JPS58500131A - Method for manufacturing products from iron magnetic powder and its manufacturing device - Google Patents

Method for manufacturing products from iron magnetic powder and its manufacturing device

Info

Publication number
JPS58500131A
JPS58500131A JP81501106A JP50110681A JPS58500131A JP S58500131 A JPS58500131 A JP S58500131A JP 81501106 A JP81501106 A JP 81501106A JP 50110681 A JP50110681 A JP 50110681A JP S58500131 A JPS58500131 A JP S58500131A
Authority
JP
Japan
Prior art keywords
powder
container
electromagnet
mixing tank
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP81501106A
Other languages
Japanese (ja)
Other versions
JPS6221043B2 (en
Inventor
スコルニアコフ・ユ−リ−・ニコラエウイツチ
ビルマン・アレクサンドル・モイセ−エウイツチ
リジドヴオイ・ルドルフ・アレクサンドロウイツチ
アルタモノフ・ユ−リ−・ヴイクトロウイツチ
クリメンコ・アレクサンドル・フイヨ−ドロウイツチ
Original Assignee
ウクラインスキ− ナウチノ− イスレドワ−チエルスキ− インスチツ−トスペツイアルヌイフ スタレイ,スプラホフ イ フエロスプラホフ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウクラインスキ− ナウチノ− イスレドワ−チエルスキ− インスチツ−トスペツイアルヌイフ スタレイ,スプラホフ イ フエロスプラホフ filed Critical ウクラインスキ− ナウチノ− イスレドワ−チエルスキ− インスチツ−トスペツイアルヌイフ スタレイ,スプラホフ イ フエロスプラホフ
Publication of JPS58500131A publication Critical patent/JPS58500131A/en
Publication of JPS6221043B2 publication Critical patent/JPS6221043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 鉄磁粉かも製品を製造する方法及びその製造装置技術分野 本発明は粉末冶金に係り、特に鉄鉱粉材料から製品を製造するための方法と装置 に関するものである。[Detailed description of the invention] Method for manufacturing iron magnetic powder products and its manufacturing equipment Technical field The present invention relates to powder metallurgy, and in particular to a method and apparatus for manufacturing products from iron ore powder materials. It is related to.

背景技術 製品を粒度不均一な粉末材料で製造するための材料の特性における均一な組織と 同体体現象に関する、以下に述べる問題は、未だ適当に解決されていない。Background technology Uniform structure and material properties for manufacturing products with non-uniform powder materials The following problems regarding the allosomal phenomenon have not yet been adequately resolved.

金属粉末から製品を製造する方法であって、その粉末の粒度分布を平均化するた めの混合、その粉末の容器への充填、その容器の密封、加熱及びその容器の圧縮 を含むものに関する技術は公知和されている。A method of manufacturing products from metal powder, in which the particle size distribution of the powder is averaged. mixing the powder, filling the container with the powder, sealing the container, heating and compressing the container. Techniques related to the above are well known.

上記粉末を混合することは大粒の粒子と小粒の粒子の双方の分布を比較的均一に する。この手法tl!製品の材質の構造を比較的均一にするが、未だ若干、問題 がある。特にふわついた状態の粉末は熱伝導度が低く、これを焼結するKFi、 加熱時間をやや長くすることが要求される。また、この手法では上記容器の内部 空間を有効に利用することができない。Mixing the above powders makes the distribution of both large and small particles relatively uniform. do. This method tl! Although the material structure of the product has been made relatively uniform, there are still some problems. There is. In particular, powder in a fluffy state has low thermal conductivity, so KFi, which sinters it, A slightly longer heating time is required. In addition, in this method, the inside of the container Space cannot be used effectively.

また、鉄磁粉から製品を作る方法であつて、その粉末の粒度分布均一化のための 混合、その粉末の容器への充填、その粉末の加振圧縮、その粉末を焼結温度にす るための上記容器の加熱、その容器の密封、及び圧縮を含むものに関する技愉ハ 公知になっている。It is also a method for making products from ferromagnetic powder, and is used to make the particle size distribution of the powder uniform. mixing, filling the powder into a container, vibratory compaction of the powder, and bringing the powder to sintering temperature. techniques involving heating the container, sealing the container, and compressing the container to It has become publicly known.

上述の方法は、吐出部に堰を設けた混合槽を有する装置で実用化されている。こ の混合槽はドラム形で構造材用鋼材を用いて作られ、この−材は磁石材料である 。上記堰の下には加振機があり、との加振機は上記容器を支持する平台を有する 0また、この装置は上記容器のための加熱器と引抜プレス装置を有する。The above-mentioned method has been put to practical use in an apparatus having a mixing tank provided with a weir in the discharge section. child The mixing tank is drum-shaped and made of structural steel, and this material is a magnetic material. . There is a shaker below the weir, and the shaker has a flat platform to support the container. 0 This device also has a heater and a drawing press device for the container.

