JP4398027B2 - Porous silicon carbide sintered body - Google Patents

Porous silicon carbide sintered body Download PDF

Info

Publication number
JP4398027B2
JP4398027B2 JP33085199A JP33085199A JP4398027B2 JP 4398027 B2 JP4398027 B2 JP 4398027B2 JP 33085199 A JP33085199 A JP 33085199A JP 33085199 A JP33085199 A JP 33085199A JP 4398027 B2 JP4398027 B2 JP 4398027B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sintering
sintered body
porous silicon
carbide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33085199A
Other languages
Japanese (ja)
Other versions
JP2001151578A (en
Inventor
敏雄 平井
正雄 鴇田
偉 潘
立東 陳
守 大森
Original Assignee
敏雄 平井
Spsシンテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敏雄 平井, Spsシンテックス株式会社 filed Critical 敏雄 平井
Priority to JP33085199A priority Critical patent/JP4398027B2/en
Publication of JP2001151578A publication Critical patent/JP2001151578A/en
Application granted granted Critical
Publication of JP4398027B2 publication Critical patent/JP4398027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質炭化珪素焼結体に関する
【0002】
【従来の技術】
炭化珪素焼結体は、耐熱温度が高く、熱伝導性と電気伝導性に優れ、化学的安定性をそなえているため、高温用の各種構造部材として利用されており、とくに、焼結体の組織構造を多孔質とした多孔質炭化珪素焼結体は、触媒担体、高温ガス浄化フィルター、溶融金属濾過用フィルター、マイクロ波吸収発熱体、通気性断熱材など多様な分野において使用されている。
【0003】
多孔質炭化珪素焼結体は、通常、ポリウレタンフォームのような三次元網目構造の有機質発泡体に炭化珪素のスラリーを含浸させ、乾燥した後、高温焼成して炭化珪素を焼結するとともに、有機質発泡体を焼却、除去することにより製造されている(例えば、特開昭58−122016号公報など)が、この方法により製造される多孔質炭化珪素焼結体は、有機質発泡体を焼却、除去して形成された炭化珪素の骨格体を焼結するものであるから、高い気孔率を付与することはできるが、空孔のサイズが大きく比表面積が小さくなり、機械的強度および電気伝導率が劣るという難点があり、応用面で大きな制約となっている。
【0004】
多孔質炭化珪素焼結体の製造方法として、炭化珪素の粉末に有機質の樹脂バインダーを加えて混合し、この混合物を所定形状に成形した後、焼成して炭化珪素の粉末粒子を粒成長させる方法も提案されており(特開平3−215374号公報、特開平3−215375号公報など)、この方法によれば、気孔率が50%程度の多孔質炭化珪素焼結体を製造することが可能であるが、多孔質体を構成する炭化珪素粒子の結合が炭化珪素微粒子の粒成長のみにより行われるから、機械的強度が十分でなく、気孔特性と強度特性の両立を図ることが困難である。
【0005】
また、メソフェーズ含有ピッチで被覆されてなる炭化珪素粉末および溶媒からなるスラリー中に均一に分散安定化された微細泡を生成し、この微細泡含有スラリーを用いて鋳込み成形により成形体を形成し、この成形体を非酸化性雰囲気下で乾燥、焼成した後、珪素を含浸させ、ついで、未反応の珪素を除去するという微細気孔径を有する多孔質炭化珪素焼結体を得ることを目的とする多孔質炭化珪素焼結体の製造方法も提案されているが(特開平6−293575号公報)が、この方法においても、微細泡を均一に分散させたスラリーの調製が難しいため、均一な気孔が得難く、珪素を含浸させた後に未反応の珪素を除去する工程を要するため製造工程が複雑となるという問題点もある。
【0006】
発明者らは、多孔質炭化珪素焼結体の製造における上記従来の問題点を解決して、気孔特性として高い比表面積を有し、機械的強度および電気伝導率にも優れた多孔炭化珪素焼結体を得るために、炭化珪素のスラリーや炭化珪素の粉末に有機質の樹脂バインダーを加えた混合物を介して間接的に多孔質炭化珪素焼結体を得る方法ではなく、サブミクロンサイズの炭化珪素ウイスカーを直接焼結することにより多孔質炭化珪素焼結体を得る方法について検討を重ねた。
