JPS6221043B2 - - Google Patents

Info

Publication number
JPS6221043B2
JPS6221043B2 JP81501106A JP50110681A JPS6221043B2 JP S6221043 B2 JPS6221043 B2 JP S6221043B2 JP 81501106 A JP81501106 A JP 81501106A JP 50110681 A JP50110681 A JP 50110681A JP S6221043 B2 JPS6221043 B2 JP S6221043B2
Authority
JP
Japan
Prior art keywords
powder
container
mixing tank
electromagnet
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP81501106A
Other languages
Japanese (ja)
Other versions
JPS58500131A (en
Inventor
Yuurii Nikoraeui Sukoruniakofu
Arekusandoru Moiseeeui Biruman
Rudorufu Arekusandoro Rijidooi
Yuurii Uikutoroits Arutamonofu
Arekusandoru Fuiyood Kurimenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UKURAI N ISUSUREDO I SUPECHIAR
Original Assignee
UKURAI N ISUSUREDO I SUPECHIAR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UKURAI N ISUSUREDO I SUPECHIAR filed Critical UKURAI N ISUSUREDO I SUPECHIAR
Publication of JPS58500131A publication Critical patent/JPS58500131A/en
Publication of JPS6221043B2 publication Critical patent/JPS6221043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

技術分野 本発明は粉末治金に係り、特に鉄磁粉材料から
製品を製造するための方法と装置に関するもので
ある。
TECHNICAL FIELD The present invention relates to powder metallurgy, and more particularly to a method and apparatus for manufacturing products from ferromagnetic powder materials.

背景技術 製品を粒度不均一な粉末材料で製造するための
材料の特性における均一な組織と同体体現象に関
する、以下に述べる問題は、未だ適当に解決され
ていない。
BACKGROUND OF THE INVENTION The following problems regarding homogeneous texture and homogeneous phenomena in the properties of materials for manufacturing products from non-uniform powder materials have not yet been adequately solved.

金属粉末から製品を製造する方法であつて、そ
の粉末の粒度分布を平均化するための混合、その
粉末の容器への充填、その容器の密封、加熱及び
その容器の圧縮を含むものに関する技術は公知に
されている。
Techniques for manufacturing products from metal powder, including mixing to equalize the particle size distribution of the powder, filling the powder into a container, sealing the container, heating and compressing the container It is publicly known.

上記粉末を混合することは大粒の粒子と小粒の
粒子の双方の分布を比較的均一にする。この手法
は製品の材質の構造を比較的均一にするが、未だ
若干、問題がある。特にふわついた状態の粉末は
熱伝導度が低く、これを焼結するには、加熱時間
をやや長くすることが要求される。また、この手
法では上記容器の内部空間を有効に利用すること
ができない。
Mixing the powders provides a relatively uniform distribution of both large and small particles. Although this method makes the material structure of the product relatively uniform, there are still some problems. Particularly fluffy powder has low thermal conductivity, and sintering it requires a slightly longer heating time. Furthermore, this method does not allow effective use of the internal space of the container.

また、鉄磁粉から製品を作る方法であつて、そ
の粉末の粒度分布均一化のための混合、その粉末
の容器への充填、その粉末の加振圧縮、その粉末
を焼結温度にするための上記容器の加熱、その容
器の密封、及び圧縮を含むものに関する技術は公
知になつている。
In addition, it is a method of making products from iron magnetic powder, including mixing to make the particle size distribution of the powder uniform, filling the powder into a container, vibration compression of the powder, and bringing the powder to the sintering temperature. Techniques involving heating the container, sealing the container, and compressing the container are well known.

上述の方法は、吐出部に堰を設けた混合槽を有
する装置で実用化されている。この混合槽はドラ
ム形で構造材用鋼材を用いて作られ、この鋼材は
磁石材料である。上記堰の下には加振機があり、
この加振機は上記容器を支持する平台を有する。
また、この装置は上記容器のための加熱器と引抜
プレス装置を有する。
The above-mentioned method has been put to practical use in an apparatus having a mixing tank provided with a weir in the discharge section. The mixing vessel is drum-shaped and made of structural steel, which is a magnetic material. There is a vibrator under the weir mentioned above.
This vibrator has a flat base that supports the container.
The device also has a heater and a drawing press for the container.

上記の方法とそのための装置の明白な利点は上
記焼結工程における加熱時間の延長分を少なくす
ることである。しかしながら、上記容器の充填
時、特に加振圧縮を行なう時には、上記粉末に部
分的な分離が生ずる。このことは最終的に製品の
材料の組織と特性に不均一を生じさせ、これが製
品の機械的特性を著しく低下させる。
A clear advantage of the method and apparatus described above is that it reduces the heating time extension in the sintering step. However, when filling the container, especially when vibratory compaction is performed, partial separation of the powder occurs. This ultimately causes non-uniformity in the material structure and properties of the product, which significantly reduces the mechanical properties of the product.

発明の開示 本発明は鉄磁粉材料から製品を製造する装置の
方法を提供することを意図してなされたものであ
つて、これによる製造と組織的特徴は上記粉末
に、上記容器に充填する時及び加振圧縮時のその
粉末の部分的分離を防止し、それにより製品の機
械的特性を改善する性質を与える。
DISCLOSURE OF THE INVENTION The present invention has been made with the intention of providing a method of an apparatus for manufacturing a product from ferromagnetic powder material, and the manufacturing and organizational characteristics thereof are such that the powder is filled into the container. and prevents partial separation of the powder during vibratory compaction, thereby imparting properties that improve the mechanical properties of the product.

本発明の上記目的を達成するために、製品を鉄
磁粉から製造する方法であつて上記粉末を粒度分
布平均化のために混合し、これを容器に充填し、
この粉末を加振圧縮し、この容器を上記粉末が焼
結温度に達するまで加熱し、この容器を密封し圧
縮することを含む方法において、粒度が平均化さ
れた粉末は上記容器に充填する前に磁化される。
磁化の過程で、上記粉末の小粒は大粒と共に団塊
化される。磁気的なじ後の効果はこの共に団塊化
された物を上記容器への充填と加振圧縮が行なわ
れる時にも維持される。この効果の結果として、
上記粉末の上記部分的分離が防止され、製品材料
を均一な組織にする条件が保証される。
In order to achieve the above object of the present invention, there is provided a method for manufacturing a product from ferromagnetic powder, which comprises mixing the above powder to average the particle size distribution, and filling the mixture into a container.
In a method that includes vibratory compaction of the powder, heating the container until the powder reaches a sintering temperature, sealing the container, and compressing, the powder with an average particle size is compressed before filling the container. magnetized.
During the magnetization process, the small particles of the powder are agglomerated together with the large particles. The same magnetic effect is maintained even when the agglomerated material is filled into the container and subjected to vibration compression. As a result of this effect,
Said partial separation of said powder is prevented and conditions for homogeneous texture of the product material are guaranteed.

上記粉末を磁化する時に、強度範囲が1×103
乃至2×104A/mの固定磁場の作用に0.1乃至0.5
分間さらすのが好ましい。このような条件は最も
経済的であると共に上記製品のための材料の品質
を明らかに良くするものである。
When magnetizing the above powder, the strength range is 1×10 3
0.1 to 0.5 under the action of a fixed magnetic field of 2×10 4 A/m
Preferably, it is exposed for a minute. Such conditions are the most economical and clearly improve the quality of the material for the product.

また、本発明の上記目的は、製品を鉄磁料から
製造する装置に、吐出部に堰を設けた混合槽と、
上記容器を支持する台を備えて前記混合槽の吐出
部の下方に設けられた加振機と、容器加熱器と、
プレス装置とを設け、電磁石を上記混合槽に隣接
して設けると共に上記混合槽とその堰を非磁性材
料で作ることによつても達成することができる。
Further, the above object of the present invention is to provide an apparatus for manufacturing products from ferromagnetic materials, including a mixing tank provided with a weir in the discharge part;
a vibration exciter provided below the discharge part of the mixing tank, including a stand that supports the container; and a container heater;
This can also be achieved by providing a press device, providing an electromagnet adjacent to the mixing tank, and making the mixing tank and its weir from a non-magnetic material.