上記の方法とそのための装置の明白な利点は上記焼結工程における加熱時間の延 長分を少なくすることである。しかしながら、上記容器の充填時、特に加振圧縮 を行なう時には、上記粉末に部分的な分離が生ずる。このことは最終的に製品の 材料の組織と特性に不均一を生じさせ、これが製品の機械的特性を著しく低下さ せる。A clear advantage of the above method and its equipment is the increased heating time in the sintering process. The goal is to reduce the length. However, when filling the above container, especially vibration compression When carrying out this process, partial separation of the powder occurs. This ultimately results in This causes non-uniformity in the material structure and properties, which significantly reduces the mechanical properties of the product. let

発明の開示 本発明は鉄鉱粉材料から製品を製造する装置の方法を提供することを意図してな されたものでありで、これによる製造と組織的特徴は上記粉末に、上記容器に充 填する時及び加振圧縮時のその粉末の部分的分離を防止し、それによシ製品の機 械的特性を改善する性質を与える。Disclosure of invention The present invention is not intended to provide a method of apparatus for manufacturing products from iron ore powder material. The manufacturing and structural characteristics are that the powder is filled into the container. This prevents partial separation of the powder during filling and vibratory compaction, thereby improving the mechanical properties of the product. Provides properties that improve mechanical properties.

本発明の上記目的を達成するために、製品な鉄磁粉から製造する方法であって上 記粉末を粒度分布平均化のために混合し、これを容器に充填し、この粉末な加振 圧縮し、この容器を上記粉末が焼結温度に達するまで加熱し、この容器を密封し 圧縮することを含む方法において、粒度が平均化された粉末は上記容器に充填す る前に磁化される。磁化の過程で、上記粉末の小粒は大粒と共に団塊化される。In order to achieve the above object of the present invention, there is provided a method for producing a product from ferromagnetic powder. The above powders are mixed to average the particle size distribution, filled into a container, and the powder is subjected to vibration. The powder is compressed, the container is heated until the powder reaches the sintering temperature, and the container is sealed. In a method involving compaction, the particle size-average powder is filled into the container. It is magnetized before it is applied. During the magnetization process, the small particles of the powder are agglomerated together with the large particles.

磁気的なし後の効果はこの共に団塊化された物を上記容器への充填と加振圧縮が 行なわれる時にも維持される。この効果の結果として、上記粉末の上記部分的分 離が防止され、製品材料を均一な組織にする条件力l保証される。The magnetic effect is due to the filling of the agglomerated material into the container and the vibration compression. It is maintained even when it is performed. As a result of this effect, the partial fractionation of the powder Separation is prevented and a uniform texture of the product material is guaranteed.

上記粉末を磁化する時に1強度範囲が/X10 乃至コ×IOA/mの固定磁場 の作用TlCOO/乃至0.6分の時間間隔でさらすのが好ましい。このような 条件は最も経済的であると共に上記製品のための材料の品質を明らかに良くする ものである。When magnetizing the above powder, a fixed magnetic field with an intensity range of /X10 to xIOA/m Preferably, the exposure is performed at a time interval of 0.6 minutes. like this The conditions are the most economical as well as clearly improving the quality of materials for the above products. It is something.

また1本発明の上記目的は、製品な鉄磁料から製造する装置に、吐出部に堰を設 けた混合槽と、上記容器を支持する台を備えて前記混合槽の吐出部の下方である と共に容器加熱器とプレス装置の下方でもあるように配設された加振機を設け、 電磁石を上記混合槽に隣接して設けると共に上記混合槽とその堰を非磁性材料で 作ることによっても達成することができる。In addition, the above-mentioned object of the present invention is to provide a device for manufacturing products from ferromagnetic material with a weir in the discharge part. A vertical mixing tank and a stand for supporting the container are provided below the discharge part of the mixing tank. At the same time, a vibrator is provided which is also located below the container heater and the press device. An electromagnet is installed adjacent to the mixing tank, and the mixing tank and its weir are made of non-magnetic material. This can also be achieved by creating.

上述の装置り上記混合槽内の上記粉末を上記電磁石に直接接触することなく磁化 させる。磁化の後に容器への充填が妨害されることはない。混合槽と堰が非磁性 材料で作られているからである。The above device magnetizes the powder in the mixing tank without directly contacting the electromagnet. let The filling of the container is not disturbed after magnetization. Mixing tank and weir are non-magnetic This is because it is made of materials.

上記電磁石は上記混合槽の下方に配置されるのが好まし−0この場合に、上記電 磁石と上記粉末の間の堰が最も小さく、これに対応して上記粉末を磁化する際の エネルギー消費が最少である。Preferably, the electromagnet is placed below the mixing tank. The weir between the magnet and the powder is the smallest, and correspondingly the weir when magnetizing the powder is the smallest. Energy consumption is minimal.

上記混合槽の仕込端部及び吐出端部に、上記電磁石を近づけたり離したりする装 置を設ける必要がある。A device for moving the electromagnet closer to or away from the charging end and discharge end of the mixing tank. It is necessary to provide a

このような配設体は磁化の効果を最大にするために上記電磁石を上記混合槽に接 触させる。In such an arrangement, the electromagnet is connected to the mixing tank to maximize the magnetization effect. Let me touch it.

改良された装置では、上記電磁石遠近装置は垂直な案内装置のように構成するこ とができ、これは上記電磁石を支持する運搬体が装着されると共に往復動駆動装 置に結合される。In an improved device, the electromagnetic perspective device can be configured like a vertical guide device. This is equipped with a carrier supporting the electromagnet and a reciprocating drive device. combined with the position.

また、上記電磁石遠近装置は回転する水平な腕材のように構成することもでき、 その端部に電磁石が保持される。Further, the electromagnetic perspective device can be configured like a rotating horizontal arm, An electromagnet is held at its end.

