JPS62212242A - Production of transparent quartz glass preform - Google Patents

Production of transparent quartz glass preform

Info

Publication number
JPS62212242A
JPS62212242A JP5389086A JP5389086A JPS62212242A JP S62212242 A JPS62212242 A JP S62212242A JP 5389086 A JP5389086 A JP 5389086A JP 5389086 A JP5389086 A JP 5389086A JP S62212242 A JPS62212242 A JP S62212242A
Authority
JP
Japan
Prior art keywords
glass
transparent
glass layer
porous glass
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5389086A
Other languages
Japanese (ja)
Inventor
Shinichi Yano
慎一 矢野
Katsumi Orimo
折茂 勝巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5389086A priority Critical patent/JPS62212242A/en
Publication of JPS62212242A publication Critical patent/JPS62212242A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Abstract

PURPOSE:To obtain a transparent glass preform having excellent characteristics and to enable the production of a large-sized transparent glass preform with a small-sized apparatus, by carrying out a glass soot deposition step and a vitrifying and clarifying step on a same line in tandem in the production of an optical fiber preform. CONSTITUTION:A transparent glass preform 16 is produced by (A) a glass soot deposition step comprising the formation of quartz glass soot formed by a glass soot producing means (11) and the blasting and deposition of the soot toward the outer circumference of rotating target 14 to form a porous glass layer 15 and (B) a vitrification step comprising the introduction of the porous glass layer 15 into a hot atmosphere (furnace core tube 13 and electrical furnace 12, e.g. atmosphere of He and Cl2) to effect the dehydration and vitrification of the preform to transparent glass. In the above process, the glass-soot deposition step and the vitrification step are arranged on a same line in tandem. A porous glass layer is formed on the outer circumference of the target and, at the same time, the porous glass layer is dehydrated to a transparent glass by the above steps.

Description

【発明の詳細な説明】 1産業上の利用分野1 本発明は光ファイバ母材、イメージガイド母材、ライト
ガイド母材、ロッドレンズ母材のごとく、通信部門、光
学部門等で用いられる石英系透明ガラス母材の製造方法
に関する。
[Detailed Description of the Invention] 1. Field of Industrial Application 1. The present invention is applied to quartz-based materials used in the communication sector, optical sector, etc., such as optical fiber base material, image guide base material, light guide base material, and rod lens base material. The present invention relates to a method for manufacturing a transparent glass base material.

1従来の技術1 石英系透明ガラス母材を製造する方法の一つとして第3
図に示すものがあり、かかる方法では、ガラス微粒子堆
Ji’i I’稈と透明ガラス化玉程とが互いに分離か
つ独立しており、ガラス微粒子堆積工程にて多孔質ガラ
ス層を形成した後、その多孔質ガラス層を透明ガラス化
工程にて脱水、透明ガラス化するようにしている。
1 Conventional technology 1 The third method is one of the methods for producing a quartz-based transparent glass base material.
In this method, the glass fine particle pile and the transparent vitrified beads are separated and independent from each other, and after forming a porous glass layer in the glass fine particle deposition process, , the porous glass layer is dehydrated and made into transparent vitrification in a transparent vitrification process.

すなわち第3図の方法では、はじめ、多重管構造のバー
ナlを介して原料ガス(SiC1a)を火炎加水分解反
応させることによりガラス微粒子を生成し、そのガラス
微粒子を回転状Jffiで長手方向に往復動するターゲ
ット2の外周に噴射かつ堆積させて多孔質ガラス層3を
形成する。
That is, in the method shown in Fig. 3, first, glass particles are generated by flame hydrolysis reaction of raw material gas (SiC1a) through a burner l having a multi-tube structure, and the glass particles are reciprocated in the longitudinal direction in a rotating Jffi. A porous glass layer 3 is formed by spraying and depositing on the outer periphery of a moving target 2.