上述の装置は上記混合槽内の上記粉末を上記電
磁石に直接接触することなく磁化させる。磁化の
後に容器への充填が妨害されることはない。混合
槽と堰が非磁性材料で作られているからである。
The device described above magnetizes the powder in the mixing tank without directly contacting the electromagnet. The filling of the container is not disturbed after magnetization. This is because the mixing tank and weir are made of non-magnetic materials.

上記電磁石は上記混合槽の下方に配置されるの
が好ましい。この場合に、上記電磁石と上記粉末
の間の堰が最も小さく、これに対応して上記粉末
を磁化する際のエネルギー消費が最少である。
Preferably, the electromagnet is placed below the mixing tank. In this case, the weir between the electromagnet and the powder is the smallest and the energy consumption when magnetizing the powder is correspondingly the smallest.

上記混合槽の仕込端部及び吐出端部に、上記電
磁石を近づけたり離したりする装置を設ける必要
がある。このような配設体は磁化の効果を最大に
するために上記電磁石を上記混合槽に接触させ
る。
It is necessary to provide a device at the charging end and the discharge end of the mixing tank to bring the electromagnet closer to or away from it. Such an arrangement brings the electromagnet into contact with the mixing tank to maximize the magnetization effect.

改良された装置では、上記電磁石遠近装置は垂
直な案内装置のように構成することができ、これ
は上記電磁石を支持する運搬体が装着されると共
に往復動駆動装置に結合される。
In an improved device, the electromagnetic perspective device can be configured like a vertical guide device, which is mounted with a carrier supporting the electromagnet and coupled to a reciprocating drive.

また、上記電磁石遠近装置は回転する水平な腕
材のように構成することもでき、その端部に電磁
石が保持される。
The electromagnetic perspective device can also be configured as a rotating horizontal arm, at the end of which the electromagnet is held.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は製品を鉄磁粉から作る装置の側面線図
であつて、混合槽と、部分断面によりプレス装置
と、電磁石遠近装置と、支持台と、縦断面により
加熱器を示す図面、第2図は電磁石を垂直に遠近
させるように改良した装置の拡大側面図で、部分
断面により混合槽と、前記電磁石遠近装置と、縦
断面により支持台を示す図面、第3図は電磁石遠
近装置を回転する腕材のような構成に改良した装
置の側面図、第4図は電磁石遠近装置を運搬体の
ような構成に改良した装置の側面図である。
Fig. 1 is a side view of a device for making products from ferromagnetic powder, showing a mixing tank, a press device in partial cross section, an electromagnetic perspective device, a support stand, and a heater in vertical cross section; The figure is an enlarged side view of an improved device for vertically moving an electromagnet, showing a mixing tank, the electromagnet perspective device, and a support stand in a vertical section in a partial cross section. FIG. 4 is a side view of a device in which the electromagnetic perspective device has been improved to have a structure similar to a carrier.

発明を実施するための最良の形態 本方法の発明の実施のためには、ドラム形で回
転駆動装置2に結合された混合槽1を有する装置
が用いられる(第1図参照)。この混合槽1は仕
込部3と吐出部4を有する。この吐出部4は堰5
を有し、この堰の下方に容器8の支持台7を有す
る加振機6がある。この混合槽1とこの槽の堰5
は非磁性材料(例えば不銹鋼)で作られる。上記
容器8は構造用鋼材で作られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS For carrying out the invention of the method, an apparatus is used which has a mixing tank 1 in the form of a drum and connected to a rotary drive 2 (see FIG. 1). This mixing tank 1 has a preparation section 3 and a discharge section 4. This discharge part 4 is a weir 5
Below this weir, there is a vibrator 6 having a support 7 for a container 8. This mixing tank 1 and the weir 5 of this tank
is made of non-magnetic material (e.g. stainless steel). The container 8 is made of structural steel.

容器8の加熱器9とプレス装置10は工程の流
れに従つて上記容器支持台7に隣接して配設され
る。
The heater 9 and press device 10 for the container 8 are arranged adjacent to the container support 7 according to the process flow.

上記装置は上記混合槽1に隣接して配設された
電磁石11を有する。この電磁石は上記混合槽1
の側方、上方又は下方に装着することもできる。
The device has an electromagnet 11 arranged adjacent to the mixing tank 1. This electromagnet is connected to the mixing tank 1 above.
It can also be attached to the side, above, or below.

以下に述べる本発明の好ましい実施例では、電
磁石を上記混合槽1の下方に配設する。この場合
(混合槽1の中の上記粉末とは無関係)には、上
記粉末と電磁石は、上記混合槽の器壁を除いて、
相互にできるだけ近づけられ、これに対応して上
記粉末磁化の際のこの粉末の消費量も少い。
In a preferred embodiment of the invention described below, an electromagnet is disposed below the mixing tank 1. In this case (irrespective of the powder in the mixing tank 1), the powder and the electromagnet, except for the wall of the mixing tank,
They are brought as close as possible to each other and the consumption of this powder during the powder magnetization is correspondingly low.

電磁石11は上記混合槽1に直接保持されるよ
うにできる(この改良の図示は省略)。しかしな
がら、より好ましい装置は電磁石11を遠近させ
る装置を設けたものである。これは接触による振
動の悪影響と電磁石11のコイルへの動力線を排
除すると共に上記槽1の仕込みと吐出を行なう上
での便利である。第2図、第3図、及び第4図は
電磁石遠近装置を備えるように改良された装置を
示す。
The electromagnet 11 can be directly held in the mixing tank 1 (illustration of this improvement is omitted). However, a more preferred device is one that includes a device for moving the electromagnet 11 closer and closer. This eliminates the adverse effects of vibration due to contact and the power line to the coil of the electromagnet 11, and is convenient for charging and discharging the tank 1. FIGS. 2, 3, and 4 show a device modified to include an electromagnetic perspective device.

第2図は改良された装置を示し、この装置では
電磁石11を遠近させる装置12は垂直案内装置
13より成り、この垂直案内装置13に電磁石1
1を支持する運搬体14が装着される。この運搬
体14は往復動駆動装置に結合される。
FIG. 2 shows an improved device in which the device 12 for moving the electromagnet 11 closer and closer consists of a vertical guide device 13, to which the electromagnet 11
A carrier 14 supporting 1 is mounted. This carrier 14 is coupled to a reciprocating drive.

第3図は改良された装置を示し、この装置では
電磁石11を遠近させる装置12は回転する水平
腕材17を有する柱状部材16のように構成さ
れ、電磁石11はこの柱状部材16の端部に保持
される。
FIG. 3 shows an improved device in which the device 12 for moving the electromagnet 11 closer and closer is constructed as a column 16 with a rotating horizontal arm 17, the electromagnet 11 being mounted at the end of the column 16. Retained.

第4図は改良された装置を示し、この装置では
電磁石11を遠近させる装置は水平案内装置18
のように構成され、この案内装置18は運搬体1
9が装着されて電磁石11を支持する。この運搬
体19は往復動駆動装置に結合される。
FIG. 4 shows an improved device in which the device for moving the electromagnet 11 closer and closer is a horizontal guide device 18.
This guide device 18 is configured as shown in FIG.
9 is attached to support the electromagnet 11. This carrier 19 is connected to a reciprocating drive.

製品を鉄磁粉材料から作る方法は以下のように
実施される。
The method of making the product from ferromagnetic powder material is carried out as follows.

鉄磁粉材料(例えば工具用鋼粉)は800μm以
上の粒度の粉末を篩分けられる。800μm以下の
粒度の粉末は仕込部3(第1図)を通して混合槽
1に入れられ、この混合槽はこの粉末全量の粒度
分布を平均化するために回転される。粒度分布が
平均化された上記粉末は強度範囲が1×103乃至
2×104A/mの固定磁場に0.1乃至0.5分の時間間
隔で置かれることによつて磁化される。この最後
まで電磁石11が使用され、この電磁石11は上
記混合槽1に電磁石遠近装置12によつて近づけ
られる(第2図、第3図、第4図参照)。
Ferromagnetic powder materials (for example, steel powder for tools) can be sieved to obtain powder with a particle size of 800 μm or more. Powder having a particle size of less than 800 .mu.m is introduced into a mixing tank 1 through a charging section 3 (FIG. 1), which is rotated in order to equalize the particle size distribution of the entire amount of powder. The powder with an averaged particle size distribution is magnetized by being placed in a fixed magnetic field with an intensity ranging from 1×10 3 to 2×10 4 A/m for a time interval of 0.1 to 0.5 minutes. To this end, the electromagnet 11 is used, and this electromagnet 11 is brought close to the mixing tank 1 by means of an electromagnetic perspective device 12 (see FIGS. 2, 3, and 4).