図面の簡単な説明 IE/図は製品な鉄磁粉から作る装置の側面線図であって、混合槽と、部分断面 によ〕プレス装置と、電磁石遠近装置と、支持台と、縦断面により加熱器を示す 図面、第2図は電磁石を垂直に遠近させるように改良した装置の拡大側面図で、 部分断面によシ混合槽と。Brief description of the drawing IE/Diagram is a side view of a device for manufacturing products from ferromagnetic powder, showing a mixing tank and a partial cross section. ] The press device, the electromagnetic perspective device, the support stand, and the heater are shown in longitudinal section. The drawing, Figure 2, is an enlarged side view of an improved device that allows the electromagnet to move vertically. Partial cross section with mixing tank.

前記電磁石遠近装置と、縦断面により支持台を示す図面、第3図は電磁石遠近装 置を回転する腕材のような構成に改良した装置の側面図、第参図は電磁石遠近装 置を運搬体のような構成に改良した装置の側面図である。Drawings showing the electromagnetic perspective device and the support stand in longitudinal section, FIG. 3 is the electromagnetic perspective device A side view of the device, which has been improved to have a rotating arm-like structure. FIG. 2 is a side view of a device whose structure has been improved to resemble a carrier.

発明を実施するための最良の形態 本方法の発明の実施のためには、ドラム形で回転駆動装置コに結合された混合槽 lを有する装置が用いられる(第1図参照)。この混合槽lは仕込部3と吐出部 μを有する。この吐出部弘は堰jを有し、この堰の下方にカプセルrの支持台7 を有する加振機tがある0この混合槽lとこの槽の堰!は非磁性材料(例えば不 銹鋼)で作られる。上記容器rは構造用鋼材で作られる。BEST MODE FOR CARRYING OUT THE INVENTION For carrying out the invention of the method, a mixing tank in the form of a drum is connected to a rotary drive. A device with 1 is used (see FIG. 1). This mixing tank 1 has a charging section 3 and a discharging section. It has μ. This discharge part Hiroshi has a weir j, and below this weir there is a support stand 7 for the capsule r. There is a vibrator t with 0 this mixing tank l and the weir of this tank! is a non-magnetic material (e.g. Made of rust steel). The container r is made of structural steel.

容器rの加熱器?とプレス装置10は工程の流れに従って上記容器支持台7に隣 接して配設される。Heater for container r? and the press device 10 are placed next to the container support stand 7 according to the flow of the process. are placed adjacent to each other.

上記装置は上記混合槽lに隣接して配設された電磁石tiを有する。この電磁石 は上記混合槽lの何方、上方又は下方に装着することもできる。The device has an electromagnet ti arranged adjacent to the mixing tank l. this electromagnet can be installed either above or below the mixing tank 1.

以下に述べる本発明の好ましい実施例では、電磁石を上記混合槽lの下方に配設 する。この場合(混合槽lの中の上記粉末とは無関係)には、上記粉末と電磁石 は、上記混合槽の器壁を除いて、相互にできるだけ近づけられ、これに対応して 上記粉末磁化の際のこの粉末の消費量も少い。In a preferred embodiment of the invention described below, an electromagnet is disposed below the mixing tank l. do. In this case (irrespective of the above powder in mixing tank l), the above powder and electromagnet are placed as close as possible to each other, with the exception of the walls of the mixing tank mentioned above, and correspondingly The consumption of this powder during the powder magnetization is also small.

電磁石llは上記混合槽lに直接保持されるようにできる(この改良の図示は省 略)oLかしながら、より好ましい装置は電磁石//を遠近させる装置を設けた ものである。これは接触による振動の悪影響と電磁石IIのコイルへの動力線を 排除すると共に上記槽lの仕込みと吐出を行なつ上での便利である。第2図。The electromagnet 1 can be held directly in the mixing tank 1 (illustration of this modification is omitted). oL) However, a more preferable device is a device that makes the electromagnet move closer and closer. It is something. This is due to the adverse effects of vibration due to contact and the power line to the coil of electromagnet II. This is convenient for charging and discharging the tank 1. Figure 2.

第3図、及び第参図は電磁石遠近装置を備えるように改良された装置を示す。FIG. 3 and the accompanying drawings show a device modified to include an electromagnetic perspective device.

第2図は改良された装置を示し、この装置では電磁石1/を遠近させる装置l− は垂直案内装置13より成り、この垂直案内装置13に電磁石iiを支持する運 搬体!参が装着される。この運搬体iaは往復動駆動装置に結合される。FIG. 2 shows an improved device in which the device l- consists of a vertical guide device 13, and a support for supporting the electromagnet ii is provided on this vertical guide device 13. Transport! The mount is attached. This carrier ia is coupled to a reciprocating drive.

第3図は改良された装置を示し、この装置では電磁石71を遠近させる装置lコ は回転する水平腕材17を有する柱状部材/Aのように構成され、電磁石//は この柱状部材/jの端部に保持される。FIG. 3 shows an improved device in which an electromagnet 71 is moved near and far. is constructed like a columnar member /A having a rotating horizontal arm member 17, and the electromagnet // is It is held at the end of this columnar member /j.

第参図は改良された装置を示し、この装置では電磁石1/を遠近させる装置は水 平案内装置/lのように構成され、この案内装置itは運搬体lりが装着されて 電磁石itを支持する。この運搬体lりは往復動駆動装置に結合される。Figure 1 shows an improved device in which the device for moving the electromagnet 1/ It is constructed like a flat guide device/l, and this guide device is equipped with a carrier l. Support electromagnet it. The carrier is coupled to a reciprocating drive.

製品な鉄鉱粉材料から作る方法は以下のように実施される。The method of making a product from iron ore powder material is carried out as follows.