つぎに、He、 CI2の雰囲気に保持された電気炉4
の炉心管5内に上記多孔質ガラス層3を入れてこれを脱
水、透明ガラス化し、透明ガラス母材6を得る。
Next, the electric furnace 4 maintained in an atmosphere of He, CI2
The above-mentioned porous glass layer 3 is placed in a furnace core tube 5, and is dehydrated and made into transparent glass to obtain a transparent glass base material 6.

この際、上記炉心管5内にフッ素含有ガスをも供給して
ガラス母材中にフッ素ドープすることも行なわれている
At this time, a fluorine-containing gas is also supplied into the furnace core tube 5 to dope fluorine into the glass base material.

r発明が解決しようとする問題点j 上述した従来例の場合、以下に述べる1Fila点があ
る。
rProblems to be Solved by the Invention j In the case of the above-mentioned conventional example, there is one Fila point described below.

■ 透11ガラス化前の多孔質ガラス層3を、ターゲッ
ト2とともに保管する必要がしばしば生じるが、この際
、多孔質ガラス層3に塵埃が付着したり、空気中の水分
を吸収するので、fJAvkの処理により得られる透明
ガラス母材6の特性が劣化する。
■ It is often necessary to store the porous glass layer 3 before vitrification with the target 2, but in this case, dust may adhere to the porous glass layer 3 or moisture in the air may be absorbed, so fJAvk The properties of the transparent glass base material 6 obtained by this treatment deteriorate.

(ゆ 多孔質ガラス層3は、0.2g/c+a3のごと
く低密度であり、しかも弱い結合力でぐnにターゲット
2に付着しているだけであるから、振動、衝撃等により
破壊されやすく2 したがって、多孔質ガラス層3のi
J!搬、その他を含めた取り扱いに細心の注意が黄求さ
れる。
(The porous glass layer 3 has a low density of 0.2g/c+a3, and is only slightly attached to the target 2 with a weak bonding force, so it is easily destroyed by vibrations, shocks, etc.) Therefore, i of the porous glass layer 3
J! Extreme care is required when handling, including shipping and handling.

■ 多孔質ガラス層3はL記のごとく低密度であり、透
明ガラズ化による堆積収縮率が大きいため、所望外径の
透明ガラス母材6を得る場合には゛かなり大径の多孔質
ガラス層3を形成する必要が生じる。
■ The porous glass layer 3 has a low density as shown in L, and has a large deposition shrinkage rate due to the formation of transparent glass. Therefore, in order to obtain a transparent glass base material 6 with a desired outer diameter, the porous glass layer 3 has a considerably large diameter. It becomes necessary to form a

これにともない、多孔質ガラス層3を脱水、透明ガラス
化するための電気炉4が大がかりとなり、ランニングコ
ストも高くなる。
Accordingly, the electric furnace 4 for dehydrating the porous glass layer 3 and turning it into transparent vitrification becomes large-scale, and the running cost also increases.

■ 透明ガラス化により得られる透明ガラス母材6の長
さは多孔質ガラス層3の堆積長に依存して定まるが、現
状のガラス微粒子生成手段では設備の制限上、多孔質ガ
ラス層3の堆積長を大きくすることができず、したがっ
て、長大な透明ガラス母材6が得がたい。
■ The length of the transparent glass base material 6 obtained by transparent vitrification is determined depending on the deposition length of the porous glass layer 3, but due to equipment limitations with the current glass particle generation means, the deposition of the porous glass layer 3 is difficult. The length cannot be increased, and therefore, it is difficult to obtain a long transparent glass preform 6.

本発明は上述した問題点が解決することのできる石英系
透明ガラス母材の製造方法を提供しようとするものであ
る。
The present invention aims to provide a method for manufacturing a quartz-based transparent glass base material that can solve the above-mentioned problems.