次いで、磁化された粉末は混合槽1の吐出口4
(第1図参照)通つて、加振機6の支持体7に支
持された容器8の中に注がれる。容器8に注がれ
た上記磁化された粉末は振動出力が周波数50Hz、
振巾0.5mmの振動によつて加振圧縮される。
Next, the magnetized powder is passed through the discharge port 4 of the mixing tank 1.
(see FIG. 1) and is poured into a container 8 supported on a support 7 of a shaker 6. The magnetized powder poured into the container 8 has a vibration output frequency of 50Hz,
It is compressed by vibration with a width of 0.5mm.

この圧縮された粉末で充たされた容器8は加熱
器9によつてこの粉末の焼結温度まで加熱され
る。この加熱作業と同時に脱気作業が行なわれ、
その後にこの粉末容器は密封される。
The container 8 filled with this compressed powder is heated by a heater 9 to the sintering temperature of this powder. Deaeration work is carried out at the same time as this heating work,
The powder container is then sealed.

次いで、この焼結された粉末が入つた容器8は
プレス装置10で引き抜かれて予め定められた寸
法の棒に作られる。
The container 8 containing the sintered powder is then drawn out by a press 10 to form a bar of predetermined dimensions.

この焼結され圧縮された粉末(製品)は変形し
た上記容器から取り出される。
This sintered and compacted powder (product) is removed from the deformed container.

この製品は予熱処理(硬化、焼もどし)の後に
上記の処理が施され、この処理の後に曲げ強さ、
ロツクウエル硬度及び衝撃強さを求めるために組
織分析、物理試験及び化学試験に供される。
This product is subjected to the above treatment after preheating treatment (hardening, tempering), and after this treatment, the bending strength,
It is subjected to structural analysis, physical tests, and chemical tests to determine Rockwell hardness and impact strength.

曲げ強さ試験のために、上記製品は6×6×50
mmの熱処理(硬化、3段階焼もどし)された棒状
試験片に機械加工される。この棒状試験片は特殊
の装置で曲げられる。この装置は40mmの間隔を置
いた2個の支持体とこの支持体の間に配設されて
油圧プレス装置に結合されたポンチとで構成され
る。この支持体とポンチの端部は丸い形状を有
し、この支持体の丸い端部は半径15mm、ポンチの
丸い端部は半径7.5mmに作られる。
For bending strength test, the above product is 6×6×50
mm heat treated (hardened, 3-step tempering) rod-shaped specimens are machined. This rod-shaped specimen is bent using a special device. The device consists of two supports spaced apart by 40 mm and a punch arranged between the supports and connected to a hydraulic press. The ends of the support and the punch have a rounded shape, the rounded end of the support being made with a radius of 15 mm and the rounded end of the punch with a radius of 7.5 mm.

上記試験片は上記支持体上で破壌するまで上記
ポンチによつて曲げられる。このポンチの移動速
度は0.1mm/秒である。この試験片の破壌時の曲
げ強さは上記プレス装置のダイヤルで読み取られ
る。
The specimen is bent by the punch on the support until it ruptures. The moving speed of this punch is 0.1 mm/sec. The bending strength of this test piece at the time of failure is read by the dial of the press device.

この曲げ強さは式 σ曲げ=Mu/W=3Pl/bh2 で求められ、ここに Muは曲げ運動、単位はKg・mm Wはbh2/bはmm当りの曲げ抵抗 Pは上記試験片に加わる破壌時の曲げ力、単位
はKg lは支持体の間隔、単位はmm bは上記試験片の破壌後の巾、単位はmm hは上記試験片の破壌後の高さ、単位はmm である。
This bending strength is determined by the formula σ bending = Mu/W = 3Pl/bh 2 , where Mu is the bending motion, the unit is Kg・mm, W is bh 2 /b is the bending resistance per mm 3 , and P is the above test. Bending force applied to the piece during fracture, unit: Kg l: Spacing between supports, unit: mm b: Width of the above specimen after fracture, unit: mm h: Height of the above specimen after fracture , the unit is mm.

この材料の衝撃強さを試験するために、上記製
品は10×10×15mmの熱処理(硬化、3段階焼もど
し)を施した棒状試験片に機械加工される。
In order to test the impact strength of this material, the product is machined into heat-treated (hardening, three-stage tempering) bar specimens measuring 10 x 10 x 15 mm.

この試験片は30mgmの衝撃力を有する振子式
衝撃試験機にかけられる。この振子は上記試験片
を破壌するまで叩き、破壌後に破断面の面積が測
定され、これに対して破壌時の上記衝撃力は上記
ダイヤルで測定される。
The specimen is subjected to a pendulum impact tester with an impact force of 30 mgm. This pendulum strikes the test piece until it fractures, and after fracture, the area of the fracture surface is measured, whereas the impact force at the time of fracture is measured with the dial.

上記衝撃強さは式 a=A/FKg/cm2 により求められ、ここに Aは上記試験片の破壌時における振子の衝撃力
で、単位はKgm Fは上記試験片の破壌後の断面積で、単位はcm2 である。
The above impact strength is determined by the formula a=A/FKg/ cm2 , where A is the impact force of the pendulum when the above test piece is broken, and the unit is Kgm. The area is measured in cm2 .

以下、本発明の具体的実施例を説明する。 Hereinafter, specific examples of the present invention will be described.

実施例 1 上記製品は本発明に基づいて工具用鋼粉から作
られ、その組成は重量%で炭素1.3、硅素0.4、マ
グネシウム0.4、バナジウム0.4、コバルト10.0、
硫黄0.03、リン0.03、残量が鉄である。この結果
に合せて、800μmを越える粒度の粉末粒は篩粉
除去された。800μm以下の粒度の粉末粒はその
粒度分布均一化のため、上記混合槽で30分間混合
された。この粒度分布が平均化された粉末は強度
が1×104A/mの固定磁場の作用にさらされて
磁化された。この磁化作業は0.25分継続された。
この磁化された粉末は炭素0.2%の構造材鋼で作
られた容器に注ぎ込まれた。容器は直径300mm、
深さ600mmの円筒形である。この容器中の上記粉
末はこの容器を周波数50Hz、振巾0.5mmで振動さ
せることにより稠密化された。加振圧縮作業3分
後にこの粉末の加振が停止され、上記容器の開放
端は接続部材を有する蓋を溶接して閉鎖された。
この接続部材は真空ポンプに接続されて上記容器
内を水銀柱10-2mmの真空にした。同時にこの容器
を1150℃に加熱し、この温度に3時間維持すると
共に脱気作業を施した。
Example 1 The above product is made from tool steel powder according to the present invention, and its composition in weight percent is carbon 1.3, silicon 0.4, magnesium 0.4, vanadium 0.4, cobalt 10.0,
Sulfur is 0.03, phosphorus is 0.03, and the remaining amount is iron. In accordance with this result, powder grains with a particle size exceeding 800 μm were removed by sieving. The powder particles having a particle size of 800 μm or less were mixed in the above mixing tank for 30 minutes in order to make the particle size distribution uniform. This powder with an averaged particle size distribution was magnetized by being exposed to the action of a fixed magnetic field with an intensity of 1×10 4 A/m. This magnetization operation continued for 0.25 minutes.
The magnetized powder was poured into a container made of structural steel with 0.2% carbon. The container is 300mm in diameter.
It has a cylindrical shape with a depth of 600mm. The powder in the container was densified by vibrating the container at a frequency of 50 Hz and a width of 0.5 mm. After 3 minutes of the vibration compression operation, the vibration of the powder was stopped, and the open end of the container was closed by welding a lid with a connecting member.
This connecting member was connected to a vacuum pump to create a vacuum of 10 −2 mm of mercury inside the container. At the same time, this container was heated to 1150°C, maintained at this temperature for 3 hours, and degassed.

脱気作業完了後、上記容器の接続部材が閉じら
れ、この閉じた部分が密封された。この上記粉末
を収容し上記温度に加熱された容器は引抜により
直径100mmの円柱状の棒にされた。
After the degassing operation was completed, the connecting member of the container was closed and the closed part was sealed. The container containing the above powder and heated to the above temperature was drawn into a cylindrical rod with a diameter of 100 mm.