鉄鉱粉材料(例えば工具用鋼粉) ij I 00 p m以上の粒度の粉末を 篩分けられる。100μm以下の粒度の粉末は仕込部3(第1図)を通して混合 槽lに入れられ、この混合槽はこの初床全量の粒度分布を平均化するために回転 される。粒度分布が平均化された上記粉末は強度範囲が1Xlo 乃至コxio  A7’nの固定磁場にo、l乃至O0S分の時間間隔で置かれるととKよって 磁化される。この最後まで電磁石/Iが使用され、この電磁石//fi上記混合 槽lに電磁石遠近装置lλによって近づけられる(第2図、第3図、第弘図参照 )0 次いで、磁化された粉末は混合槽lの吐出口4L(第1図参照)を通って、加振 機6の支持体7に支持された容器lの中に注がれる。容器j(注がれた上記磁化 された粉末は振動出力が周波数soH,,振巾o、j闘の振動によって加振圧縮 される。Iron ore powder material (e.g. steel powder for tools) Powder with a particle size of 100 ppm or more Can be sieved. Powders with a particle size of 100 μm or less are mixed through the preparation section 3 (Figure 1). This mixing tank is rotated to average the particle size distribution of the entire initial bed. be done. The above powder with an averaged particle size distribution has a strength range of 1Xlo to Coxio. If placed in the fixed magnetic field of A7'n at time intervals of o, l to O0S, then K. Become magnetized. Until this end electromagnet /I is used and this electromagnet //fi the above mixture It is brought close to the tank l by an electromagnetic perspective device lλ (see Figures 2, 3, and Hiro). )0 Next, the magnetized powder passes through the discharge port 4L of the mixing tank L (see Figure 1) and is subjected to vibration. It is poured into a container l supported on a support 7 of the machine 6. Container J (the above magnetized poured The resulting powder is compressed by vibration with a vibration output of frequency soH, vibration width o, and j. be done.

この圧縮された粉末で充たされた容器tFi加熱器りによってこの粉末の焼結温 度まで加熱される。この加熱作業と同時に脱気作業が行なわれ、その後にこの粉 末容器は密封される。The sintering temperature of this powder is controlled by the tFi heater in a container filled with this compressed powder. heated to a degree. Deaeration work is done at the same time as this heating work, and then the powder The final container is sealed.

次いで、この焼結された粉末が入9た容器rはプレス装置10で引き抜かれて予 め定められた寸法の欅に作られる。Next, the container r containing this sintered powder is pulled out by the press device 10 and pre-filled. It is made into a keyaki of a specified size.

この焼結され圧縮された粉末(製品〕は変形した上記容器から取シ出される。This sintered and compacted powder (product) is removed from the deformed container.

この製品は予熱処理(硬化、焼もどし)の後に上記の処理が施され、この処理の 後に曲げ強さ、ロックフェル硬度及び衝撃強さをめるために組織分析、物理試験 及び化学試験に供される。This product is subjected to the above treatment after preheating treatment (hardening, tempering). Afterwards, microstructure analysis and physical tests are conducted to determine bending strength, Rockfel hardness and impact strength. and chemical tests.

曲げ強さ試験のために、上記製品はjXjXj(7mの熱処理(硬化、3段階焼 もどし)された棒状試験片に機械加工される。この棒状試験片は特殊の装置で曲 けられる。この装置はUO閤の間隔を置いた2個の支持体とこの支持体の間に配 設されて油圧プレス装置に結合されたポンチとで構成される。この支持体とポン チの端部は丸い形状を有し、この支持体の丸い端部は半径/1m、ポンチの丸い 端部は半径7.!txj/−作られる。For bending strength testing, the above products were heat treated (hardening, 3-stage baking) The specimen is then machined into a bar-shaped specimen. This rod-shaped test piece is bent using a special device. I get kicked. This device is placed between two supports spaced apart from the UO bar. and a punch connected to a hydraulic press device. This support and the The end of the punch has a rounded shape, and the rounded end of this support has a radius /1m, and the rounded end of the punch has a round shape. The end has a radius of 7. ! txj/- is made.

上記試験片は上記支持体上で破壊するまで上記ポンチによって曲けられる。この ポンチの移動速度は0゜/ W /秒である。この試験片の破壊時の曲げ強さは 上記プレス装置のダイヤルで読み取られる。The specimen is bent by the punch on the support until it breaks. this The moving speed of the punch is 0°/W/sec. The bending strength of this test piece at fracture is It is read on the dial of the press device.

この曲げ強さは式 %式% Muは曲げ運動、単位はり・鵡 vt=bb /bは鵡 当シの曲は抵抗Pは上記試験片に加わる破壊時の曲げカ 、単位は峙IFi支持体の間隔、単位は騙 すは上記試験片の破壊後の巾、単位は鵡りは上記試験片の破壊後の高さ、単位は 寵である。This bending strength is calculated by the formula %formula% Mu is bending motion, unit beam vt=bb /b is a parrot.In this song, resistance P is the bending force applied to the above test piece at the time of failure. , the unit is the distance between the opposite IFi supports, the unit is the 〇 is the width of the above test piece after destruction, the unit is 〇 is the height of the above test piece after destruction, the unit is It's a blessing.

この材料の衝撃強さを試験するために、上記製品はIO×IOX/!mの熱処理 (硬化、3段階焼もどし)を施した棒状試験片に機械加工される。In order to test the impact strength of this material, the above product was tested for IO×IOX/! m heat treatment (hardening, three-step tempering) and machined into rod-shaped specimens.