1問題点を解決するための手段1 本発明は所期の目的を達成するため、ガラス微粒子生成
手段を介して生成された石英系のガラス微粒子を、回転
しているターゲットの外周に噴射かつ堆積させて多孔質
ガラス層を形成するガラス微粒子堆積工程と、そのガラ
ス微粒子堆積工程により形成された多孔質ガラス層を加
熱雰囲気中に導入してこれを脱水、透明ガラス化する透
明ガラス化工程とを備えた光ファイバ母材の製造方法に
おいて、ガラス微粒子堆積工程と透明ガラス化工程とを
同一ライン上にタンデムに並べ、これら両工程を介して
ターゲットの外周に多孔質ガラス層を形成するとともに
その多孔質ガラス層を脱水、透IJ1ガラス化すること
を特徴とする。
1 Means for Solving Problem 1 In order to achieve the intended purpose, the present invention injects and deposits quartz-based glass particles generated through a glass particle generation means on the outer periphery of a rotating target. a glass particle deposition step to form a porous glass layer; and a transparent vitrification step to introduce the porous glass layer formed by the glass particle deposition step into a heated atmosphere, dehydrate it, and turn it into transparent vitrification. In the method for manufacturing an optical fiber preform, a glass particle deposition step and a transparent vitrification step are arranged in tandem on the same line, and through both steps, a porous glass layer is formed around the outer periphery of the target, and the pores are removed. It is characterized by dehydrating the glass layer and converting it into transparent IJ1 vitrification.

1作用、I 本発明方法の場合、ガラス微粒子堆積工程と透明ガラス
化工程とが同一ライン上にタンデムに並んでいるので、
ターゲットの外周に多孔質ガラス層を形成した後、これ
を直ちに脱水、透明ガラス化することができる。
1 Effect, I In the case of the method of the present invention, since the glass fine particle deposition step and the transparent vitrification step are arranged in tandem on the same line,
After forming a porous glass layer around the outer periphery of the target, it can be immediately dehydrated and made into transparent glass.

したがって、多孔質ガラス層に塵埃が付着したり、空気
中の水分を吸収する余地がなく、特性のよい透明ガラス
母材が得られるとともに、その透明ガラス化までを一挙
に行なうので、多孔質ガラス層を破損させる虞れもなく
、取り扱いが簡便となる。
Therefore, there is no room for dust to adhere to the porous glass layer or for moisture to be absorbed in the air, and a transparent glass base material with good properties can be obtained. There is no risk of damaging the layer, and handling becomes easy.

しかも、ガラス微粒子を堆積する都度、多孔質ガラス層
を脱水、透明ガラス化できるから、多孔質ガラス層が嵩
張ることもなく、したがって、脱水、透明ガラス化用の
電気炉が小型化でき、ランニングコストも安くなる。
Moreover, since the porous glass layer can be dehydrated and made into transparent vitrification each time glass particles are deposited, the porous glass layer does not become bulky. Therefore, the electric furnace for dehydration and transparent vitrification can be downsized, and running costs can be reduced. It will also be cheaper.

同様に、多孔質ガラス層が嵩張ることによるガラス微粒
子生成手段の制約もないから、長大な透11ガラス母材
も容易に得られる。
Similarly, since there are no restrictions on the glass particle generation means due to the bulk of the porous glass layer, a long transparent 11 glass base material can be easily obtained.

r実 施 例1 以下1本発明方法の実施例につき、図面を参照して説明
する。
rExample 1 An example of the method of the present invention will be described below with reference to the drawings.

第1図は本発明方法の一実施例である。FIG. 1 shows an embodiment of the method of the present invention.

第1図において、11は多重管構造のバーナ、12はガ
ス供給自在な炉心管13を備えた電気炉、14はターゲ
ット、15は多孔質ガラス層、1Gは透IJlガラス母
材である。
In FIG. 1, 11 is a burner with a multi-tube structure, 12 is an electric furnace equipped with a core tube 13 that can freely supply gas, 14 is a target, 15 is a porous glass layer, and 1G is a transparent IJl glass base material.