上記棒状試験片用粉末金属(製品)は核として
作用し、上記変形した容器は外殻として作用す
る。この作成された棒状試験片は850℃で4時間
焼もどされた後に20℃/分の割合で500℃まで冷
却され、その後室温迄空冷された。この外殻は旋
盤の回転によつて上記核から取外された。
The powdered metal (product) for the rod-shaped test piece acts as a core, and the deformed container acts as an outer shell. The rod-shaped specimen thus prepared was tempered at 850°C for 4 hours, cooled to 500°C at a rate of 20°C/min, and then air-cooled to room temperature. The shell was removed from the core by turning the lathe.

予熱処理(硬化焼もどし)の後に上述のように
製造された上記製品は組織分析、物理試験及び機
械的試験に供されて、曲げ強さ、ロツクウエル硬
さ、及び衝撃強さが測定された。
After preheating treatment (hardening and tempering), the products produced as described above were subjected to textural analysis, physical testing and mechanical testing to determine flexural strength, Rockwell hardness and impact strength.

試験結果は次のとおりである。 The test results are as follows.

曲げ強さ Kg/mm2………260 ロツクウエル硬さ C………69 衝撃強さ Kgm/cm2…………1.8 組成が同一で磁化されない粉末で作られた製品
も上述の方法で作られた。
Bending strength Kg/mm 2 ……260 Rockwell hardness C ……69 Impact strength Kgm/cm 2 …………1.8 Products made from non-magnetized powder with the same composition can also be made using the above method. Ta.

上記製品の機械的特性を比較して、単位強度が
20乃至25%、衝撃強さが30%まで増加することが
判つた。構造分析の結果、本発明に基づいて作ら
れた製品の方が粒状組織が均一であることが明ら
かにされた。
Comparing the mechanical properties of the above products, the unit strength is
It was found that the impact strength increased by 20-25% and up to 30%. Structural analysis revealed that the product made according to the present invention had a more uniform grain structure.

実施例 2 製品は組成が重量%で、炭素1.2、クロム4.2、
ニツケル0.4、マンガン0.4、硅素0.4、タングステ
ン12.0、モリブデン3.0、バナジウム2.2、コバル
ト8.2、硫黄0.03、リン0.03、残量が鉄の工具鋼の
粉末を用いて、本発明に基いて作られた。この結
果に合せて粒度800μm以下の粉粒は30分間上記
混合槽で粒度分布均一化のために混合された。平
均化された粒度を有する上記粉末は強度1×
104A/mの固定場に曝すことにより磁化され
た。この磁化作業は0.25分継続された。この磁化
された粉末は炭素0.2%の構造材用鋼で作られた
容器に注がれた。容器は直径300mm、深さ600mmの
円筒形である。この容器内の磁化された粉末は、
この容器の周波数50Hz、振巾0.5mmの加振により
稠密にされた。この粉末の加振圧縮は3分間で停
止され、この容器の開放端は管接続具を有する蓋
を溶接することにより閉鎖された。この管接続具
は空真ポンプに接続されて上記容器内部を水銀柱
10-2mmの真空にした。これと同時に、この容器は
1150℃まで加熱され、この温度に3時間保持され
て焼結と脱気が施された。
Example 2 The product has a composition by weight of 1.2 carbon, 4.2 chromium,
It was made according to the invention using tool steel powder of 0.4 nickel, 0.4 manganese, 0.4 silicon, 12.0 tungsten, 3.0 molybdenum, 2.2 vanadium, 8.2 cobalt, 0.03 sulfur, 0.03 phosphorus, balance iron. In accordance with this result, powder particles having a particle size of 800 μm or less were mixed in the above mixing tank for 30 minutes to make the particle size distribution uniform. The above powder with an averaged particle size has a strength of 1×
It was magnetized by exposure to a fixed field of 10 4 A/m. This magnetization operation continued for 0.25 minutes. The magnetized powder was poured into a container made of structural steel with 0.2% carbon. The container is cylindrical with a diameter of 300 mm and a depth of 600 mm. The magnetized powder in this container is
This container was densified by vibration at a frequency of 50 Hz and a width of 0.5 mm. The vibratory compaction of the powder was stopped after 3 minutes and the open end of the container was closed by welding a lid with tubing fittings. This pipe fitting is connected to a vacuum pump to pump the inside of the container into a column of mercury.
A vacuum of 10 -2 mm was applied. At the same time, this container
It was heated to 1150°C and held at this temperature for 3 hours to effect sintering and degassing.

脱気完了後、上記容器は管接続具を閉じ、この
閉じた部分を密封することにより密封された。上
記粉末を収容し上記温度に加熱された上記容器は
引抜きにより直径100mmの円柱状の棒に作られ
た。
After degassing was completed, the vessel was sealed by closing the tubing fitting and sealing the closed part. The container containing the powder and heated to the temperature was drawn into a cylindrical rod with a diameter of 100 mm.

上記棒用の上記粉末金属(製品)は核として、
また、上記変形した容器は外殻として作用する。
上記作成された棒は850℃で4時間焼鈍された後
20℃/分の割で500℃迄冷却され、その後室温ま
で空冷された。この外殻は旋盤の回転によつて上
記核から取外された。
The above powder metal (product) for the above rod is as a core,
The deformed container also acts as an outer shell.
After the above prepared bar was annealed at 850℃ for 4 hours
It was cooled to 500°C at a rate of 20°C/min, and then air cooled to room temperature. The shell was removed from the core by turning the lathe.

予熱処理(硬化、焼もどし)の後に上述のよう
にして作られた製品は組織分析と物理試験に供せ
られて曲げ強さ、ロツクウエル硬さ及び衝撃強さ
が求められた。
After preheating (hardening, tempering), the products made as described above were subjected to microstructural analysis and physical testing to determine bending strength, Rockwell hardness, and impact strength.

上記試験の結果は次のとおりである。 The results of the above test are as follows.

曲げ強さ Kg/mm2…………270 ロツクウエル硬さ C……68 衝撃強さ Kgm/cm2………1.5 この事実から、本発明に基づく方法によつて作
られた製品は、先行技術に基づいて作られた製品
に較べて、重量%で、強さが平均25%、衝撃強さ
が平均30%増加したことがわかる。
Bending strength Kg/mm 2 …………270 Rockwell hardness C ……68 Impact strength Kgm/cm 2 ……1.5 From this fact, the products made by the method based on the present invention are superior to the prior art. It can be seen that the strength is increased by an average of 25% and the impact strength is increased by an average of 30% by weight compared to products made based on.

実施例 3 製品は本発明に基づいて工具鋼の粉末で作ら
れ、この工具鋼の組成は重量%で炭素1.0、マン
ガン0.4、硅素0.4、クロム3.9、硫黄0.03、リン
0.03、残量が鉄である。この結果に合せて、粒度
800μm以下の粉粒が30分間、上記混合槽で粉度
分布平均化の目的で混合された。この粒度分布の
平均化された粉末は1×103A/mの強度の固定
場の作用に曝されて磁化された。この磁化作業は
0.25分継続された。この磁化された粉末は炭素
0.2%の構造材用鋼で作られた容器に注がれた。
容器は円筒形で直径300mm、深さ600mmである。上
記磁化された粉末はこの容器の中で、この容器を
周波数50Hz、振巾0.5mmで加振することにより加
振圧縮された。この粉末に対する加振作業は3分
で停止され、上記容器の開放端管接続具を有する
蓋を溶接することにより閉じられた。この管接続
具は真空ポンプに接続されて上記容器内部を水銀
柱10-2mmの真空にした。これと同時にこの容器は
1130℃まで加熱され、この温度に2時間保たれ
て、焼結と脱気が進行する。
Example 3 A product is made according to the invention with a tool steel powder, the composition of which is in weight percent carbon 1.0, manganese 0.4, silicon 0.4, chromium 3.9, sulfur 0.03, phosphorus.
0.03, the remaining amount is iron. In line with this result, the particle size
Powder particles with a diameter of 800 μm or less were mixed in the above mixing tank for 30 minutes for the purpose of averaging the particle size distribution. This averaged particle size distribution powder was magnetized by being exposed to the action of a fixed field with a strength of 1×10 3 A/m. This magnetization work
Lasted 0.25 minutes. This magnetized powder is carbon
It was poured into a container made of 0.2% structural steel.
The container is cylindrical with a diameter of 300 mm and a depth of 600 mm. The magnetized powder was vibrated and compressed in this container by vibrating the container at a frequency of 50 Hz and an amplitude of 0.5 mm. The agitation operation on the powder was stopped after 3 minutes and the container was closed by welding a lid with an open end tube fitting. This pipe fitting was connected to a vacuum pump to create a vacuum of 10 -2 mm of mercury inside the vessel. At the same time, this container
It is heated to 1130°C and kept at this temperature for 2 hours to proceed with sintering and degassing.