【0007】
【発明が解決しようとする課題】
本発明は、上記検討の過程において、炭化珪素ウイスカーを加圧し、加圧された炭化珪素ウイスカーに通電して焼結を行うことにより、炭化珪素ウイスカーの形状とサイズを維持しながら、ウイスカー同士を焼結、連結させることができることを見出したことに基づいてなされたものであり、その目的は、50%以上の気孔率をそなえ、ミクロンオーダーの空孔を有し、比表面積が高く、機械的強度および電気伝導率に優れた多孔質炭化珪素焼結体を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するための本発明による多孔質炭化珪素焼結体は、平均直径が1μm以下の炭化珪素ウイスカー原料を成形ダイ中に装入し、パンチで圧縮するとともに、ON−OFF直流パルス電流を印加してパルス通電焼結することにより得られた炭化珪素焼結体であって、気孔率が50〜80%、比表面積が0.7〜1.5m /gであり、マイクロオーダーの空孔を有する三次元網目構造をそなえているとともに、優れた強度特性を有することを特徴とする。
【0011】
【発明の実施の形態】
本発明においては、炭化珪素ウイスカーに直接通電して焼結し、炭化珪素ウイスカー同士を互いに連結して、多孔質炭化珪素焼結体とすることを特徴とするものであり、好ましい実施態様としては、炭化珪素ウイスカーを、カーボンなどからなる導電性の成形ダイ中に装入し、例えば上下から導電性のパンチで圧縮するとともに、パンチを通じて通電を行い焼結する。
【0012】
本発明の多孔質炭化珪素焼結体を製造するための放電焼結装置の概略を図1に示す。放電プラズマ焼結装置1においては、水冷真空チャンバ2内に、原料の炭化珪素ウイスカーWを装填する成形ダイ3および成形ダイ3内の原料を押圧、圧縮する上下一対のパンチ(押圧子)4、5が配置されており、パンチ4、5は、加圧機構により駆動する上下一対の加圧ラム6、7にそれぞれ取り付けられている。
【0013】
放電プラズマ焼結装置1には、加圧ラムおよびパンチを通じて成形ダイ内の原料を通電、焼結するための焼結用電源、加圧ラム6、7を水冷するための冷却系、水冷却機構、焼結雰囲気を調整するための雰囲気制御機構、その他、位置計測機構、温度計測装置、これらの機構、装置を制御するための制御装置が配設されている。
【0014】
炭化珪素ウイスカーは、必要に応じてボールミルなどにより混合、粉砕し、所定の長さに揃える。炭化珪素ウイスカーとしては、好ましくは平均直径1μm以下、さらに好ましくは平均直径0.1〜0.5μm、長さ10〜20μmのものが好適に使用される。
【0015】
炭化珪素ウイスカーに対して通電焼結を行うために、図2にその要部を示すように、カーボンなどからなる導電性の成形ダイ3および成形ダイ3に挿入される導電性の上パンチ4および下パンチ5が配設され、成形ダイ3内にサイズを調製した炭化珪素ウイスカーWを装入して、パンチ4、5に加圧ラム6、7を通じて荷重を付加し、炭化珪素ウイスカーWを上下から圧縮するとともに、パンチ4、5を通して炭化珪素ウイスカーWに電圧を印加し通電する。
【0016】
炭化珪素ウイスカーの圧縮は、パンチPにより100〜800kg/cm2 の圧力を加えて行うのが好ましく、通電は、炭化珪素ウイスカーの圧縮後に行ってもよく、圧縮しながら行ってもよい。通電中は真空または不活性雰囲気に保持される。
【0017】
通電は、パルス電流または直流電流、交流電流を利用して行い、通電により発生するジュール熱と加圧による炭化珪素ウイスカーの塑性流動により焼結が促進される。とくに、ON−OFF直流パルス電流を印加した場合には、さらに炭化珪素ウイスカーの間で起きる火花放電による自己発熱作用によって一層効率のよい焼結が可能となる。
【0018】
通電焼結中における炭化珪素ウイスカーの昇温速度は50〜200K/分、焼成温度は1900〜2300K、保持時間は5〜60分が好ましい。焼結終了後、圧力を解除し、好ましくは50〜200K/分の降温速度で冷却する。
【0019】
上記の放電プラズマ焼結装置を用いた直接通電焼結法は、圧縮された原料ウイスカー自体のジュール熱を利用しているため、誘導加熱や輻射加熱を用いた焼結法に比べ高い熱効率を有する。また、パルス電流を通電するとともに、そのピーク電流とパルス幅を制御して材料温度を制御しながら圧縮焼結を行うことによって、炭化珪素ウイスカーの形状およびサイズを維持しながら多孔質焼結体を製造することができる。また、圧縮された原料ウイスカーの間隙に生じる放電現象を利用し、放電プラズマ、放電衝撃圧力などによる粒子表面の浄化活性化作用および電場に生じる電界拡散効果や、ジュール熱による熱拡散効果など、放電に伴う局所的な高温によりウイスカー間のネック(頸部)の成長を短時間に促進させることができる。
【0020】
本発明においては、上記のように、炭化珪素ウイスカーの形状およびサイズを維持しながら、ウイスカー同士が多数の結合点により連結され、ウイスカー間に点接触で結合されたミクロンサイズの空孔が形成されて、気孔率と比表面積の高い、すなわち、50%以上の気孔率と0.7m2 /g以上、好ましくは0.8m2 /g以上の比表面積を有する三次元網目構造の多孔質炭化珪素焼結体を得ることができる。
【0021】