バーナ11は互いに同心状となる複数の流路を有し、こ
れら流路には塩化物系の原料ガス、燃焼ガス(H2) 
、助燃ガス(02) 、シールガス(Arなどの不活性
ガス)が供給されるようになっている。
The burner 11 has a plurality of concentric passages, and these passages contain chloride-based raw material gas and combustion gas (H2).
, combustion assisting gas (02), and sealing gas (inert gas such as Ar) are supplied.

バーナ11に隣接して配置された電気炉12は、−例と
してカーボン抵抗炉からなり、石英製からなるその炉心
管13内には、脱水ならびに透明ガラス化雰囲気を形成
するためのガスが供給可能となっており、場合により、
該炉心管13内にはドープ用ガスも供給されるようにな
っている。
The electric furnace 12 arranged adjacent to the burner 11 is, for example, a carbon resistance furnace, into which a gas for dehydration and for forming a transparent vitrification atmosphere can be supplied into the furnace tube 13 made of quartz. In some cases,
Dope gas is also supplied into the furnace core tube 13.

ターゲット14は、石英系ガラスロッド、石英系ガラス
パイプのほか、マンドレルとなるカーボンロッド、アル
ミナロッドなどからなり、当該ターゲラ)14の両端は
1図示しない回転駆動手段および軸方向の駆動(往復動
)手段を介して取り外し1rrfaに支持されている。
The target 14 is composed of a quartz glass rod, a quartz glass pipe, a carbon rod serving as a mandrel, an alumina rod, etc. Both ends of the target 14 are equipped with a rotary drive means (not shown) and an axial drive (reciprocating motion). It is supported by means of removal 1rrfa.

第1図において、バーナ11に所定の各ガスを供給し、
これら各ガスの火炎加水分解反応より生成したガラス微
粒子を、回転状態で軸方向に往復動するターゲット14
の外周に噴射かつ堆積させて多孔質ガラス層15を形成
する。
In FIG. 1, each predetermined gas is supplied to the burner 11,
A target 14 that reciprocates in the axial direction in a rotating state generates glass particles generated by the flame hydrolysis reaction of each of these gases.
The porous glass layer 15 is formed by spraying and depositing on the outer periphery of the glass.

こうして形成された多孔質ガラス層15は、ターゲット
14の移動(右動)にともない電気炉12の炉心管la
内へ進入し、所定の雰囲気に保持されたその炉心管13
内において脱水、透明ガラス化され、透明ガラス母材1
6となる。
As the target 14 moves (rightward movement), the porous glass layer 15 thus formed is exposed to the core tube la of the electric furnace 12.
The reactor core tube 13 enters the interior and is maintained in a predetermined atmosphere.
The transparent glass base material 1 is dehydrated and made into transparent glass.
It becomes 6.

第2図は本発明方法の他実施例である。FIG. 2 shows another embodiment of the method of the present invention.

この第2図の実施例では、バーナ11の両側に炉心管1
3を備えた電気炉12が配置されている。
In the embodiment shown in FIG.
An electric furnace 12 equipped with 3 is arranged.

かかる実施例の場合も、前記と同様にしてターゲラN4
の外周に多孔質ガラス層15が形成され、その多孔質ガ
ラス層15が、ターゲット14の右動、左動にともない
両電気炉12の炉心管13内へ進入して脱水、透明ガラ
ス化され、透明ガラス母材16となる。
In the case of such an embodiment, the Targera N4
A porous glass layer 15 is formed on the outer periphery of the target 14, and as the target 14 moves to the right or left, the porous glass layer 15 enters the core tubes 13 of both electric furnaces 12 and is dehydrated and made into transparent glass. This becomes a transparent glass base material 16.

第2図の実施例は透明ガラス母材lBの外径測定器17
が装備され、その測定手段に基づき、母材製造系が制御
される。
The embodiment shown in FIG. 2 is an outer diameter measuring device 17 for a transparent glass base material IB.
is equipped, and the base material manufacturing system is controlled based on the measurement means.

第1図の方法による具体例を下記の条件で実施した。A specific example according to the method shown in FIG. 1 was carried out under the following conditions.