脱気完了後、この容器は管接続具を閉じ、この
閉じた部分を密封することにより密封された。上
記粉末を収容して上記温度に加熱された上記容器
は引抜きにより直径100mmの円柱状の棒に作られ
た。
After degassing was complete, the vessel was sealed by closing the tubing fitting and sealing the closure. The container containing the powder and heated to the temperature was drawn into a cylindrical rod with a diameter of 100 mm.

この棒用の粉末金属(製品)は核として、また
上記変形した容器は外殻として、作用する。この
棒は850℃で4時間焼もどされ、20℃/分の割合
で500℃まで冷却されてから室温まで空冷され
た。上記外殻は旋盤の回転により上記核から外さ
れた。
The powdered metal (product) for the rod acts as the core and the deformed container as the shell. The bar was tempered at 850°C for 4 hours, cooled at a rate of 20°C/min to 500°C, and then air cooled to room temperature. The outer shell was removed from the core by rotation of a lathe.

このようにして、予熱処理後(硬化、焼もど
し)後に作られた製品は組織分析、物理試験及び
機械的試験に供せられて曲げ強さ、ロツクウエル
硬さ及び衝撃強さが測定された。
The products thus produced after preheating treatment (hardening, tempering) were subjected to microstructural analysis, physical tests and mechanical tests to measure bending strength, Rockwell hardness and impact strength.

この試験は上述と同一の方法で行なわれた。 This test was conducted in the same manner as described above.

この試験の結果は次のとおりである。 The results of this test are as follows.

曲げ強さ Kg/mm2…………300 ロツクウエル硬さ C……68 衝撃強さ Kgm/cm2………1.8 この事実から、本発明に基づく方法で作られた
粉末は先行技術による方法で作られた粉末と較べ
て、重量%で、強さが平均で25%、衝撃強さが平
均で30%増加したことがわかる。
Bending strength Kg/mm 2 ......300 Rockwell hardness C...68 Impact strength Kgm/cm 2 ......1.8 From this fact, it follows that the powder made by the method according to the invention is better than the powder made by the method according to the prior art. It can be seen that the strength increased by an average of 25% and the impact strength increased by an average of 30% by weight compared to the prepared powder.

実施例 4 製品は本発明に基づいて工具鋼で作られ、この
工具鋼の組成は重量%で、炭素1.0、硅素0.4、マ
ンガン0.4、クロム3.2、ニツケル0.4、タングステ
ン9.0、モリブデン4.0、バナジウム2.3、コバルト
8.0、硫黄0.03、リン0.03、残量が鉄であつた。こ
の結果、粒度が800μmを越える粉粒は篩分除去
された。粒度800μm以下の粒は30分間、上記混
合槽で、粒度分布平均化のために混合された。こ
の粒度分布が平均化された粉末は強度が2×
104A/mの固定場の作用に曝して磁化された。
この磁化作業は0.25分継続された。この磁化され
た粉末は炭素0.2%の構造材鋼で作られた容器に
注がれた。容器は円筒形で直径が300mm、深さが
600mmである。この容器内の上記磁化された粉末
は、この容器を周波数50Hz、振巾0.5mmで加振す
ることにより稠密化された。この加振圧縮作業は
3分で停止され、この容器の開放端は管接続具を
有する蓋を溶接して閉塞された。この管接続具は
真空ポンプに接続されて上記容器の内部を10-2mm
Hgの真空にした。これと同時に、この容器は
1130℃まで加熱され、この温度に2時間保たれて
焼結と脱気が行なわれた。脱気作業完了後、この
容器は管接続具の閉塞及びこの閉塞部の密封によ
つて密封された。上記粉末を収容して上記温度に
加熱されたこの容器は直径100mmの円柱状の棒に
引き抜かれた。
Example 4 A product is made of a tool steel according to the invention, the composition of which in weight percent is 1.0 carbon, 0.4 silicon, 0.4 manganese, 3.2 chromium, 0.4 nickel, 9.0 tungsten, 4.0 molybdenum, 2.3 vanadium, cobalt
8.0, sulfur 0.03, phosphorus 0.03, and the remaining amount was iron. As a result, powder particles with a particle size exceeding 800 μm were removed by sieving. Particles having a particle size of 800 μm or less were mixed for 30 minutes in the above mixing tank to average the particle size distribution. A powder with an averaged particle size distribution has a strength of 2×
It was magnetized by exposing it to the action of a fixed field of 10 4 A/m.
This magnetization operation continued for 0.25 minutes. The magnetized powder was poured into a container made of structural steel with 0.2% carbon. The container is cylindrical with a diameter of 300 mm and a depth of
It is 600mm. The magnetized powder in this container was densified by shaking the container at a frequency of 50 Hz and a vibration width of 0.5 mm. The vibratory compression operation was stopped after 3 minutes, and the open end of the container was closed by welding a lid with a tube fitting. This pipe fitting is connected to a vacuum pump and extends 10 -2 mm inside the vessel.
A Hg vacuum was applied. At the same time, this container
It was heated to 1130°C and held at this temperature for 2 hours to allow sintering and degassing. After the degassing operation was completed, the container was sealed by closing the tube fitting and sealing the closure. This container containing the powder and heated to the above temperature was drawn out into a cylindrical rod with a diameter of 100 mm.

この棒のための粉末金属(製品)は核として、
また上記変形した容器は外殻として作用する。こ
の作り出された棒は850℃で4時間焼きもどさ
れ、20℃/分の割合で500℃まで冷却された後、
室温迄空冷された。
The powder metal (product) for this rod is as the core,
The deformed container also acts as an outer shell. The produced bar was tempered at 850℃ for 4 hours and cooled down to 500℃ at a rate of 20℃/min.
Air cooled to room temperature.

この外殻は旋盤の回転によつて上記核から取り
外された。
The shell was removed from the core by turning the lathe.

このように、予熱処理(硬化、焼きもどし)の
後に作られた製品は組織分析、物理試験、及び機
械的試験に供せられて、曲げ強さ、ロツクウエル
硬さ、及び衝撃強さが測定された。
Thus, the products made after preheating treatment (hardening, tempering) are subjected to microstructural analysis, physical testing, and mechanical testing to determine bending strength, Rockwell hardness, and impact strength. Ta.

この試験の結果は次のとおりである。 The results of this test are as follows.

曲げ強さ Kg/mm2…………320 ロツクウエル硬さ C……67 衝撃強さ Kgm/cm2………1.8 この事実から本発明に基づく方法で作られた製
品は先行技術の方法で作られた製品に較べて強さ
が平均で25%、衝撃強さが平均で30%増加するこ
とがわかる。
Bending strength Kg/mm 2 ………320 Rockwell hardness C……67 Impact strength Kgm/cm 2 ………1.8 From this fact, it follows that products made by the method according to the present invention are not manufactured by the prior art method. It can be seen that the strength is increased by 25% on average and the impact strength is increased by 30% on average compared to the conventional product.

実施例 5 製品は本発明に基づいて工具鋼の粉末で作ら
れ、その組成は重量%で、炭素1.0、マンガン
0.4、硅素0.4、クロム3.9、タングステン6.0、モ
リブデン4.8、バナジウム1.7、コバルト4.8、硫黄
0.03、リン0.03、残量が鉄であつた。
Example 5 A product is made of tool steel powder according to the invention, the composition of which is 1.0% carbon, 1.0% manganese by weight.
0.4, silicon 0.4, chromium 3.9, tungsten 6.0, molybdenum 4.8, vanadium 1.7, cobalt 4.8, sulfur
0.03, phosphorus 0.03, and the remaining amount was iron.

