JPH11228238A - Bulk molded product having crystalline pore structure and its production - Google Patents
Bulk molded product having crystalline pore structure and its productionInfo
- Publication number
- JPH11228238A JPH11228238A JP10034567A JP3456798A JPH11228238A JP H11228238 A JPH11228238 A JP H11228238A JP 10034567 A JP10034567 A JP 10034567A JP 3456798 A JP3456798 A JP 3456798A JP H11228238 A JPH11228238 A JP H11228238A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- crystalline
- bulk
- sintering
- molded product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、気体分離膜,触
媒,メンブレンリアクター,電子デバイス,センサ等と
して有用なゼオライト等の結晶性ミクロ多孔体結晶から
なるバルク成形体およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bulk compact comprising crystalline microporous crystal such as zeolite useful as a gas separation membrane, a catalyst, a membrane reactor, an electronic device, a sensor and the like, and a method for producing the bulk compact.
【0002】[0002]
【0003】上記工学的応用に当たっては、結晶粉末を
用途・使用態様に適した形状・サイズのバルク成形体と
することが必要である。バルク成形体は、粉末をプレス
機等で圧粉成形したうえ、焼成炉中で焼成処理すること
により製造されているが、上記結晶粉末は、難成形・難
焼結性であり、結晶粉末だけでは圧粉体の成形および焼
結は困難である。このため、従来の製造法では、結晶粉
末に約10〜30wt%の成形・焼結助剤(シリカ, シリ
カ−アルミナ, カオリン粘度等)を配合した混合粉末を
原料として圧粉成形および焼結を行っている。In the above engineering application, it is necessary to make the crystal powder into a bulk compact having a shape and size suitable for the intended use and usage. Bulk compacts are manufactured by compacting powder with a press or the like and then subjecting it to firing treatment in a firing furnace. It is difficult to mold and sinter green compacts. Therefore, in the conventional manufacturing method, powder compaction and sintering are performed by using a mixed powder in which a crystal powder is mixed with a molding/sintering auxiliary agent (silica, silica-alumina, kaolin viscosity, etc.) of about 10 to 30 wt% as a raw material. Is going.
【0004】[0004]
【発明が解決しようとする課題】主原料成分である結晶
粉末に成形助剤や結助剤を配合して製造される上記バル
ク成形体は、助剤を配合した量だけ主成分の占める比率
が低くなり、異種剤が混在することによる特性の低下を
免れない。主原料の結晶構造に基づく特異性を最大限に
発現させるには、助剤等の使用を排除し、バルク成形体
を純品として製造することが望まれる。本発明は、上記
要望に応えるための新規バルク成形体およびその製造方
法を提供するものである。SUMMARY OF THE INVENTION In the above-mentioned bulk compact produced by blending a crystal powder, which is a main raw material component, with a molding aid or a co-agent, the proportion of the main component is equal to the amount of the auxiliary compounded. It becomes low, and the deterioration of characteristics due to the mixture of different kinds of agents cannot be avoided. In order to maximize the specificity based on the crystal structure of the main raw material, it is desired to eliminate the use of auxiliaries and the like and manufacture the bulk compact as a pure product. The present invention provides a novel bulk compact and a method for producing the same in order to meet the above demands.
【0005】[0005]
【課題を解決するための手段】本発明の結晶性細孔構造
を有するバルク成形体は、結晶性ミクロ多孔体結晶粉末
を原料とする放電プラズマ焼結体として形成されてい
る。原料粉末は、従来法におけるような成形助剤や焼結
助剤を一切添加されず、結晶性ミクロ多孔体結晶の単体
粉末である。従って、バルク成形体は、異種剤の混在・
汚染のない純品として製造される。The bulk compact having a crystalline pore structure of the present invention is formed as a spark plasma sintered body using crystalline microporous crystalline powder as a raw material. The raw material powder is a single powder of crystalline microporous crystal without any molding auxiliary or sintering auxiliary as in the conventional method. Therefore, the bulk molded product is
Manufactured as a pure product with no pollution.