また、本発明の多孔質炭化珪素焼結体は、きわめて高い比表面積を有しながらも、ウイスカー間の結合接点の数が多いため優れた機械的強度をそなえ、気孔特性と強度特性の両立を図ることができ、用途範囲を大幅に拡げることが可能となる。気孔特性と強度特性の両立を図るための好ましい気孔特性は、気孔率50〜80%、比表面積0.8〜1.5m2 /gの範囲である。
【0022】
【実施例】
以下、本発明の実施例について説明するが、実施例は本発明の一実施態様を示すものであり、本発明はこれに限定されるものではない。
【0023】
実施例1
原料として、平均直径0.1〜0.3μm、長さ10〜20μmの炭化珪素ウイスカーを準備し、このウイスカーの凝集を破壊させるために、アルコール媒体中で1時間ボールミルで粉砕を行った。粉砕後のウイスカーを乾燥させた後、図1に示す放電プラズマ焼結機を使用して通電焼結を行った。
【0024】
カーボンの成形ダイ3に、乾燥させた炭化珪素ウイスカーを充填し、ハンドプレスで仮圧縮した後、成形ダイ3を放電プラズマ焼結機にセットして、パンチ4、5により軸方向に200kg/cm2 の圧力を加えた。真空(約10-3Torr)に引いた後、上下のパンチ4、5を通じて直流パルス電流を印加した。
【0025】
通電により、炭化珪素ウイスカーは120K/分の昇温速度で2023Kの温度まで昇温し、この温度で5分間保持した後、圧力を解除して、70K/分の降温速度で室温まで冷却したところ、多孔質炭化珪素焼結体が得られた。
【0026】
得られた多孔質炭化珪素焼結体の微細構造のSEM写真を図3、図4に示す。図3〜4にみられるように、炭化珪素ウイスカーの形状、サイズは、図5に示す焼結前のものと変らないが、炭化珪素ウイスカー同士が連結され、また、炭化珪素ウイスカー同士が接する接点部分にネックが形成されて互いに連結される様相が認められる。
【0027】
得られた多孔質炭化珪素焼結体の特性を、ポリウレタンフォームに炭化珪素のスラリーを含浸させ、乾燥した後、高温焼成して炭化珪素を焼結するとともに、有機質発泡体を焼却、除去することにより製造された従来の多孔質炭化珪素焼結体の特性と対比して表1に示す。表1にみられるように、本発明による多孔質炭化珪素焼結体は、従来の多孔質炭化珪素焼結体に比べて優れた圧縮強度、曲げ強度を有し、高い比表面積をそなえている。
【0028】
【表1】

Figure 0004398027
【0029】
実施例2
原料として、実施例1と同じ炭化珪素ウイスカーを使用し、実施例1と同様、このウイスカーの凝集を破壊させるために、アルコール媒体中で1時間ボールミルで粉砕を行った。粉砕後のウイスカーを乾燥させた後、図1に示す放電プラズマ焼結機を使用して通電焼結を行った。
【0030】
カーボンの成形ダイ3に、乾燥させた炭化珪素ウイスカーを充填し、ハンドプレスで仮圧縮した後、仮圧縮した炭化珪素ウイスカーが装入されている成形ダイ3を放電焼結機にセットして、パンチ4、5により軸方向に加える圧力(焼結圧力)を変え、真空(約10-3Torr)に引いた後、上下のパンチ4、5を通じて直流パルス電流を印加した。焼結温度(Sintering Temperature) は2073K、焼結温度での保持時間(Sintering Time)は5分に固定した。
【0031】
5分間保持した後、圧力を解除して、70K/分の降温速度で室温まで冷却し、多孔質炭化珪素焼結体を得た。得られた多孔質炭化珪素焼結体について、焼結時の圧力(Sintering Pressure)と気孔率(Porosity)との関係、焼結時の圧力と曲げ強度(Bending Strength)および圧縮強度(Compression Strength)との関係を求めた。結果を図6、図7および図8に示す。
【0032】
また、上記の通電焼結において、焼結温度を2123K、保持時間を5分とした以外は同じ条件で作製した多孔質炭化珪素焼結体について、焼結時の圧力と気孔率および比抵抗との関係を求めた。結果を図9および図10に示す。なお、使用用途に応じて焼結条件を選択することにより各種特性を制御することができる。
【0033】
実施例3
実施例1において、焼結圧力を400kg/cm2 、焼結温度を5分として、焼結温度と気孔率との関係を求めた。結果を図11に示す。また、実施例1において、焼結温度を2273K、焼結圧力を400kg/cm2 として、気孔率と焼結時間との関係を求め、また、焼結温度を1973K、焼結圧力を400kg/cm2 として、曲げ強度と焼結時間との関係を求めた、結果をそれぞれ図12および図13に示す。
【0034】
図6〜図10にみられるように、焼結温度と焼結時間を一定とした場合には、気孔率、曲げ強度および圧縮強度と焼結圧力との間には直線的関係が認められ、図11に示すように、焼結圧力と焼結温度を一定とした場合には、焼結温度と気孔率との間に直線的関係がみられ、また、図12〜図13にみられるように、焼結温度と焼結圧力を一定とした場合には、気孔率および曲げ強度と焼結時間との間には直線的関係が認められる。従って、焼結条件を選択することにより、多孔質炭化珪素焼結体の使用目的に応じて各種特性を制御することができる。
【0035】
【発明の効果】