この結果に合せて、上記粉末の粒度800μmを
越える粒子は篩分け除去された。粒度800μm以
下の粒子は30分間上記混合槽で粒度分布均一化の
ために混合された。この均一化された粒度分布を
有する粉末は強度1×104A/mの固定場の作用
に曝すことにより磁化された。この磁化作業は
0.1分継続された。この磁化された粉末は炭素0.2
%の構造材用鋼で作られた容器に注ぎ入れられ
た。容器は円筒形で直径300mm、深さが600mmであ
る。この容器内の磁化された粉末はこの容器を周
波数50Hz、振巾0.5mmで加振することにより稠密
化された。この加振圧縮作業は3分で停止され、
この容器の開放端は管接続具を有する蓋を溶接す
ることにより閉じられた。この管接続具は真空ポ
ンプに接続されて上記容器内を10-2mmHgの真空
にした。これと同時に上記容器は1130℃迄加熱さ
れ、この温度に2時間保たれて焼結と脱気が行な
われる。脱気が完了すれば、この容器は上記管接
続具の閉塞、及びこの閉塞部の密封によつて密封
された。
In line with this result, particles with a particle size exceeding 800 μm in the powder were screened and removed. Particles having a particle size of 800 μm or less were mixed in the above mixing tank for 30 minutes to make the particle size distribution uniform. This powder with a homogenized particle size distribution was magnetized by exposing it to the action of a fixed field of intensity 1×10 4 A/m. This magnetization work
Lasted for 0.1 minute. This magnetized powder is carbon 0.2
It was poured into a container made of % structural steel. The container is cylindrical with a diameter of 300 mm and a depth of 600 mm. The magnetized powder in this container was densified by shaking the container at a frequency of 50 Hz and a vibration width of 0.5 mm. This vibration compression work was stopped in 3 minutes,
The open end of the container was closed by welding a lid with tubing fittings. This tubing fitting was connected to a vacuum pump to create a vacuum of 10 −2 mmHg inside the container. At the same time, the container is heated to 1130° C. and maintained at this temperature for 2 hours to effect sintering and degassing. Once degassing was completed, the container was sealed by closing the tube connector and sealing the closure.

上記粉末を収容し上記温度に加熱された上記容
器は引抜かれ直径100mmの円柱状の棒にされた。
The container containing the powder and heated to the above temperature was drawn out and made into a cylindrical rod with a diameter of 100 mm.

この棒はそれぞれ核として、また上記容器は外
殻として作用する。この棒は850℃で4時間焼も
どされ、20℃/分の割合で500℃迄冷却された後
室温迄空冷された。この外殻は旋盤の回転によつ
て上記核から取り外された。
This rod each acts as a core and the container as an outer shell. The bar was tempered at 850°C for 4 hours, cooled at a rate of 20°C/min to 500°C, and then air cooled to room temperature. The shell was removed from the core by turning the lathe.

このようにして予熱処理(硬化、焼もどし)の
後に作られた製品は組織分析、物理試験及び機械
的試験に供されて曲げ強さ、ロツクウエル硬さ、
及び衝撃強さが測定された。
The products made in this way after preheating (hardening, tempering) are subjected to structural analysis, physical tests, and mechanical tests to determine the bending strength, Rockwell hardness,
and impact strength were measured.

この試験の結果は次のとおりであつた。 The results of this test were as follows.

曲げ強さ Kg/mm2…………310 ロツクウエル硬さ C……68 衝撃強さ Kgm/cm2………1.8 製品を上記と同一の粉末で、磁化の程度を少く
して作り、これを試験した。上記製品をこの製品
と比較すると、強さが平均で20乃至25%、衝撃強
さが平均で30%大きいことがわかる。
Bending strength Kg/mm 2 ………310 Rockwell hardness C……68 Impact strength Kgm/cm 2 ………1.8 A product is made from the same powder as above with a lower degree of magnetization. Tested. Comparing the above products to this product, it can be seen that the strength is on average 20-25% higher and the impact strength is 30% higher on average.

組織分析によつて本発明に基づく製品を形成す
る材料の粒子構造の方が均一性の良いことが明ら
かにされた。
Textural analysis revealed that the grain structure of the material forming the product according to the invention was more uniform.

実施例 6 製品は本発明に基づいて工具鋼で作られ、この
工具鋼の組成は重量%で、炭素1.0、マンガン
0.4、硅素0.4、クロム3.9、タングステン6.0、モ
リブデン4.8、バナジウム1.7、コバルト4.8、硫黄
0.03、リン0.03、残量が鉄であつた。
Example 6 A product is made of tool steel according to the invention, the composition of which is 1.0% carbon, 1.0% manganese by weight.
0.4, silicon 0.4, chromium 3.9, tungsten 6.0, molybdenum 4.8, vanadium 1.7, cobalt 4.8, sulfur
0.03, phosphorus 0.03, and the remaining amount was iron.

この結果に合せて、800μmを越える粒度の粒
子は篩分除去された。粒度800μm以下の粒子は
30分間、上記混合槽で粒度分布均一化のために混
合された。この粒度が均一化された粉末は強度1
×104A/mの固定場の作用に曝すことで磁化さ
れた。この磁化作業は0.5分継続された。この磁
化された粉末は炭素0.2%の構造材用鋼で作られ
た容器に注ぎ込まれた。容器は円筒形で直径300
mm、深さ600mmである。この容器内の上記磁化さ
れた粉末は、この容器を周波数50Hz、振巾0.5mm
で加振することにより稠密化された。この加振圧
縮作業は3分で停止され、この容器の開放端は管
接続具を有する蓋を溶接することによつて閉じら
れた。この管接続具は真空ポンプに接続されて上
記容器の内部を10-2mmHgの真空にした。これと
同時に上記容器は1130℃まで加熱され、この温度
に2時間保たれて焼結と脱気が行なわれた。
In accordance with this result, particles with a particle size exceeding 800 μm were removed by sieving. Particles with a particle size of 800μm or less
The mixture was mixed for 30 minutes in the above mixing tank for uniform particle size distribution. This powder with uniform particle size has a strength of 1
It was magnetized by exposure to the action of a fixed field of ×10 4 A/m. This magnetization operation continued for 0.5 minutes. The magnetized powder was poured into a container made of structural steel with 0.2% carbon. The container is cylindrical and has a diameter of 300 mm.
mm, depth 600mm. The above magnetized powder in this container has a frequency of 50Hz and an oscillation width of 0.5mm.
It was densified by shaking it with The vibratory compaction operation was stopped at 3 minutes and the open end of the vessel was closed by welding a lid with tubing fittings. This tubing fitting was connected to a vacuum pump to create a vacuum of 10 -2 mmHg inside the vessel. At the same time, the container was heated to 1130° C. and maintained at this temperature for 2 hours to effect sintering and degassing.

脱気が済んだところで、この容器は上記管接続
具が閉塞され、この閉塞部が密封されることによ
り密封された。この上記粉末を収容して上記温度
に加熱された容器は引抜きにより直径100mmの円
柱状の棒に作られた。
After the deaeration was completed, the container was sealed by closing the tube connector and sealing the closed portion. The container containing the above-mentioned powder and heated to the above-mentioned temperature was made into a cylindrical rod having a diameter of 100 mm by drawing.

上記各棒用の粉末金属は核として作用し、上記
変形した容器は外殻として作用する。この製造さ
れた棒は850℃で4時間焼きもどされ、20℃/分
の割合で500℃迄冷却された後室温まで空冷され
た。上記外殻は旋盤回転により上記核から外され
た。
The powdered metal for each bar acts as the core and the deformed container acts as the shell. The produced bar was tempered at 850°C for 4 hours, cooled at a rate of 20°C/min to 500°C, and then air cooled to room temperature. The outer shell was removed from the core by lathe rotation.

このようにして予熱処理(硬化、焼きもどし)
の後に作られた製品は組織分析、物理試験及び機
械的試験に供せられて曲げ強さ、ロツクウエル硬
さ及び衝撃強さが測定された。
Preheating treatment (hardening, tempering) in this way
The products made after this were subjected to structural analysis, physical tests and mechanical tests to determine the bending strength, Rockwell hardness and impact strength.

この試験の結果は次のとおりである。 The results of this test are as follows.