【0006】[0006]
【発明の実施の形態】放電プラズマ焼結法(SPS法:
Spark Plasma Sintering)は、粉末を加圧しパルス通電
により焼結を行うものである。すなわち、原料粉末を導
電性モールドに充填して加圧力を加え、モールドを介し
てパルス状電流を供給することにより、粉体粒子間隙に
瞬間・断続的な火花放電を発生させ、火花放電に伴う高
温プラズマの高エネルギーにより粉体を焼結させる内部
発熱方式の焼結手法である。粉体充填層内の放電点は、
電流・電圧印加のオン・オフの反復に伴つて充填層内の
全体に移動分散し、粉末充填層の全体に亘る均質な加熱
焼結が行われる。BEST MODE FOR CARRYING OUT THE INVENTION Spark plasma sintering method (SPS method:
Spark Plasma Sintering) is a method of pressurizing powder and sintering by pulsed current application. That is, the raw material powder is filled in a conductive mold, a pressure is applied, and a pulsed current is supplied through the mold to generate instantaneous/intermittent spark discharge in the powder particle gap, which accompanies the spark discharge. This is an internal heating type sintering method in which powder is sintered by high energy of high temperature plasma. The discharge point in the powder packed bed is
As the current/voltage application is repeatedly turned on and off, the powder is moved and dispersed throughout the packed bed, and homogeneous heat sintering is performed over the entire powder packed bed.
【0007】図4において、(1)は導電性モールドで
あり、水冷真空チャンバー(6)内に配置されている。
(M)は該モールド(1)に充填された原料粉末であ
る。(2)(3)は、原料粉末(M)を加圧する上・下
部パンチであり、上部パンチ(2)および下部パンチ
(3)は電極(4)および(5)にそれぞれ取付けら
れ、放電プラズマ装置制御部(7)に接続されている。
原料粉末(M)は、上部・下部パンチ(2)(3)を介
して加圧されると共にパルス電流が供給される。In FIG. 4, (1) is a conductive mold, which is arranged in a water-cooled vacuum chamber (6).
(M) is a raw material powder filled in the mold (1). (2) and (3) are upper and lower punches that press the raw material powder (M), and the upper punch (2) and the lower punch (3) are attached to the electrodes (4) and (5), respectively, and discharge plasma It is connected to the device controller (7).
The raw material powder (M) is pressed through the upper and lower punches (2) and (3) and is supplied with a pulse current.
【0008】放電プラズマ焼結法によれば、内部発熱に
よる均一加熱の効果として、高い熱効率のもとに短時間
かつ比較的低温域で、原料粒子表面層のみに拡散を生起
させ粒間接合を形成することがき、このことはナノ材料
をナノサイズのままバルク化することを可能とする。本
発明はこの特性を利用して、結晶性ミクロ多孔体結晶粉
末の結晶構造を保持したままバルク化し、細孔構造を有
する成形体を得ることを実現している。According to the spark plasma sintering method, as an effect of uniform heating due to internal heat generation, diffusion is caused only in the surface layer of the raw material particles in a short time and in a relatively low temperature region with high thermal efficiency, so that intergranular bonding is achieved. It can be formed, which allows the nanomaterial to be bulked in the nanosized size. The present invention utilizes this property to realize a crystalline microporous crystalline powder while maintaining the crystal structure of the crystalline powder into a bulk to obtain a compact having a pore structure.
【0009】本発明のバルク成形体を製造するための放
電プラズマ焼結に供される原料粉末は、前記一般式
〔1〕で表されるゼオライト等のアルミノシリケート等
に代表される結晶性細孔構造を有する粉末である。ゼオ
ライトについて述べれば、このものは天然品および合成
品に大別され、化学組成および結晶構造の異なる多種類
の結晶(Si/Al 比≒1〜∞)が知られている。これら各
種の結晶粉末(単結晶または多結晶粉末)は、目的とす
るバルク成形体の用途等に応じて任意に選択使用され
る。The raw material powder to be subjected to spark plasma sintering for producing the bulk compact of the present invention is crystalline pores represented by the aluminosilicate such as zeolite represented by the above general formula [1]. It is a powder having a structure. Speaking of zeolite, these are roughly classified into natural products and synthetic products, and various kinds of crystals (Si/Al ratio ≈1 to ∞) having different chemical compositions and crystal structures are known. These various crystal powders (single crystal or polycrystal powder) are arbitrarily selected and used according to the intended use of the bulk compact and the like.
【0010】原料粉末は、成形・焼結助剤等の助剤を配
合されることなく、放電プラズマ焼結装置の導電性モー
ルドに充填される。導電性モールドは、グラファイト,
合金工具鋼,あるいは超硬合金等で形成されたもの等で
ある。パルス通電による焼結処理は、無加圧または加圧
条件下に行われる。使用される原料粉末の材種,粒度な
どに応じて、適当な加圧力(例えば,10〜1000M
Pa)の作用下にパルス通電を行うことは、放電プラズ
マ焼結を効率よく達成するのに好ましいことである。The raw material powder is filled in the conductive mold of the discharge plasma sintering apparatus without being mixed with an auxiliary agent such as a molding/sintering auxiliary agent. The conductive mold is graphite,
Examples include alloy tool steel, cemented carbide and the like. The sintering treatment by pulsed current application is performed under no pressure or under pressure. Appropriate pressure (for example, 10 to 1000M) depending on the material type and particle size of the raw material powder used.
