-phase growing device

Publications (1)

Publication Number Publication Date
JPS6221231A true JPS6221231A (en) 1987-01-29

Family

ID=15703271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15988385A Pending JPS6221231A (en) 1985-07-19 1985-07-19 Vapor-phase growing device

Country Status (1)

Country Link
JP (1) JPS6221231A (en)

Similar Documents

Publication Publication Date Title
JP4121555B2 (en) Apparatus and method for epitaxial growth of objects by CVD
JP2668687B2 (en) CVD device
JP2000319098A (en) Method and apparatus for producing silicon carbide single crystal
JPH0377655B2 (en)
JPH0114170B2 (en)
JPS6221231A (en) Vapor-phase growing device
JPH10189695A (en) Vapor growth susceptor and manufacture thereof
JP7435266B2 (en) Susceptor, chemical vapor deposition equipment, and epitaxial wafer manufacturing method
WO1997031140A1 (en) Method of epitaxial growth of monocrystalline '3a' group metal nitrides
JP2013075789A (en) Apparatus and method for producing compound semiconductor single crystal
JP4222630B2 (en) Method for epitaxially growing objects and apparatus for performing such growth
JPS6058613A (en) Epitaxial apparatus
JP3110978B2 (en) Heating element for vapor phase growth equipment
JPH01253229A (en) Vapor growth device
JPS60152675A (en) Vertical diffusion furnace type vapor growth device
JP7306217B2 (en) Crucible and SiC single crystal growth apparatus
JPS60254610A (en) Manufacturing equipment of semiconductor
JP2551172B2 (en) Vapor phase epitaxial growth system
CN116988147A (en) Silicon carbide crystal growth device and method with plasma electric field
JPS5826167B2 (en) Silicon carbide manufacturing method
JPH06232054A (en) Manufacture of susceptor
JPWO2003003432A1 (en) Vapor phase growth method and vapor phase growth apparatus
JPS60109222A (en) Device for vapor growth of compound semiconductor of iii-v group
JPH07116497A (en) Device for feeding liquid raw material
JPH0445237Y2 (en)