曲げ強さ Kg/mm2…………320 ロツクウエル硬さ C……68 衝撃強さ Kgm/cm2………2.0 この事実から本発明に基づく方法で作られた製
品は先行技術による方法で作られた製品と較べて
単位強度が平均で25%増加し、他方、衝撃強さが
平均で30%増加していることがわかる。
Bending strength Kg/mm 2 ………320 Rockwell hardness C……68 Impact strength Kgm/cm 2 ………2.0 From this fact, products made by the method based on the present invention are different from those made by the method according to the prior art. It can be seen that the unit strength is increased by 25% on average compared to the conventional product, while the impact strength is increased by 30% on average.

実施例 7 (否定的) 製品は実施例1とほぼ同様に、類似の材料で作
られた。しかしながら、上記粉末の磁化工程で、
固定磁場の強度が1×102A/m(即ち、これは
特許請求の範囲外で、最小値以下)に変えられ
た。
Example 7 (Negative) The product was made in much the same way as Example 1 and from similar materials. However, in the magnetization process of the powder,
The strength of the fixed magnetic field was varied to 1×10 2 A/m (ie, this is outside the scope of the claims and below the minimum value).

作られた製品の試験結果は次のとおりである。 The test results of the manufactured products are as follows.

曲げ強度 Kg/mm2…………210 ロツクウエル硬さ C……69 衝撃強さ Kgm/cm2………1.1 この事実から、上記固定場の上記強度では上記
粉末が要求された範囲まで磁化されず、このこと
は、上記粉末の粒度に基づく粒子の分離を生じさ
せ、この粉末が上記容器に注ぎ込まれた時に製品
の特性を劣化させる(実施例1の製品との比較に
おいて)。特に、曲げ強さは磁化しない製品より
わずか1%しか大きくない。
Bending strength Kg/mm 2 ……210 Rockwell hardness C……69 Impact strength Kgm/cm 2 ……1.1 From this fact, it can be seen that at the above strength of the above fixed field, the above powder is magnetized to the required range. First, this causes separation of the particles based on the particle size of the powder, which deteriorates the properties of the product when the powder is poured into the container (in comparison to the product of Example 1). In particular, the bending strength is only 1% greater than the non-magnetized product.

実施例 8 (否定的) 製品は実施例とほぼ同様に、類似の材料で作ら
れた。ただし上記粉末の磁化工程で固定場の強度
は5×104A/m(即ち、この値は特許請求の範
囲第2項の範囲外で、上記最大値より大きい)の
ように変えられた。
Example 8 (Negative) The product was made in much the same way as the example and from similar materials. However, in the magnetization process of the powder, the strength of the fixed field was varied to 5×10 4 A/m (ie, this value is outside the range of claim 2 and is larger than the above maximum value).

作られた製品の試験結果は次のとおりである。 The test results of the manufactured products are as follows.

曲げ強さ Kg/mm2…………320 ロツクウエル硬さ C……67 衝撃強さ Kgm/cm2………1.8 この事実から上記固定場のこの強度では本発明
に基づく強度に比較して製品の特性が改善されな
いことがわかる。それと同時に、この場合はエネ
ルギー消費がより大きくなり使えるあてがない。
Bending strength Kg/mm 2 …………320 Rockwell hardness C ……67 Impact strength Kgm/cm 2 ……1.8 From this fact, it is clear that the strength of the product in the above fixed field is lower than the strength based on the present invention. It can be seen that the characteristics of At the same time, in this case, energy consumption is greater and there is no use for it.

実施例 9 製品は実施例3に殆んど同じで類似材料で作ら
れた。ただし、上記粉末の磁化工程で、磁化時間
が0.04分(即ち、この値は特許請求の範囲第2項
の範囲外で、上記最小値より小さい)に変えられ
た。
Example 9 The product was much the same as Example 3 and was made from similar materials. However, in the magnetization process of the powder, the magnetization time was changed to 0.04 minutes (ie, this value is outside the range of claim 2 and smaller than the above minimum value).

作られた製品は試験に供せられ、その結果は次
の通りである。
The manufactured products were subjected to testing, and the results are as follows.

曲げ強さ Kg/mm2…………230 ロツクウエル硬さ C……68 衝撃強さ Kgm/cm2………1.2 この事実から、上記特定の磁化時間は、上記粉
末を要求された範囲まで磁化するには充分ではな
いといえる。このことは上記粉末が上記容器に注
ぎ込まれる時に粉末の粒度に基因する上記粉末の
部分的分離を招いて製品の特性を劣化させる(本
発明の特許請求の範囲の記載に基づいて作られた
製品と比較すれば)。
Bending strength Kg/mm 2 ………230 Rockwell hardness C……68 Impact strength Kgm/cm 2 ………1.2 From this fact, the above specified magnetization time is sufficient to magnetize the above powder to the required range. It can be said that there is not enough to do so. This leads to a partial separation of the powder due to its particle size when it is poured into the container, deteriorating the properties of the product (products made according to the claims of the present invention). ).

実施例 10 製品は実施例2に殆んど同様に、類似の材料で
作られた。ただし、上記粉末を磁化する工程で磁
化時間が1分に変えられた(即ち、この値は特許
請求の範囲第2項記載の範囲外であり、最大値を
越えるものである。
Example 10 A product was made much the same as in Example 2 and from similar materials. However, in the step of magnetizing the powder, the magnetization time was changed to 1 minute (that is, this value is outside the range stated in claim 2 and exceeds the maximum value).

製造された製品は試験され、その結果は次のと
おりである。
The manufactured products were tested and the results are as follows:

曲げ強さ Kg/mm2…………270 ロツクウエル硬さ C……68 衝撃強さ Kgm/cm2………1.5 この事実から特定の磁化時間は本発明に基づく
磁化時間に比べて製品の特性を改善しないと言え
る。それと同時にこの場合、エネルギー消費が一
層多くなるし使えるあてがない。
Bending strength Kg/mm 2 ………270 Rockwell hardness C……68 Impact strength Kgm/cm 2 ………1.5 From this fact, the specific magnetization time has better characteristics of the product than the magnetization time based on the present invention. It can be said that there is no improvement. At the same time, in this case, energy consumption is even higher and there is no use for it.

産業上の利用可能性 本発明は冶金及び機械工学の分野で円筒状又は
形付けられた半製品、例えば構造材用鋼材等を磁
性鉄粉で作るのに応用可能であり、同様にサーメ
ツト材料のような可鍛性の乏しい材料で作るのに
応用することもできる。また、本発明は、2つの
金属を様々に組み合せた複合半製品の製造への応
用も可能である。これらの半製品は強度の大きい
切削工具や打ち型の製造への応用も可能である。
Industrial Applicability The present invention can be applied in the fields of metallurgy and mechanical engineering to the production of cylindrical or shaped semi-finished products, such as structural steel, etc., using magnetic iron powder, as well as the production of cermet materials. It can also be applied to fabrication from materials with poor malleability, such as Furthermore, the present invention can also be applied to the production of composite semi-finished products in which two metals are combined in various ways. These semi-finished products can also be applied to the production of strong cutting tools and punching dies.

Claims (1)