It is preferable to carry out pulse current application under the action of Pa) in order to efficiently achieve spark plasma sintering.
【0011】また焼結処理温度は、300〜700℃の
範囲に調節するのが好ましい。これより低い温度では焼
結接合(粒間結合)に要する時間が長くなり、他方これ
より高温域では、粒子の結晶性細孔構造を損なうおそれ
があるからである。焼結温度は、電流・電圧,パルスの
周期等により精度よく制御することができる。焼結処理
に要する時間は、例えば5〜15分である。The sintering treatment temperature is preferably adjusted within the range of 300 to 700°C. This is because if the temperature is lower than this, the time required for sinter bonding (intergranular bonding) becomes long, while in the higher temperature range, the crystalline pore structure of the particles may be impaired. The sintering temperature can be accurately controlled by the current/voltage, the pulse period, and the like. The time required for the sintering process is, for example, 5 to 15 minutes.
【0012】上記放電プラズマ焼結により、原料粉末の
結晶性細孔構造を有するバルク成形体として、柱状体等
のブロック,シート状物など、その用途・使用態様等に
応じた形状の成形体を得る。導電性モールドと中子の組
み合わせにより、バルク成形体としてチューブ等の中空
体を得ることもむろん可能である。As a bulk compact having a crystalline pore structure of the raw material powder obtained by the above-mentioned discharge plasma sintering, a compact having a shape according to its application, usage, etc., such as a block of a columnar body, a sheet-like product, etc. obtain. By combining the conductive mold and the core, it is of course possible to obtain a hollow body such as a tube as a bulk molded body.
【0013】[0013]
【実施例】放電プラズマ焼結により、原料粉末の結晶性
細孔構造を保持したバルク成形体を製造する。原料粉末
として、H-モルデナイト粉末(Si/Al 比= 115 ), シリ
カライト粉末(Si/Al 比: ∞)のゼオライト粉末を使用
した。 〔実施例1〕H-モルデナイト粉末(粒径:1〜3 μm)1
gをグラファイト製モールドに充填し、脱気減圧下(20
Pa) で、40MPaの圧力を加え、パルス電流を供給
する(200 〜400 A, 2〜2 V,約22Hz)。上記パルス通電
により500℃に昇温し、同温度域で10分間加熱処理
して、円盤形状のバルク成形体(直径 20 mm×高さ3.5
mm) を得た。Example A bulk compact having the crystalline pore structure of the raw material powder is manufactured by spark plasma sintering. Zeolite powders of H-mordenite powder (Si/Al ratio=115) and silicalite powder (Si/Al ratio: ∞) were used as raw material powders. [Example 1] H-mordenite powder (particle size: 1 to 3 µm) 1
g in a graphite mold and degassed under reduced pressure (20
Pa), a pressure of 40 MPa is applied, and a pulse current is supplied (200 to 400 A, 2 to 2 V, about 22 Hz). The temperature was raised to 500°C by the above pulse energization, and heat-treated in the same temperature range for 10 minutes to obtain a disk-shaped bulk compact (diameter 20 mm × height 3.5
mm)
【0014】〔実施例2〕H-モルデナイト粉末(粒径:1
〜3 μm)100 gをグラファイト製モールドに充填し、
脱気減圧下(20Pa) で、30MPaの圧力を加え、パ
ルス電流を供給する(2000〜3500 A, 3 〜5 V,約22H
z)。上記パルス通電により500℃に昇温し、同温度
域で20分間加熱処理して、円盤形状のバルク成形体
(直径 60 mm×高さ 40 mm) を得た。[Example 2] H-mordenite powder (particle size: 1
~ 3 μm) 100 g was filled in a graphite mold,
Under deaeration and reduced pressure (20 Pa), apply a pressure of 30 MPa and supply a pulse current (2000-3500 A, 3-5 V, approximately 22H
z). The temperature was raised to 500° C. by the above pulse energization, and heat treatment was performed for 20 minutes in the same temperature range to obtain a disk-shaped bulk compact (diameter 60 mm×height 40 mm).