この試験片はjOmgmの衝撃力を有する振子式衝撃試験機にかけられる。この 振子は上記試験片を破壊するまで叩き、破壊後に破断面の面積が測定され、これ に対して破壊時の上記衝撃力は上記ダイヤルで測定される。The specimen is subjected to a pendulum impact tester with an impact force of jOmgm. this The pendulum hits the above test piece until it breaks, and after it breaks, the area of the fracture surface is measured. The above-mentioned impact force at the time of failure is measured by the above-mentioned dial.

上記衝撃強さは式 によりめられ、ここに Aは上記試験片の破壊時における振子の衝撃力で、単位は4m Fは上記試験片の破壌後の断面積で、単位は国2である。The above impact strength is calculated by the formula I was drawn to this place. A is the impact force of the pendulum at the time of breaking the above test piece, and the unit is 4 m F is the cross-sectional area of the above test piece after fracture, and the unit is country 2.

以下、本発明の具体的実施例を説明する0実施例1 上記製品は本発明に基づいて工具用鋼粉から作られ、その組成は重量−で炭素1 .3.硅素O,a、マグネシクムO,a、バナジウム0.#、コバルト10゜0 、硫黄0.0J、リン0.OJ、残量が鉄である。Hereinafter, 0 Example 1 to explain a specific example of the present invention The above product is made from tool steel powder according to the present invention and has a composition of 1 carbon by weight. .. 3. Silicon O,a, Magnesium O,a, Vanadium 0. #, cobalt 10゜0 , sulfur 0.0J, phosphorus 0. OJ, the remaining amount is iron.

この結果に合せて、100μ観を越える粒度の粉末粒は篩物除去された。100 μm以下の粒度の粉末粒はその粒度分布均一化のため、上記混合槽で30分間混 合された。この粒度分布が平均化された粉末は強度が/X/□ A/EELの固 定磁場の作用にさらされて磁化された。この磁化作業Fio、λj分継続された 0この磁化された粉末は炭素O,コチの構造材鋼で作られた容器に注ぎ込まれた 0容器は直径J 00 ws 、深さ60Qwsの円筒形である。この容器中の 上記粉末はこの容器を周波数!OHz、振巾0.jKMで振動させることにより 稠密化された0加振圧縮作業3分後にこの粉末の加振が停止され、上記容器の開 放端は接続部材を有する蓋を溶接して閉鎖された0この接続部材は真空ボ 2 ンブに接続されて上記容器内を水銀柱10 usの真空にした。同時にこの容器 を1160℃に加熱し、この温度に3時間維持すると共に脱気作業を施した。In line with this result, powder grains with a particle size exceeding 100 μm were removed by sieving. 100 Powder particles with a particle size of μm or less are mixed for 30 minutes in the mixing tank above to make the particle size distribution uniform. combined. The powder with an averaged particle size distribution has a strength of /X/□A/EEL. magnetized by being exposed to the action of a constant magnetic field. This magnetization work Fio was continued for λj minutes This magnetized powder was poured into a container made of carbon O, flathead structural steel. The container 0 has a cylindrical shape with a diameter of J00ws and a depth of 60Qws. in this container The above powder frequency this container! OHz, amplitude 0. By vibrating with jKM After 3 minutes of densified zero vibration compression work, the vibration of this powder is stopped and the container is opened. The open end is closed by welding a lid with a connecting member. This connecting member is connected to the vacuum port 2. The inside of the container was evacuated to 10 us of mercury. At the same time this container was heated to 1160°C, maintained at this temperature for 3 hours, and degassed.

脱気作業完了後、上記容器の接続部材が閉じられ。After the degassing operation is completed, the connection member of the container is closed.

この閉じた部分が密封された0この上記粉末を収容し上記温度に加熱された容器 は引抜により直径100m5の円柱状の棒にされた。A container whose closed part is sealed and which contains the above-mentioned powder and is heated to the above-mentioned temperature. was drawn into a cylindrical rod with a diameter of 100 m5.

上記棒状試験片用粉末金属(製品)は核として作用し、上記変形した容器は外殻 として作用する0この作成された棒状試験片FirjO℃で参時間焼もどされた 後にλO℃/分の割合で200℃まで冷却され、その後室温迄空冷された。この 外殻は旋盤の回転によって上記核から取外された。The powdered metal (product) for the rod-shaped test piece above acts as a core, and the deformed container above acts as an outer shell. This rod-like specimen was tempered at FirjO℃ for a period of time to act as 0. It was then cooled to 200°C at a rate of λO°C/min, and then air cooled to room temperature. this The outer shell was removed from the core by turning the lathe.

予熱処理(硬化焼もどし)の後に上述のように製造された上記製品は組織分析、 物理試験及び機械的試験に供されて、曲げ強さ、ロックウェル硬さ、及び衝撃強 さが測定された。The above products manufactured as described above after preheating treatment (hardening and tempering) were subjected to microstructural analysis, Subjected to physical and mechanical tests to determine bending strength, Rockwell hardness, and impact strength. was measured.

試験結果は次のとおりである。The test results are as follows.