本発明の請求項1によれば、気孔率が50%以上、比表面積が0.8m2 /g以上でマイクロオーダーの空孔を有し、機械的強度に優れた三次元網目構造の多孔質炭化珪素焼結体が得られる。当該多孔質炭化珪素焼結体は、触媒担体、高温ガス浄化フィルター、溶融金属濾過用フィルター、マイクロ波吸収発熱体などの用途に適用可能である。
【0036】
また、本発明によれば、炭化珪素ウイスカーを出発原料とし、これを加圧し、直接通電して焼結することによって、炭化珪素ウイスカーの形状およびサイズを維持しながら、ウイスカー同士が多数の結合点により連結され、ウイスカー間に点接触で結合されたミクロンサイズの空孔が形成されて、気孔率と比表面積が高く、機械的強度に優れた三次元網目構造の多孔質炭化珪素焼結体が得られる。
【図面の簡単な説明】
【図1】本発明の多孔質炭化珪素焼結体を製造するための放電プラズマ焼結装置の概略断面図である。
【図2】図1の装置構成の要部を示す断面図である。
【図3】本発明による通電焼結後の多孔質炭化珪素焼結体の組織構造を示すSEM写真である。
【図4】本発明による通電焼結後の多孔質炭化珪素焼結体の拡大された組織構造を示すSEM写真である。
【図5】本発明による通電焼結前の多孔質炭化珪素焼結体の組織構造を示すSEM写真である。
【図6】本発明による多孔質炭化珪素焼結体の気孔率と焼結圧力との関係を示すグラフである。
【図7】本発明による多孔質炭化珪素焼結体の曲げ強度と焼結圧力との関係を示すグラフである。
【図8】本発明による多孔質炭化珪素焼結体の圧縮強度と焼結圧力との関係を示すグラフである。
【図9】本発明による多孔質炭化珪素焼結体の気孔率と焼結圧力との関係を示すグラフである。
【図10】本発明による多孔質炭化珪素焼結体の比抵抗と焼結圧力との関係を示すグラフである。
【図11】本発明による多孔質炭化珪素焼結体の気孔率と焼結温度との関係を示すグラフである。
【図12】本発明による多孔質炭化珪素焼結体の気孔率と焼結時間との関係を示すグラフである。
【図13】本発明による多孔質炭化珪素焼結体の曲げ強度と焼結時間との関係を示すグラフである。
【符号の説明】
1 放電プラズマ焼結装置
2 水冷真空チャンバ
3 成形ダイ
4 パンチ
5 パンチ
6 加圧ラム
7 加圧ラム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous silicon carbide sintered body .
[0002]
[Prior art]
Silicon carbide sintered bodies are used as various structural members for high temperatures because of their high heat resistance, excellent thermal and electrical conductivity, and chemical stability. Porous silicon carbide sintered bodies having a porous structure are used in various fields such as catalyst carriers, high temperature gas purification filters, molten metal filtration filters, microwave absorption heating elements, and breathable heat insulating materials.
[0003]
A porous silicon carbide sintered body is usually made by impregnating a silicon carbide slurry into an organic foam having a three-dimensional network structure such as polyurethane foam, drying, and then sintering at high temperature to sinter silicon carbide. Manufactured by incineration and removal of foam (for example, Japanese Patent Application Laid-Open No. 58-122016). Porous silicon carbide sintered body produced by this method incinerates and removes organic foam. Since the silicon carbide skeleton formed by sintering is sintered, a high porosity can be imparted, but the pore size is large and the specific surface area is small, and the mechanical strength and electrical conductivity are reduced. There is a disadvantage that it is inferior, and this is a major limitation in application.