【0015】〔実施例3〕シリカライト粉末(粒径:10
μm)3gを超硬合金製モールドに充填し、脱気減圧下
(20Pa) で、300MPaの圧力を加え、パルス電流
を供給する(600〜1000 A, 2 〜3 V,約22Hz)。上記パ
ルス通電により500℃に昇温し、同温度域で10分間
加熱処理して、円盤形状のバルク成形体(直径 20 mm×
高さ 6.5mm) を得た。Example 3 Silicalite powder (particle size: 10
(3 μm) is filled in a cemented carbide mold, a pressure of 300 MPa is applied under deaeration and reduced pressure (20 Pa), and a pulse current is supplied (600 to 1000 A, 2 to 3 V, about 22 Hz). The temperature was raised to 500°C by the above-mentioned pulse energization, and heat treatment was performed for 10 minutes in the same temperature range to obtain a disk-shaped bulk compact (diameter 20 mm ×
Height 6.5 mm) was obtained.
【0016】図1〜図3は実施例1〜3における原料粉
末とそのバルク成形体について、それぞれのX線強度の
測定結果(X線: Cu- Kα1 /40kV/100mA,カウンタ: シ
ンチレーション) 示している〔図1: 実施例1(H- モル
デナイト結晶),図2: 実施例2(H- モルデナイト結晶),
図3: 実施例3(シリカライト結晶)〕。各図中、(1)
は原料粉末、(2) はバルク成形体である。各実施例で得
られたバルク成形体は、使用した原料粉末の結晶性ミク
ロ多孔体構造を備えている。なお、実施例1及び実施例
2のバルク成形体(H- モルデナイト結晶) の機械強度は
約30MPa、実施例3のバルク成形体(シリカライト結
晶)のそれは約50MPaであり、バルク成形体として各
種用途での種々の態様の使用に耐え得る十分な安定性を
備えている。FIGS. 1 to 3 show the measurement results of the X-ray intensity (X-ray: Cu-Kα 1 /40kV/100mA, counter: scintillation) of the raw material powders and bulk compacts thereof in Examples 1 to 3. [FIG. 1: Example 1 (H-mordenite crystal), FIG. 2: Example 2 (H-mordenite crystal),
FIG. 3: Example 3 (silicalite crystals)]. In each figure, (1)
Is a raw material powder, and (2) is a bulk compact. The bulk compacts obtained in each example have a crystalline microporous structure of the raw material powder used. The mechanical strength of the bulk compacts (H-mordenite crystals) of Examples 1 and 2 is about 30 MPa, and that of the bulk compacts of Example 3 (silicalite crystals) is about 50 MPa. It has sufficient stability to withstand the use of various aspects in the application.
【0017】〔実施例4〕シリカライト粉末(粒径:10
μm)3gを、超硬合金製モールドに充填し、脱気減圧
(20Pa) の後、300MPaの圧力を加え、パルス電
流を供給し、100〜800 ℃の温度域の予め設定した各温
度に昇温し、10分間加熱保持する放電プラズマ焼結処理
を行ってバルク成形体(円盤形状, 直径 20 mm×高さ
6.5mm) を得る。表1の上段に、各処理温度におけるバ
ルク成形体(円盤形状,直径 20 mm×高さ 6.5mm)の成
否を示す。表中、×マークは、焼結処理後の型からの取
り出し又はその後の取り扱い過程で容易に破損ないし崩
壊し、バルク成形体として不完全であることを示し、×
1 マークは成形体としての安定性(強度)を有してはい
るが、処理温度が高過ぎたことに起因して結晶性細孔構
造の健全性が損なわれていることを示している。このよ
うに、焼結温度を300 〜700 ℃とする放電プラズマ焼結
により、原料粉末の結晶性細孔構造を備えたバルク成形
体が得られる。Example 4 Silicalite powder (particle size: 10
(3 μm) was filled in a cemented carbide mold, depressurized and depressurized (20 Pa), 300 MPa pressure was applied, pulse current was supplied, and the temperature was raised to each preset temperature range of 100 to 800°C. A bulk compact (disc shape, diameter 20 mm x height) was obtained by performing a spark plasma sintering process that warms and holds for 10 minutes.
6.5mm). The upper part of Table 1 shows the success or failure of the bulk compact (disc shape, diameter 20 mm x height 6.5 mm) at each treatment temperature. In the table, an X mark indicates that the product was easily damaged or collapsed during removal from the mold after the sintering treatment or the subsequent handling process, and was incomplete as a bulk compact, ×
The mark 1 has the stability (strength) as a molded product, but shows that the soundness of the crystalline pore structure is impaired due to the treatment temperature being too high. In this way, by discharge plasma sintering at a sintering temperature of 300 to 700° C., a bulk compact having a crystalline pore structure of the raw material powder is obtained.