曲げ強さ 静/闘 ・・・・・・−・・・・・・・・コロ0ロッククエル硬さ  C・・・・・・・・・・・・tり衝撃強さ Kpm/α ・・・・・・・・・・ ・・1.を組成が同一で磁化されない粉末で作られた製品も上述の方法で作られ た。Bending strength Shizuka/Fight ・・・・・・-・・・・・・・・・ Coro 0 Rockquel hardness C・・・・・・・・Impact strength Kpm/α・・・・・・・ ・・1. Products made from non-magnetized powders with the same composition can also be made using the method described above. Ta.

上記製品の機械的特性を比較して、単位強度が20乃至コjチ、衝撃強さが30 −まで増加することが判った。構造分析の結果、本発明に基づいて作られた製品 の方が粒状組織が均一であることが明らかにされた実施例コ 製品は組成が重量%で、炭素1.コ、クロム参、コ、ニッケルO0事、マンガン 0.参、ago、蓼、タングステンlλ、0、モリブデン3.01バナジクムコ 、コ、コバルトt、λ、硫黄0.03、リン0.03、残量が鉄の工具鋼の粉末 を用いて、本発明に基いて作られた。この結果に合せて粒度100声惰以下の粉 粒は30分間上記混合槽で粒度分布均一化のために混合された。平均化された粒 度な有する上記粉末は強度/XIOA/I!lの固定場に曝すことにより磁化さ れた。この磁化作業は0.2J分継続された。この磁化された粉末は炭素O,コ 嘩の構造材用鋼で作られた容器(注がれたo’ll器は直径300 M 、深さ 400mの円筒形である。この容器内の磁化された粉末は、この容器の周波数j  OHz 、振巾0.jsaaの加振により稠密にされた。この粉末の加振圧縮 は3分間で停止され、この容器の開放端は管接続具を有する蓋を溶接することに より閉鎖された。この管接続具に真空ポンプ 2 に接続されて上記容器内部を水銀柱io mの真空にした。これと同時に、この 容器はl/jtO℃まで加熱され、この温度に3時間保持されて焼結と脱気が施 された。Comparing the mechanical properties of the above products, the unit strength is 20 to 100% and the impact strength is 30%. It was found that the amount increased to -. Products made based on the present invention as a result of structural analysis The example sample revealed that the grain structure is more uniform. The product has a composition by weight of 1. Co, chromium ginseng, co, nickel O0, manganese 0. 3.01 vanadium, ago, tungsten, λ, 0, molybdenum , co, cobalt t, λ, sulfur 0.03, phosphorus 0.03, residual amount iron tool steel powder was made in accordance with the present invention using. Based on this result, powder with a particle size of 100 or less The grains were mixed for 30 minutes in the mixing tank described above for uniform particle size distribution. averaged grain The above powder has a strength/XIOA/I! magnetized by exposing it to a fixed field of l It was. This magnetization work was continued for 0.2 J. This magnetized powder contains carbon O, co A container made of structural steel (the o'ller in which it was poured is 300 m in diameter and has a depth of It has a 400m cylindrical shape. The magnetized powder in this container has a frequency j of this container OHz, swing width 0. It was made denser by the vibration of jsaa. Vibratory compression of this powder is stopped for 3 minutes and the open end of this container is welded with a lid with pipe fittings. More closed. Vacuum pump 2 to this pipe connector The inside of the container was evacuated to iom of mercury. At the same time, this The vessel was heated to l/jtO°C and held at this temperature for 3 hours to allow sintering and degassing. It was done.

脱気完了後、上記容器は管接続具を閉じ、この閉じた部分を密封することにより 密封された0上記粉末を収容し上記温度に加熱された上記容器は引抜きにより直 径100wmの円柱状の棒に作られた。After the deaeration is completed, the container is closed by closing the pipe fitting and sealing this closed part. The sealed container containing the powder and heated to the temperature can be immediately removed by pulling it out. It was made into a cylindrical rod with a diameter of 100wm.

上記棒用の上記粉末金属(製品)は核として、また、上記変形した容器は外殻と して作用する。上記作成された棒はtSO℃で要時間焼鈍された後λO℃/分の 割でSOO℃迄冷却され、その後室温まで空冷された。この外殻は旋盤の回転に よって上記核から域外された。The above powdered metal (product) for the above rod is used as the core, and the above deformed container is used as the outer shell. It works. The above-prepared bar was annealed at tSO℃ for a required time and then heated at λO℃/min. It was cooled to SOO° C. and then air cooled to room temperature. This outer shell is rotated by a lathe. Therefore, it was excluded from the above core.

予熱処理(硬化、焼もどし)の後に上述のようにして作られた製品は組織分析と 物理試験に供せられて曲げ強さ、ロックウェル硬さ及び衝撃強さがめられた上記 試験の結果は次のとおりである。After preheating treatment (hardening, tempering), the products made as described above are subjected to microstructural analysis. The above materials were subjected to physical tests to determine bending strength, Rockwell hardness and impact strength. The results of the test are as follows.

曲は強さ KP/■ ・・・・・・−・・・・・・・・コア0ロックウェル硬さ  C・・・・・・・・・tr術撃強さ 時m / am ・・・・・・・・・・ ・・/、Jこの事実から、本発明に基づく方法によって作られた製品は、先行技 術に基づいて作られた製品に較べて、重量%で、強さが平均コj%、衝撃強さが 平均3゜−増加したことがわかる。The song is strength KP/■ ・・・・・・-・・・・・・・・・Core 0 Rockwell hardness C・・・・・・・・・Tr technique attack strength time m/am・・・・・・・・・・・・ .../J From this fact, it follows that the products made by the method according to the invention are superior to the prior art. Compared to products made based on the technique, the average strength is 0.5% by weight and the impact strength is It can be seen that the average increase was 3°.