[0004]
As a method for producing a porous silicon carbide sintered body, an organic resin binder is added to and mixed with silicon carbide powder, the mixture is formed into a predetermined shape, and then fired to grow silicon carbide powder particles. Have been proposed (JP-A-3-215374, JP-A-3-215375, etc.), and according to this method, a porous silicon carbide sintered body having a porosity of about 50% can be produced. However, since the bonding of the silicon carbide particles constituting the porous body is performed only by the growth of the silicon carbide fine particles, the mechanical strength is not sufficient, and it is difficult to achieve both the pore characteristics and the strength characteristics. .
[0005]
In addition, fine bubbles uniformly dispersed and stabilized in a slurry composed of a silicon carbide powder coated with a mesophase-containing pitch and a solvent are formed, and a molded body is formed by casting using the fine-bubble-containing slurry, An object of the present invention is to obtain a porous silicon carbide sintered body having a fine pore diameter in which the molded body is dried and fired in a non-oxidizing atmosphere, then impregnated with silicon, and then unreacted silicon is removed. A method for producing a porous silicon carbide sintered body has also been proposed (JP-A-6-293575), but even in this method, since it is difficult to prepare a slurry in which fine bubbles are uniformly dispersed, uniform pores Is difficult to obtain, and a process for removing unreacted silicon after impregnation with silicon is required, which complicates the manufacturing process.
[0006]
The inventors have solved the above-mentioned conventional problems in the production of a porous silicon carbide sintered body, have a high specific surface area as a pore characteristic, and have excellent mechanical strength and electrical conductivity. Submicron-sized silicon carbide is not a method for obtaining a porous silicon carbide sintered body indirectly through a mixture of a silicon carbide slurry or silicon carbide powder and an organic resin binder to obtain a bonded body. The method of obtaining a porous silicon carbide sintered body by directly sintering a whisker was repeatedly investigated.
[0007]
[Problems to be solved by the invention]
In the process of the above examination, the present invention pressurizes silicon carbide whiskers, energizes the pressurized silicon carbide whiskers and performs sintering, thereby maintaining the shape and size of the silicon carbide whiskers. It was made based on the finding that it can be sintered and connected. Its purpose is to have a porosity of 50% or more, to have micron-order pores, high specific surface area, and mechanical An object of the present invention is to provide a porous silicon carbide sintered body excellent in strength and electrical conductivity.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a porous silicon carbide sintered body according to the present invention includes a silicon carbide whisker raw material having an average diameter of 1 μm or less placed in a forming die, compressed by a punch, and an ON-OFF DC pulse. A silicon carbide sintered body obtained by applying electric current and performing pulse electric current sintering, having a porosity of 50 to 80% , a specific surface area of 0.7 to 1.5 m 2 / g, and micro order It is characterized by having a three-dimensional network structure having pores and having excellent strength characteristics .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the silicon carbide whiskers are directly energized and sintered, and the silicon carbide whiskers are connected to each other to form a porous silicon carbide sintered body. As a preferred embodiment, The silicon carbide whisker is placed in a conductive molding die made of carbon or the like, and compressed, for example, from above and below with a conductive punch and energized through the punch for sintering.
[0012]
An outline of a discharge sintering apparatus for producing the porous silicon carbide sintered body of the present invention is shown in FIG. In the discharge plasma sintering apparatus 1, a water-cooled vacuum chamber 2 is filled with a raw material silicon carbide whisker W and a pair of upper and lower punches (pressors) 4 for pressing and compressing the raw material in the molding die 3. 5 is arranged, and the punches 4 and 5 are respectively attached to a pair of upper and lower pressure rams 6 and 7 driven by a pressure mechanism.
[0013]
The discharge plasma sintering apparatus 1 includes a sintering power source for energizing and sintering raw materials in a forming die through a pressure ram and a punch, a cooling system for water-cooling the pressure rams 6 and 7, and a water cooling mechanism. Further, an atmosphere control mechanism for adjusting the sintering atmosphere, a position measurement mechanism, a temperature measurement device, and a control device for controlling these mechanisms and devices are provided.
[0014]
The silicon carbide whisker is mixed and pulverized by a ball mill or the like as necessary, and aligned to a predetermined length. As the silicon carbide whisker, those having an average diameter of 1 μm or less, more preferably an average diameter of 0.1 to 0.5 μm and a length of 10 to 20 μm are preferably used.
[0015]
In order to conduct current sintering on silicon carbide whiskers, as shown in FIG. 2, the conductive molding die 3 made of carbon or the like and the conductive upper punch 4 inserted into the molding die 3 and A lower punch 5 is disposed, and a silicon carbide whisker W whose size is adjusted is inserted into the molding die 3, and a load is applied to the punches 4 and 5 through the pressurization rams 6 and 7. And a voltage is applied to the silicon carbide whisker W through the punches 4 and 5 to energize.