【特許請求の範囲】 1 粒度分布均一化のための粉末の混合、この粉
末の容器への充填、この粉末の加振圧縮とこれに
後続する上記容器の上記粉末の焼結温度までの加
熱、上記容器の密封、及びその圧縮を含む、鉄磁
粉で製品を製造する方法において、上記均一化さ
れた粒度分布を有する粉末が上記容器に充填され
る前に磁化され、磁化されるべき上記粉末は強度
1×103乃至2×104A/mの固定磁場の作用に0.1
乃至0.5分間さらされることを特徴とする鉄磁粉
から製品を製造する方法。 2 粉末を混合するための吐出部に堰を有する混
合槽と、混合槽で混合された粉末を受入れる容器
と、この粉末を入れた容器を載せる支持台を備え
容器に振動を与える加振機と、前記粉末を含んだ
容器を加熱するための加熱器と、この加熱器によ
つて加熱され粉末を含んだ容器を変形させるため
のプレス装置とを有する装置において、上記混合
槽1に接続して強度1×103乃至2×104A/mの
固定磁場を作用させる電磁石11が設けられ、上
記混合槽1とこの混合槽の堰5は非磁性材料で作
られることを特徴とする鉄磁粉から製品を製造す
る装置。 3 前記電磁石11は上記混合槽1の下方に配置
されることを特徴とする請求の範囲第2項記載の
鉄磁粉から製品を製造する装置。 4 上記電磁石11の接近と引離しを行なうため
の装置12が内部に設けられることを特徴とする
請求の範囲第2項又は第3項記載の鉄磁粉から製
品を製造する装置。 5 上記電磁石11を接近させ引離すための装置
12は垂直な案内装置13として構成され、これ
に上記電磁石11を支持すると共に往復運動する
駆動装置15に結合された運搬体14が装着され
ることを特徴とする請求の範囲第4項記載の鉄磁
粉から製品を製造する装置。 6 上記電磁石11を接近させ、引き離すための
装置12は水平の回転する腕材17を有する柱1
6として構成され、この柱16に上記電磁石が装
着されることを特徴とする請求の範囲第4項記載
の鉄磁粉から製品を製造する装置。
[Claims] 1. Mixing of powder for uniform particle size distribution, filling of this powder into a container, vibration compression of this powder, and subsequent heating of the powder in the container to the sintering temperature, In the method of manufacturing a product with ferromagnetic powder, which includes sealing the container and compacting the same, the powder having the homogenized particle size distribution is magnetized before being filled into the container, and the powder to be magnetized is 0.1 for the action of a fixed magnetic field with a strength of 1×10 3 to 2×10 4 A/m.
A method for producing a product from ferromagnetic powder, characterized by exposure for 0.5 to 0.5 minutes. 2. A mixing tank with a weir at the discharge part for mixing powder, a container for receiving the powder mixed in the mixing tank, and a vibration exciter that is equipped with a support stand on which the container containing the powder is placed and vibrates the container. , an apparatus having a heater for heating the container containing the powder, and a press device for deforming the container containing the powder by being heated by the heater, which is connected to the mixing tank 1; Iron magnetic powder characterized in that an electromagnet 11 is provided to apply a fixed magnetic field with an intensity of 1×10 3 to 2×10 4 A/m, and the mixing tank 1 and the weir 5 of the mixing tank are made of a non-magnetic material. Equipment for manufacturing products from. 3. The apparatus for manufacturing products from ferromagnetic powder according to claim 2, wherein the electromagnet 11 is disposed below the mixing tank 1. 4. An apparatus for manufacturing products from ferromagnetic powder according to claim 2 or 3, characterized in that a device 12 for approaching and separating the electromagnet 11 is provided inside. 5. The device 12 for approaching and separating the electromagnets 11 is constructed as a vertical guide device 13, to which a carrier 14 is attached, which supports the electromagnets 11 and is connected to a reciprocating drive 15. An apparatus for manufacturing products from ferromagnetic powder according to claim 4, characterized in that: 6 The device 12 for bringing the electromagnets 11 closer to each other and separating them is a column 1 having a horizontal rotating arm 17.
6. The apparatus for manufacturing products from ferromagnetic powder according to claim 4, characterized in that said electromagnet is mounted on said column 16.
JP81501106A 1980-11-28 1980-11-28 Method for manufacturing products from iron magnetic powder and its manufacturing device Granted JPS58500131A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1980/000194 WO1982001837A1 (en) 1980-11-28 1980-11-28 Method and device for making articles of ferromagnetic powder materials

Publications (2)

Publication Number Publication Date
JPS58500131A JPS58500131A (en) 1983-01-20
JPS6221043B2 true JPS6221043B2 (en) 1987-05-11

Family

ID=21616688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP81501106A Granted JPS58500131A (en) 1980-11-28 1980-11-28 Method for manufacturing products from iron magnetic powder and its manufacturing device

Country Status (6)

Country Link
JP (1) JPS58500131A (en)
AT (1) AT377717B (en)
DE (1) DE3050652C2 (en)
FR (1) FR2481165A1 (en)
SE (1) SE8204351D0 (en)
WO (1) WO1982001837A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873605A (en) * 1986-03-03 1989-10-10 Innovex, Inc. Magnetic treatment of ferromagnetic materials
JP6885092B2 (en) * 2017-02-15 2021-06-09 スミダコーポレーション株式会社 Manufacturing method of coil parts

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1729A1 (en) * 1921-12-29 1924-09-15 С.Я. Турлыгин A method of manufacturing magnetic conductors from metal powders and sawdust
US3932760A (en) * 1967-12-22 1976-01-13 Inoue K Powder activation in an inert atmosphere
DE1909949A1 (en) * 1969-02-27 1970-09-10 Deutsche Edelstahlwerke Ag Metal powder with scale-like particles for - sintering porous objects such as filters or
SU529002A1 (en) * 1975-06-16 1976-09-25 Ждановский Металлургический Завод Installation for heat treatment of ferromagnetic powders
JPS5216686A (en) * 1975-07-30 1977-02-08 Sumitomo Electric Ind Ltd Wires and cables coated with foaming paint for the prevention of flame spreading
JPS5230757A (en) * 1975-09-05 1977-03-08 Hitachi Metals Ltd Method to manufacture homogenious mixture
GB1593029A (en) * 1977-06-27 1981-07-15 American Can Co Powder metallurgical processes
US4152178A (en) * 1978-01-24 1979-05-01 The United States Of America As Represented By The United States Department Of Energy Sintered rare earth-iron Laves phase magnetostrictive alloy product and preparation thereof
DE2828462A1 (en) * 1978-06-13 1980-01-03 Bbc Brown Boveri & Cie Mfg. permanent magnets by pressing fine powder - esp. alloys contg. lanthanide(s) and cobalt, where powder is granulated for easy filling of pressing dies

Also Published As

Publication number Publication date
SE8204351L (en) 1982-07-15
DE3050652A1 (en) 1982-11-18
DE3050652C2 (en) 1987-02-26
SE8204351D0 (en) 1982-07-15
WO1982001837A1 (en) 1982-06-10
JPS58500131A (en) 1983-01-20
ATA916080A (en) 1984-09-15
FR2481165A1 (en) 1981-10-30
FR2481165B1 (en) 1983-11-18
AT377717B (en) 1985-04-25

Similar Documents

Publication Publication Date Title
KR101823425B1 (en) Method for producing r-t-b-based sintered magnets
US8916091B2 (en) Method for producing semi-finished products from NiTi shape memory alloys
US3947533A (en) Magnetic field expansion and compression method
JP6780707B2 (en) Rare earth magnet manufacturing method
CN104722754A (en) Method and apparatus for preparing rare earth sintered magnet
JPS6221043B2 (en)
CN109468520B (en) Method for smelting neodymium iron boron alloy by ultrasonic oscillation
Kulecki et al. The effect of powder ball milling on the microstructure and mechanical properties of sintered Fe-Cr-Mo-Mn-(Cu) steel
CN110373597B (en) Preparation method of graphene-reinforced high-performance light-weight iron-based powder material for automobiles
Edoziuno et al. Variation of moisture content with the properties of synthetic moulding sand produced from river Niger sand (Onitsha deposit) and Ukpor Clay
JPS59103309A (en) Manufacture of permanent magnet
TWI653110B (en) Method and apparatus for preparing rare earth sintered magnet
JP3398738B2 (en) Method for granulating powder, granulating apparatus, method for producing compact, method for treating compact, and method for producing bonded magnet
Behnam et al. The effect of size and morphology of iron powder on shell density in low carbon steel hollow spheres
DE10354019A1 (en) Apparatus to receive/transmit/store waves affecting gravity, for precision weighing, has a structure of electrically conductive and non-conductive plate layers in a packet
RU2033897C1 (en) Installation for making permanent magnets from rare-earth metal alloys
Lam High density sintering of iron-carbon alloys via transient liquid phase
JPH11228238A (en) Bulk molded product having crystalline pore structure and its production
RU2017847C1 (en) Ponderous composite blank and method of its manufacture
CN113138204A (en) Preparation method of N-standard sample suitable for electronic probe analysis
RU2114205C1 (en) Method of manufacturing magnets based on rare metal/iron/boron alloys
Maeland et al. Preparation of metallic glass powders by hydrogen charging
Kondoh et al. Cavitation toughness of in situ nitrided Al–AlN composite sintered material
JPH04157101A (en) Rare earth metal-cobalt 1-5 base alloy powder for sintered magnet
SU1748948A1 (en) Method of producing powders of iron and cobalt base rare- earth alloys