実施例3 製品は本発明に基づいて工具鋼の粉末で作られ、この工具鋼の組成は重量−で炭 素/、0、マンガン0゜弘、硅素o、a%pctム3.?、硫黄0.0!、リン 0.0!、残量が鉄である。この結果に合せて、粒度100μm以下の粉粒が3 o分間、上記混合槽で粉度分布平均化の目的で混合された。この粒度分布の平均 化された粉末は/ X / OA / nlの強度の固定場の作用に曝されて磁 化された。この磁化作業Fio、コ!分継続された。この磁化された粉末は炭素 O,コチの構造材用鋼で作られた容器に注がれた。容器は円筒形で直径300  tm 、深さ600tsである。上記磁化された粉末はこの容器の中で、この容 器を周波数701(、。Example 3 The product is made of tool steel powder according to the invention, and the composition of this tool steel is - by weight - carbon Element /, 0, manganese 0゜hiro, silicon o, a% pctm3. ? , Sulfur 0.0! ,Rin 0.0! , the remaining amount is iron. In line with this result, powder particles with a particle size of 100 μm or less The mixture was mixed for 0 minutes in the mixing tank for the purpose of averaging the powder distribution. The average of this particle size distribution The powder is magnetically exposed to the action of a fixed field with a strength of /X/OA/nl. was made into This magnetization work Fio, Ko! It continued for minutes. This magnetized powder is carbon It was poured into a container made of O. flathead structural steel. The container is cylindrical and has a diameter of 300 mm. tm, depth 600ts. The magnetized powder is placed inside this container. frequency 701 (,.

振巾0.!1で加振することにより加振圧縮された。Width 0. ! Vibration compression was performed by excitation at 1.

この粉末に対する加振作業Fi3分で停止され、上記容器の開放端管接続具を有 する蓋を溶接することにょ力閉じられた。この管接続具は真空ポンプに接続され て 2 上記容器内部を水銀柱10 wの真空にした。これと同時にこの容器1−4/1 30℃まで加熱され、この温度に一時間保たれて、焼結と脱気が進行する。The excitation work on this powder was stopped in 3 minutes, and the open end pipe connector of the container was It was forced closed by welding the lid. This pipe fitting is connected to the vacuum pump te 2 The inside of the container was evacuated to 10 W of mercury. At the same time, this container 1-4/1 It is heated to 30° C. and kept at this temperature for one hour to proceed with sintering and degassing.

脱気完了後、この容器は管接続具を閉じ、この閉じた部分を密封することにより 密封された。上記粉末を収容して上記温度に加熱された上記容器は引抜きにより 直径100■の円柱状の欅に作られた。After deaeration is complete, this container is closed by closing the pipe fitting and sealing this closed part. Sealed. The container containing the powder and heated to the temperature is pulled out. It was made into a cylindrical keyaki tree with a diameter of 100cm.

この棒用の粉末金属(製品)it核として、また上記変形した容器は外殻として 、作用する。この棒f”Jtjθ℃でμ時間焼もどされ、20℃/分の割合でS OO℃まで冷却されてから室温まで空冷された。上記外殻は旋盤の回転により上 記核から外された。The powdered metal (product) for this rod serves as the core, and the deformed container above serves as the outer shell. , act. This rod f”Jtjθ℃ is tempered for μ hours and S is heated at a rate of 20℃/min. It was cooled to OO°C and then air cooled to room temperature. The above outer shell is raised by the rotation of the lathe. removed from the record.

このようにして、予熱処理後(硬化、焼もどし)後に作られた製品は組織分析、 物理試験及び機械的試験に供せられて曲げ強さ、ロックウェル硬さ及び衝撃強さ が測定された。In this way, the products made after preheating treatment (hardening, tempering) can be analyzed by microstructure analysis. Subjected to physical and mechanical tests for bending strength, Rockwell hardness and impact strength was measured.

この試験は上述と同一の方法で行なわれた。This test was conducted in the same manner as described above.

この試験の結果は次のとおりである。The results of this test are as follows.

曲げ強さ KP/−・・・・・・・・・・・・・・・300ロッククエル硬さ  C・・・・・・・・・11衝撃強さ 細Ill 1国 ・・・・・・・・・・・ ・1.tこの事実から、本発明に基づく方法で作られた粉末は先行技術による方 法で作られた粉末と較べて1重量−で5強さが平均でコj%、衝撃強さが平均で 30%増加したことがわかる。Bending strength KP/-・・・・・・・・・・・・・・・300 Rockquel hardness C・・・・・・・・・11 Impact strength Thin Ill 1 country・・・・・・・・・・・・ ・1. This fact shows that the powder made by the method according to the invention is superior to that according to the prior art. Compared to the powder made by the method, the strength is on average 5% by weight and the impact strength is on average It can be seen that it has increased by 30%.