【0018】〔比較例〕シリカライト粉末(粒径:10 μ
m) 1g(助剤配合なし)を型に充填し、脱気減圧(20
Pa)の後、300MPaの加圧条件下に電気炉焼結を
行う。焼結温度は、100 ℃〜800 ℃における予め設定し
た各温度に調節し、処理時間はいずれも1Hrとした。表
1の下欄は、この外部焼結によるバルク成形体(円盤形
状, 直径20 mm×高さ 6.5mm) の品質を、前記実施例4
のそれと対比して示している。表中の×マークは、この
バルク成形体が、焼結処理後の抜型処理過程またはその
後の取り扱い過程での破損・崩壊を生じ易く、バルク成
形体として不完全であることを示している。Comparative Example Silicalite powder (particle size: 10 μ
m) 1 g (without auxiliary compounding) was filled in a mold and degassed under reduced pressure (20
After Pa), electric furnace sintering is performed under a pressure condition of 300 MPa. The sintering temperature was adjusted to each preset temperature in the range of 100°C to 800°C, and the processing time was set to 1 hr. The lower column of Table 1 shows the quality of the bulk compact (disk shape, diameter 20 mm×height 6.5 mm) obtained by the external sintering as described in Example 4 above.
It is shown in contrast to that. The X mark in the table indicates that this bulk molded body is liable to be damaged or collapsed during the die-cutting process after the sintering process or the subsequent handling process, and is an incomplete bulk molded body.
【0019】[0019]
【表1】 [Table 1]
【0020】[0020]
【発明の効果】本発明のバルク成形体は、原料粉末の結
晶性ミクロ多孔体結晶の細孔構造を有し、かつ従来品と
異なって成形・焼結助剤の異種剤の混在による汚染は皆
無である。このため、原料粉末の結晶構造に基づく特異
性を最大限に発揮させることができ、各種分野における
機能材料、例えば気体分離膜,触媒,メンブレンリアク
ター,電子デバイス,センサ等として、工学的応用の拡
大・多様化を可能とするものである。INDUSTRIAL APPLICABILITY The bulk compact of the present invention has a crystalline microporous crystal structure of the raw material powder, and unlike the conventional product, contamination due to the mixing of different agents of the compacting/sintering aid is prevented. There is none. Therefore, it is possible to maximize the peculiarity based on the crystal structure of the raw material powder, and expand engineering applications as functional materials in various fields, such as gas separation membranes, catalysts, membrane reactors, electronic devices, and sensors. -It is possible to diversify.
【図1】本発明のバルク成形体およびその原料粉末のX
線回折パターンを示すグラフである。FIG. 1 is an X of a bulk compact of the present invention and a raw material powder thereof.
It is a graph which shows a line diffraction pattern.
【図2】本発明のバルク成形体およびその原料粉末のX
線回折パターンを示すグラフである。FIG. 2 is an X of the bulk compact of the present invention and the raw material powder thereof.
It is a graph which shows a line diffraction pattern.
【図3】本発明のバルク成形体およびその原料粉末のX
線回折パターンを示すグラフである。FIG. 3 shows X of the bulk compact of the present invention and the raw material powder thereof.
It is a graph which shows a line diffraction pattern.
【図4】放電プラズマ焼結の模式的説明図である。FIG. 4 is a schematic explanatory diagram of spark plasma sintering.
1: 導電性モールド 2,3: パンチ 4,5: 電極 6: チャンバ 7: 放電プラズマ装置制御部 M: 原料粉末 1: Conductive mold 2, 3: Punch 4, 5: Electrode 6: Chamber 7: Discharge plasma device controller M: Raw material powder
Claims (4)
ズマ焼結してなる結晶性細孔構造を有するバルク成形
体。1. A bulk compact having a crystalline pore structure, which is formed by spark plasma sintering of crystalline powder of crystalline microporous body.
ト粉末である請求項1に記載のバルク成形体。2. The bulk compact according to claim 1, wherein the crystalline powder of the crystalline microporous body is a zeolite powder.
ールドに充填し、加圧もしくは無加圧下にパルス電流を
供給して放電プラズマ焼結することを特徴とする請求項
1または請求項2に記載のバルク成形体の製造方法。3. A crystalline microporous crystal powder is filled in a conductive mold, and a pulsed current is supplied under pressure or without pressure to perform spark plasma sintering. The method for producing a bulk molded article according to 1.