[0016]
The compression of the silicon carbide whisker is preferably performed by applying a pressure of 100 to 800 kg / cm 2 by the punch P, and the energization may be performed after the silicon carbide whisker is compressed or may be performed while being compressed. A vacuum or an inert atmosphere is maintained during energization.
[0017]
The energization is performed using a pulse current, a direct current, or an alternating current, and sintering is promoted by the Joule heat generated by the energization and the plastic flow of the silicon carbide whiskers due to pressurization. In particular, when an ON-OFF direct current pulse current is applied, further efficient sintering is possible due to a self-heating action caused by spark discharge occurring between silicon carbide whiskers.
[0018]
The temperature rising rate of the silicon carbide whisker during current sintering is preferably 50 to 200 K / min, the firing temperature is 1900 to 2300 K, and the holding time is preferably 5 to 60 minutes. After completion of the sintering, the pressure is released, and cooling is preferably performed at a temperature lowering rate of 50 to 200 K / min.
[0019]
The direct current sintering method using the above-mentioned discharge plasma sintering apparatus uses Joule heat of the compressed raw material whisker itself, and thus has higher thermal efficiency than the sintering method using induction heating or radiation heating. . In addition, a porous sintered body can be produced while maintaining the shape and size of the silicon carbide whisker by conducting a pulsed current and performing compression sintering while controlling the peak current and pulse width and controlling the material temperature. Can be manufactured. In addition, by utilizing the discharge phenomenon that occurs in the gaps between the compressed raw material whiskers, the discharge surface is activated by discharge plasma, discharge impact pressure, etc., and the electric field diffusion effect that occurs in the electric field, the thermal diffusion effect due to Joule heat, etc. Due to the local high temperature, the growth of the neck (neck) between whiskers can be promoted in a short time.
[0020]
In the present invention, whilst maintaining the shape and size of the silicon carbide whiskers, the whiskers are connected to each other by a large number of bonding points, and micron-sized holes are formed that are bonded by point contact between the whiskers. Porous silicon carbide having a high porosity and specific surface area, that is, having a porosity of 50% or more and a specific surface area of 0.7 m 2 / g or more, preferably 0.8 m 2 / g or more. A sintered body can be obtained.
[0021]
In addition, the porous silicon carbide sintered body of the present invention has excellent mechanical strength due to the large number of joint contacts between whiskers, while having a very high specific surface area, and achieves both pore characteristics and strength characteristics. Therefore, the application range can be greatly expanded. Preferred pore properties for achieving both pore properties and strength properties are a porosity of 50 to 80% and a specific surface area of 0.8 to 1.5 m 2 / g.
[0022]
【Example】
EXAMPLES Examples of the present invention will be described below, but the examples show one embodiment of the present invention, and the present invention is not limited to this.
[0023]
Example 1
A silicon carbide whisker having an average diameter of 0.1 to 0.3 μm and a length of 10 to 20 μm was prepared as a raw material, and pulverized with a ball mill for 1 hour in an alcohol medium in order to destroy the aggregation of the whisker. After the pulverized whiskers were dried, current sintering was performed using a discharge plasma sintering machine shown in FIG.
[0024]
The carbon forming die 3 is filled with the dried silicon carbide whisker and temporarily compressed by a hand press, and then the forming die 3 is set in a discharge plasma sintering machine and 200 kg / cm in the axial direction by the punches 4 and 5. A pressure of 2 was applied. After drawing a vacuum (about 10 −3 Torr), a DC pulse current was applied through the upper and lower punches 4 and 5.
[0025]
When energized, the silicon carbide whisker is heated to a temperature of 2023 K at a heating rate of 120 K / min, held at this temperature for 5 minutes, then released from pressure, and cooled to room temperature at a cooling rate of 70 K / min. A porous silicon carbide sintered body was obtained.
[0026]
3 and 4 show SEM photographs of the microstructure of the obtained porous silicon carbide sintered body. 3-4 , the shape and size of the silicon carbide whiskers are the same as those before sintering shown in FIG. 5, but the silicon carbide whiskers are connected to each other, and the silicon carbide whiskers are in contact with each other. It is recognized that necks are formed in the portions and are connected to each other.
[0027]
The characteristic of the obtained porous silicon carbide sintered body is that polyurethane foam is impregnated with a slurry of silicon carbide, dried, then fired at high temperature to sinter silicon carbide, and the organic foam is incinerated and removed. Table 1 shows the comparison with the characteristics of the conventional porous silicon carbide sintered body produced by the above method. As can be seen in Table 1, the porous silicon carbide sintered body according to the present invention has superior compressive strength and bending strength as compared with the conventional porous silicon carbide sintered body, and has a high specific surface area. .