バーナll:外径15■鵬φ、H2=lOfL/win
、02−101/sin、  Ar=25L/sin、
SiCl5−2g/sinを各流路に供給。
Burner 1: Outer diameter 15■Pengφ, H2=lOfL/win
, 02-101/sin, Ar=25L/sin,
Supply SiCl5-2g/sin to each channel.

電気炉12 : 500m5φ×100龍長のカーボン
抵抗炉。
Electric furnace 12: Carbon resistance furnace of 500 m5φ x 100 dragon length.

炉心管13:内径80■■φの石英製、Hes+301
 /sin、C:12−3!L/sinを供給。
Furnace tube 13: made of quartz with an inner diameter of 80 φ, Hes+301
/sin, C:12-3! Supply L/sin.

ターゲラ)14:VAD法により得られた15m5φX
 50Qml長のGl型の石英系ガラスロッド、回転数
8Or、p、鵬、移動(右動)速度3關l■in 。
Tergera) 14: 15m5φX obtained by VAD method
50 Qml long Gl type quartz glass rod, rotation speed 8 Or, P, movement (rightward movement) speed 3 in.

バーナ11と電気炉12との隣接間隔は100mmであ
る。
The adjacent interval between the burner 11 and the electric furnace 12 is 100 mm.

上記の条件によるとき、5抛■φX500龍長の多孔質
ガラス層15が得られ、脱水、透明ガラス化後の透11
ガラス母材16として23諺層φx500諺層長のもの
が得られた。
Under the above conditions, a porous glass layer 15 with a length of 5 mm x 500 mm was obtained, and a transparent glass layer 11 after dehydration and transparent vitrification was obtained.
A glass base material 16 having a diameter of 23 layers and a length of 500 mm was obtained.

かかる透明ガラス母材1Bを既知の加熱延伸手段で紡糸
して得た外径125 終■の光ファイバは、通常品と比
べ全く遜色がなかった。
An optical fiber with an outer diameter of 125mm obtained by spinning the transparent glass preform 1B using a known heating drawing method was comparable to ordinary products.

さらに上記具体例において、多孔質ガラス層15をガラ
ス堆積の都度、右側の電気炉12で溶着したところ、従
来法では得ることのできない23腸−φ×3000■−
長もの長尺透明ガラスは材18が得られた。
Furthermore, in the above specific example, when the porous glass layer 15 was welded in the electric furnace 12 on the right side each time the glass was deposited, it was found that the porous glass layer 15 had a diameter of 23 mm -φ x 3000 mm, which could not be obtained by the conventional method.
Material 18 was obtained as a long transparent glass.

第2図の方法による二つの電気炉12を用いた具体例を
上記と同様の条件で実施したところ、ターゲラ)14の
三往復で4軸lφX 1000mm長の大型透IJIガ
ラス母材1Bが得られた。
When a specific example using two electric furnaces 12 according to the method shown in Fig. 2 was carried out under the same conditions as above, a large transparent IJI glass base material 1B with 4 axes lφX 1000 mm length was obtained by three reciprocations of the Targera 14. Ta.

かかる透明ガラス母材1Bにて作製した光ファイバも、
前記と同様に良好な特性を示した。
An optical fiber made from such a transparent glass base material 1B also
It showed good characteristics similar to the above.

その他、第1図、第2図の方法による具体例において、
炉心管13内にHe、C12だけでなく 2見/鳳in
のSiF4を供給したところ、屈折率が、比屈折率差(
対石英)にして0.31に低ドした透明ガラス母材1B
が得られた。
In addition, in specific examples using the methods shown in FIGS. 1 and 2,
In addition to He and C12 in the core tube 13, there are also 2 pieces/Otori in
When SiF4 was supplied, the refractive index changed to the relative refractive index difference (
Transparent glass base material 1B with a low value of 0.31 (vs. quartz)
was gotten.