項3に記載のバルク成形体の製造方法。4. The method for producing a bulk compact according to claim 3, wherein the sintering temperature is 300 to 700° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10034567A JPH11228238A (en) | 1998-02-17 | 1998-02-17 | Bulk molded product having crystalline pore structure and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10034567A JPH11228238A (en) | 1998-02-17 | 1998-02-17 | Bulk molded product having crystalline pore structure and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11228238A true JPH11228238A (en) | 1999-08-24 |
Family
ID=12417911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10034567A Pending JPH11228238A (en) | 1998-02-17 | 1998-02-17 | Bulk molded product having crystalline pore structure and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11228238A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005112712A (en) * | 2003-09-18 | 2005-04-28 | Univ Nihon | Porous sintered compact of calcium phosphate-based compound or calcium carbonate and manufacturing method thereof |
JP2008037721A (en) * | 2006-08-09 | 2008-02-21 | Kyodo Printing Co Ltd | Zeolite formed body and method of manufacturing the same |
CN102006933A (en) * | 2008-04-04 | 2011-04-06 | 彼得·瓦西列夫 | Zeolite catalyst zeolite secondary structure |
JP2012236762A (en) * | 2012-07-12 | 2012-12-06 | Taiheiyo Cement Corp | Method for producing ceramic joined body and gas dispersion plate |
JP2013147408A (en) * | 2012-01-23 | 2013-08-01 | Masanao Kato | Proton conductor, and electrochemical element using the same |
-
1998
- 1998-02-17 JP JP10034567A patent/JPH11228238A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005112712A (en) * | 2003-09-18 | 2005-04-28 | Univ Nihon | Porous sintered compact of calcium phosphate-based compound or calcium carbonate and manufacturing method thereof |
JP2008037721A (en) * | 2006-08-09 | 2008-02-21 | Kyodo Printing Co Ltd | Zeolite formed body and method of manufacturing the same |
CN102006933A (en) * | 2008-04-04 | 2011-04-06 | 彼得·瓦西列夫 | Zeolite catalyst zeolite secondary structure |
JP2013147408A (en) * | 2012-01-23 | 2013-08-01 | Masanao Kato | Proton conductor, and electrochemical element using the same |
JP2012236762A (en) * | 2012-07-12 | 2012-12-06 | Taiheiyo Cement Corp | Method for producing ceramic joined body and gas dispersion plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1896379B1 (en) | Process for producing sintered porous materials | |
JP2001098308A (en) | Porous calcium phosphate series compound/metal composite sintered body and producing method | |
JP4219325B2 (en) | Method for producing porous titanium material article | |
JPH11228238A (en) | Bulk molded product having crystalline pore structure and its production | |
KR19990063759A (en) | Composite materials, specifically methods for producing nanoporous materials and nanoporous materials produced by the method | |
RU2587669C2 (en) | Method of making aluminium nitride-based heat-conducting ceramic | |
CN103086704A (en) | Preparation method of high-porosity mineral-based ceramic membrane support | |
Yamasaki et al. | Production of hydroxyapatite-glass compacts by hydrothermal hot-pressing technique | |
JP5092135B2 (en) | Porous material and method for producing the same | |
JP2012106929A (en) | Method for producing porous body | |
JP4148599B2 (en) | Porous calcium phosphate compound / metal composite sintered body and method for producing the same | |
JP2001261440A (en) | Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same | |
JP2004250725A (en) | Boride ceramics for electrode, electrode obtained by using the same, and method of producing boride ceramics for electrode | |
JP4398027B2 (en) | Porous silicon carbide sintered body | |
JPH0572355B2 (en) | ||
JP2004115297A (en) | Method for manufacturing hydroxyapatite porous sintered material | |
JPH04214076A (en) | Tic sintered body and its manufacture | |
JPH0459270B2 (en) | ||
JP2004149842A (en) | Method for manufacturing titanium sintered compact | |
EP4360837A1 (en) | A sintering device having a die lining of increased thickness | |
WO1998011974A1 (en) | Porous nickel filter material | |
EP4360839A1 (en) | A sintering device having low surface roughness | |
JP2001139375A (en) | Tib2-ti(cn)-based composite and method for manufacturing the same | |
KR101981309B1 (en) | Manufacturing method of low-temperature heating element using SiC powder synthesized with metal silicon | |
JPS5988374A (en) | Manufacture of silicon nitride ceramics |