[0028]
[Table 1]
Figure 0004398027
[0029]
Example 2
As a raw material, the same silicon carbide whisker as in Example 1 was used, and in the same manner as in Example 1, in order to break up the aggregation of this whisker, it was pulverized in a ball mill for 1 hour in an alcohol medium. After the pulverized whiskers were dried, current sintering was performed using a discharge plasma sintering machine shown in FIG.
[0030]
After filling the carbon forming die 3 with the dried silicon carbide whisker and temporarily compressing it with a hand press, the molding die 3 in which the temporarily compressed silicon carbide whisker is charged is set in a discharge sintering machine, The pressure (sintering pressure) applied in the axial direction by the punches 4 and 5 was changed, and after evacuating (about 10 −3 Torr), a DC pulse current was applied through the upper and lower punches 4 and 5. The sintering temperature (Sintering Temperature) was 2073 K, and the holding time (Sintering Time) at the sintering temperature was fixed at 5 minutes.
[0031]
After holding for 5 minutes, the pressure was released, and the mixture was cooled to room temperature at a temperature drop rate of 70 K / min to obtain a porous silicon carbide sintered body. About the obtained porous silicon carbide sintered body, relationship between pressure during sintering (Sintering Pressure) and porosity (Porosity), pressure during sintering and bending strength (Bending Strength) and compression strength (Compression Strength) Sought a relationship with. The results are shown in FIG. 6, FIG. 7 and FIG.
[0032]
In addition, in the above-mentioned current sintering, with respect to a porous silicon carbide sintered body produced under the same conditions except that the sintering temperature was 2123 K and the holding time was 5 minutes, Sought the relationship. The results are shown in FIG. 9 and FIG. Various characteristics can be controlled by selecting sintering conditions according to the intended use.
[0033]
Example 3
In Example 1, the relationship between the sintering temperature and the porosity was determined by setting the sintering pressure to 400 kg / cm 2 and the sintering temperature to 5 minutes. The results are shown in FIG. In Example 1, the sintering temperature is 2273 K, the sintering pressure is 400 kg / cm 2 , the relationship between the porosity and the sintering time is obtained, the sintering temperature is 1973 K, and the sintering pressure is 400 kg / cm 2. 2 , the relationship between the bending strength and the sintering time was obtained, and the results are shown in FIGS. 12 and 13, respectively.
[0034]
As seen in FIGS. 6 to 10, when the sintering temperature and the sintering time are constant, a linear relationship is recognized between the porosity, the bending strength and the compressive strength, and the sintering pressure. As shown in FIG. 11, when the sintering pressure and the sintering temperature are constant, a linear relationship is observed between the sintering temperature and the porosity, and as shown in FIGS. 12 to 13. In addition, when the sintering temperature and the sintering pressure are constant, a linear relationship is recognized between the porosity and bending strength and the sintering time. Therefore, by selecting the sintering conditions, various characteristics can be controlled according to the purpose of use of the porous silicon carbide sintered body.
[0035]
【The invention's effect】
According to claim 1 of the present invention, the porous material has a three-dimensional network structure having a porosity of 50% or more, a specific surface area of 0.8 m 2 / g or more and having micro-order pores and excellent mechanical strength. A silicon carbide sintered body is obtained. The porous silicon carbide sintered body can be applied to uses such as a catalyst carrier, a high-temperature gas purification filter, a filter for molten metal filtration, and a microwave absorption heating element.
[0036]
In addition, according to the present invention, whisker is used as a starting material, pressurized, and directly energized and sintered to maintain the shape and size of the silicon carbide whisker, while the whisker has many bonding points. A porous silicon carbide sintered body having a three-dimensional network structure with high porosity and specific surface area and excellent mechanical strength is formed. can get.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a discharge plasma sintering apparatus for producing a porous silicon carbide sintered body of the present invention.
2 is a cross-sectional view showing a main part of the device configuration of FIG. 1;
FIG. 3 is an SEM photograph showing the structure of a porous silicon carbide sintered body after electric current sintering according to the present invention.
FIG. 4 is an SEM photograph showing an enlarged structure of a porous silicon carbide sintered body after electric current sintering according to the present invention.
FIG. 5 is an SEM photograph showing a structure of a porous silicon carbide sintered body before electric current sintering according to the present invention.
FIG. 6 is a graph showing the relationship between porosity and sintering pressure of a porous silicon carbide sintered body according to the present invention.
FIG. 7 is a graph showing the relationship between bending strength and sintering pressure of a porous silicon carbide sintered body according to the present invention.
FIG. 8 is a graph showing the relationship between compressive strength and sintering pressure of a porous silicon carbide sintered body according to the present invention.