これは、上記多孔質ガラス層15をクラッド川とした場
合、フッ素ドープが可f針であることを実証している。
This proves that when the porous glass layer 15 is used as a cladding layer, fluorine dope is a flexible needle.

本発明方法において多孔質ガラス層15を形成するとき
、バーナ11に任意のドープ原料を供給して例えばGe
Ch 、8203 、F、Ti、C12,P2O5など
を含むドープト石英をつくることができる。
When forming the porous glass layer 15 in the method of the present invention, an arbitrary dope material is supplied to the burner 11, for example, Ge.
Doped quartz containing Ch, 8203, F, Ti, C12, P2O5, etc. can be made.

本発明方法において、バーナ11に代わる既知のプラズ
マトーチによりガラス微粒子を生成してもよい。
In the method of the present invention, the glass particles may be generated by a known plasma torch instead of the burner 11.

本発明方法においてターゲット14を定位置で回転させ
るとき、バーナ11.電気炉12等をターゲラH4の軸
方向沿いに移動させればよい。
When the target 14 is rotated in a fixed position in the method of the invention, the burner 11. What is necessary is just to move the electric furnace 12 etc. along the axial direction of Targetera H4.

上述した多孔質ガラス層15の形成、その脱水、透Il
lガラス化は、排気系を有するクリーン度の高いチャン
バ内で実施するのが望ましい。
Formation of the above-mentioned porous glass layer 15, its dehydration, transparent Il
l The vitrification is preferably carried out in a highly clean chamber with an exhaust system.

「発明の効果1 以上説IJI した通り1本発明方法によるときは、ガ
ラス微粒子堆積工程と透明ガラス化工程とを同一ライン
上にタンデムに並べ、これら両工程を介してターゲット
の外周に多孔質ガラス層を形成するとともにその多孔質
ガラス層を脱水、透明ガラス化するから、特性のよい透
明ガラス母材が得られるとともに、製造対象物の取り扱
いが簡便となり、しかも、小型の設備で大型の透明ガラ
ス母材が安価に製造できる。
``Effect of the invention 1 As stated above, 1 When the method of the present invention is used, the glass fine particle deposition step and the transparent vitrification step are arranged in tandem on the same line, and through these two steps, porous glass is formed on the outer periphery of the target. By forming a layer and dehydrating the porous glass layer to make it transparent, a transparent glass base material with good properties can be obtained, and the object to be manufactured can be handled easily, and large transparent glass can be produced using small equipment. Base material can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を略示した説明図、第2
図は本発明方法の他実施例を略示した説明図、第3図は
従来法を略示した説明図である。 11・・・バーナ 12・・・電気炉 13・・・炉心管 14+1・・ターゲット 15・・・多孔質ガラス層 16・Φ・透明ガラス母材 代理人 弁理士 斎 藤 義 雄 第1図 第28 第3図
FIG. 1 is an explanatory diagram schematically showing an embodiment of the method of the present invention, and FIG.
The figure is an explanatory view schematically showing another embodiment of the method of the present invention, and FIG. 3 is an explanatory view schematically showing a conventional method. 11... Burner 12... Electric furnace 13... Furnace tube 14+1... Target 15... Porous glass layer 16, Φ, Transparent glass base material agent Patent attorney Yoshio Saito Figure 1 Figure 28 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)ガラス微粒子生成手段を介して生成された石英系
のガラス微粒子を、回転しているターゲットの外周に噴
射かつ堆積させて多孔質ガラス層を形成するガラス微粒
子堆積工程と、そのガラス微粒子堆積工程により形成さ
れた多孔質ガラス層を加熱雰囲気中に導入してこれを脱
水、透明ガラス化する透明ガラス化工程とを備えた光フ
ァイバ母材の製造方法において、ガラス微粒子堆積工程
と透明ガラス化工程とを同一ライン上にタンデムに並べ
、これら両工程を介してターゲットの外周に多孔質ガラ
ス層を形成するとともにその多孔質ガラス層を脱水、透
明ガラス化することを特徴とする石英系透明ガラス母材
の製造方法。
(1) A glass particle deposition step in which quartz-based glass particles generated by a glass particle generation means are injected and deposited on the outer periphery of a rotating target to form a porous glass layer, and the glass particle deposition process A method for manufacturing an optical fiber preform comprising a transparent vitrification step in which a porous glass layer formed by the process is introduced into a heated atmosphere to dehydrate it and turn it into transparent vitrification, the method includes a glass particle deposition step and transparent vitrification. A quartz-based transparent glass characterized by arranging processes in tandem on the same line, forming a porous glass layer around the outer periphery of a target through both processes, and dehydrating the porous glass layer and converting it into transparent glass. Method of manufacturing base material.
(2)ターゲット外周への多孔質ガラス層の形成とその
多孔質ガラス層の脱水、透明ガラス化とを交互に行なう
特許請求の範囲第1項記載の石英系透明ガラス母材の製
造方法。
(2) The method for manufacturing a silica-based transparent glass base material according to claim 1, wherein forming a porous glass layer on the outer periphery of a target, dehydrating the porous glass layer, and converting the porous glass layer into transparent vitrification are performed alternately.
(3)ターゲット外周への多孔質ガラス層の形成とその
多孔質ガラス層の脱水、透明ガラス化とを連続して行な
う特許請求の範囲第1項記載の石英系透明ガラス母材の
製造方法。
(3) The method for producing a silica-based transparent glass base material according to claim 1, wherein the formation of a porous glass layer on the outer periphery of the target, the dehydration of the porous glass layer, and the formation of transparent vitrification are successively performed.
JP5389086A 1986-03-12 1986-03-12 Production of transparent quartz glass preform Pending JPS62212242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5389086A JPS62212242A (en) 1986-03-12 1986-03-12 Production of transparent quartz glass preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5389086A JPS62212242A (en) 1986-03-12 1986-03-12 Production of transparent quartz glass preform