FIG. 9 is a graph showing the relationship between porosity and sintering pressure of a porous silicon carbide sintered body according to the present invention.
FIG. 10 is a graph showing the relationship between specific resistance and sintering pressure of a porous silicon carbide sintered body according to the present invention.
FIG. 11 is a graph showing the relationship between the porosity and the sintering temperature of a porous silicon carbide sintered body according to the present invention.
FIG. 12 is a graph showing the relationship between porosity and sintering time of a porous silicon carbide sintered body according to the present invention.
FIG. 13 is a graph showing the relationship between bending strength and sintering time of a porous silicon carbide sintered body according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Discharge plasma sintering apparatus 2 Water-cooled vacuum chamber 3 Molding die 4 Punch 5 Punch 6 Pressure ram 7 Pressure ram

Claims (1)

平均直径が1μm以下の炭化珪素ウイスカー原料を成形ダイ中に装入し、パンチで圧縮するとともに、ON−OFF直流パルス電流を印加してパルス通電焼結することにより得られた炭化珪素焼結体であって、気孔率が50〜80%、比表面積が0.7〜1.5m /gであり、マイクロオーダーの空孔を有する三次元網目構造をそなえているとともに、優れた強度特性を有することを特徴とする多孔質炭化珪素焼結体。 A silicon carbide sintered body obtained by charging a silicon carbide whisker raw material having an average diameter of 1 μm or less into a forming die, compressing with a punch, and applying ON-OFF DC pulse current and performing pulse current sintering It has a porosity of 50 to 80% , a specific surface area of 0.7 to 1.5 m 2 / g, has a three-dimensional network structure having micro-order pores, and has excellent strength characteristics. A porous silicon carbide sintered body characterized by comprising:
JP33085199A 1999-11-22 1999-11-22 Porous silicon carbide sintered body Expired - Lifetime JP4398027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33085199A JP4398027B2 (en) 1999-11-22 1999-11-22 Porous silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33085199A JP4398027B2 (en) 1999-11-22 1999-11-22 Porous silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JP2001151578A JP2001151578A (en) 2001-06-05
JP4398027B2 true JP4398027B2 (en) 2010-01-13

Family

ID=18237250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33085199A Expired - Lifetime JP4398027B2 (en) 1999-11-22 1999-11-22 Porous silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP4398027B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615657B2 (en) * 2000-01-26 2011-01-19 雅介 高田 Zinc oxide single crystal and method for producing the same
JP2009179517A (en) * 2008-01-30 2009-08-13 Taiheiyo Cement Corp Ceramic joined body for gas jetting port and gas distribution plate, and method of manufacturing the same
KR101271958B1 (en) * 2011-05-19 2013-06-07 주식회사 포스코 Melting Apparatus
JP5466734B2 (en) * 2012-07-12 2014-04-09 太平洋セメント株式会社 Manufacturing method of ceramic joined body and gas dispersion plate

Also Published As

Publication number Publication date
JP2001151578A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
US5989487A (en) Apparatus for bonding a particle material to near theoretical density
EP1105201B1 (en) Method for forming porous structures
CN107498047A (en) A kind of tungsten-copper composite material and preparation method thereof
EP0414419B1 (en) Porous sintered body and method of manufacturing same
CN113941704A (en) Electromagnetic induction heating layer and preparation method thereof, and atomization core and preparation method thereof
JP6403421B2 (en) Sintering apparatus and sintering method
JP4398027B2 (en) Porous silicon carbide sintered body
JP2008095196A (en) Electric sintering device
JP2012106929A (en) Method for producing porous body
JP5092135B2 (en) Porous material and method for producing the same
JP4271817B2 (en) Electric sintering die
KR100444360B1 (en) A Ceramic Article Having Interconnected Pores and Method of Making the Same
US6146550A (en) Electrical resistance heating element for an electric furnace and process for manufacturing such a resistance element
JP2663190B2 (en) Manufacturing method of decorative plastics mold
WO2001038254A1 (en) Silicon carbide element
JP4065944B2 (en) Manufacturing method of high heat resistance and high strength porous alumina
JP3681993B2 (en) Sintering die of the current pressure sintering equipment
JP2008007793A (en) Sintered high-strength magnesium alloy, and its manufacturing method
JP4148599B2 (en) Porous calcium phosphate compound / metal composite sintered body and method for producing the same
JP4083275B2 (en) Method of joining ceramics and metal
JP4014698B2 (en) Method for producing porous calcium phosphate ceramics
JP3622854B2 (en) Method for producing conductive ceramic sintered body
CN1699287A (en) Process for preparing porous insulating ceramic materials
JP2001348277A (en) Method and device for spark plasma sintering
JPH11228238A (en) Bulk molded product having crystalline pore structure and its production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term