Publications (1)

Publication Number Publication Date
JPS62212242A true JPS62212242A (en) 1987-09-18

Family

ID=12955319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5389086A Pending JPS62212242A (en) 1986-03-12 1986-03-12 Production of transparent quartz glass preform

Country Status (1)

Country Link
JP (1) JPS62212242A (en)

Similar Documents

Publication Publication Date Title
US4596589A (en) Method for producing a single mode fiber preform
JPH07196333A (en) Method of laminating refractive media
JP2020114801A (en) Improved particle vapor deposition system and method
CN100478291C (en) Methods for modifying ovality of optical fiber preforms and method for producing optical fiber
US8252387B2 (en) Method of fabricating optical fiber using an isothermal, low pressure plasma deposition technique
JPS62212242A (en) Production of transparent quartz glass preform
KR100521958B1 (en) method and apparatus for fabricating of optical fiber preform with double torch in MCVD
KR100426394B1 (en) The controlling method and device of deposition paricle in farbricating large preform by outside vapor deposition
JP3823341B2 (en) Optical fiber preform, optical fiber and manufacturing method thereof
JPS62108744A (en) Transparent vitrification method of porous glass base material
EP0716047A2 (en) Method and apparatus for producing optical fiber preform
JPH04231336A (en) Production of optical fiber preform
JP4565221B2 (en) Optical fiber preform
JPS6136134A (en) Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber
JP4169260B2 (en) Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends
JPS61291434A (en) Production of base material for optical fiber
JPS60145924A (en) Production of base material for optical fiber
RU2281260C1 (en) Method of manufacture of large-sized blanks for quartz light conduits
JPS5845131A (en) Build-up method for glass layer
WO2005090244A1 (en) Method for producing porous glass base material and glass base material for optical fiber
JPH033618B2 (en)
JPH02304B2 (en)
WO2006046340A1 (en) Base material for optical fiber, optical fiber, and method for production thereof
JPS59454B2 (en) Manufacturing method of fiber base material for optical transmission
JPH03290332A (en) Production of porous preform matrix for optical fiber