実施例弘 製品は本発明に基づいて工具鋼で作られ、この工具鋼の組成は重量%で、炭素/ 、0.吐素O0弘、マンガン0.私、クロム3.コ、ニブケル0.Q、タングス テン2.01モリブデンa、O,バナジウムλ、3、コバルト1.0、硫黄0. OJ、リン0.OJ、残量が鉄であった。この結果、粒度が100μmを越える 粉粒に篩分除去された。粒度100μ愼以下の粒は30分間、上記混合槽で、粒 度分布平均化のために混合された。この粒度分布が平均化された粉末は強度がコ ×loh/mの固定場の作用に曝して磁化された。この磁化作業はO,25分継 続された。この磁化された粉末は炭素O,コチの構造材鋼で作られた容器に注が れた。容器は円筒形で直径がJ 00 wx 、深さが600mである。この容 器内の上記磁化された粉末は、この容器を周波数soH,,振巾o、zmで加振 することにより稠密化された。この加振圧縮作業は3分で停止され、この容器の 開放端は管接続具を有する蓋を溶接して閉塞された。この管接続具は真空ポンプ に接 2 続されて上記容器の内部を/ OM Hlの真空にした。これと同時に、この容 器は1110℃まで加熱され、この温度にλ時間保たれて焼結と脱気が行なわれ た。脱気作業完了後、この容器は管接続具の閉塞及びこの閉塞部の密封によって 密封された。上記粉末を収容して上記温度に加熱されたこの容器は直径700簡 の円柱状の棒に引き抜かれた。Example Hiroshi The product is made of tool steel according to the invention, the composition of which is in weight percent carbon/ ,0. Emesis O0hiro, manganese 0. Me, Chrome 3. Ko, nibkel 0. Q, Tangs Ten 2.01 Molybdenum a, O, Vanadium λ, 3, Cobalt 1.0, Sulfur 0. O.J., Lin 0. OJ, the remaining amount was iron. As a result, the particle size exceeds 100 μm. The sieve was removed into powder particles. For particles with a particle size of 100 μm or less, mix them in the above mixing tank for 30 minutes. degree distribution was mixed for averaging. Powder with an averaged particle size distribution has a strength of It was magnetized by exposing it to the action of a fixed field of ×loh/m. This magnetization work is repeated for 25 minutes. continued. This magnetized powder is poured into a container made of carbon O, flathead structural steel. It was. The container is cylindrical, with a diameter of J00wx and a depth of 600m. This capacity The magnetized powder in the container is shaken at a frequency of soH, an amplitude of o, and zm. It was made denser by doing so. This vibration compression work was stopped in 3 minutes, and the container was The open end was closed by welding a lid with a tube fitting. This pipe fitting is a vacuum pump Close to 2 Subsequently, the inside of the container was evacuated to /OM Hl. At the same time, this capacity The vessel was heated to 1110°C and held at this temperature for λ hours to perform sintering and degassing. Ta. After completing the degassing operation, the container is closed by closing the pipe fitting and sealing this blockage. Sealed. This container containing the above powder and heated to the above temperature has a diameter of 700 mm. It was pulled out by a cylindrical rod.

この棒のための粉末金属(製品)は核として、また上記変形した容器は外殻とし て作用する。この作り出された棒はrso℃で要時間焼きもどされ、−〇℃/分 の割合で5oor2まで冷却された後、室温迄空冷された。The powdered metal (product) for this rod is used as the core, and the above deformed container is used as the outer shell. It works. This produced rod was tempered at rso℃ for a required time, -0℃/min. The mixture was cooled to 5oor2 at a rate of 100.degree., and then air-cooled to room temperature.

この外殻は旋盤の回転によって上記核から取)外された。This shell was removed from the core by rotation of the lathe.

このように、予熱処理(硬化、焼きもどし)の後に作られた製品は組織分析、物 理試験、及び機械的試験に供せられて、曲げ強さ、ロックウェル硬さ、及び衝撃 強さが測定された。In this way, products made after preheating treatment (hardening, tempering) are subjected to structural analysis and physical examination. Subjected to physical and mechanical tests to determine bending strength, Rockwell hardness, and impact strength was measured.

この試験の結果は次のとおりである。The results of this test are as follows.

曲げ強さ 〜/n ・・・・・・・・・・・・・・・3コOロックウニ#硬−g  G ・・・・・・・・・67衝撃強さ Kp m / 3 ・・・・・・・・ ・・・・i、rこの事実から本発明に基づく方法で作られた製品は先行技術の方 法で作られた製品に較べて強さが平均でコj%、衝撃強さが平均で30−増加す ることがゎがる0 実施例! 製品は本発明に基づいて工具鋼の粉末で作られ、その組成は重量−で、炭素1. 0、マンガンO1参、硅素O9蓼、クロム3.り、タングステン≦、o、モリブ テン弘、f、バナジウム仁75コバルト弘、r。Bending strength ~/n ・・・・・・・・・・・・・・・3 O rock sea urchin #hard-g G・・・・・・・・・67 Impact strength Kp m/3・・・・・・・・・ ...i,r From this fact, products made by the method based on the present invention are superior to the prior art. The strength is increased by an average of 10% and the impact strength is increased by an average of 30% compared to products made by the same method. Kotogawaru0 Example! The product is made according to the invention from tool steel powder, the composition of which is - by weight - carbon 1. 0, manganese O1, silicon O9, chromium 3. ri, tungsten≦, o, molyb Ten Hiroshi, f. Vanadium Jin 75 Cobalt Hiroshi, r.

硫黄o、o3.yン0.OJ、残量が鉄でありだ。Sulfur o, o3. yin0. OJ, the remaining amount is iron.

この結果に合せて、上記粉末の粒度100μmを越える粒子に篩分は除去された 。粒度tooμm以下の粒子は30分関上記混合槽で粒度分布均一化のために混 合された。この均一化された粒度分布を有する粉末は強度lX10 A/mの固 定場の作用に曝すことにより磁化された。この磁化作業1ltO,/分継続され た。この磁化された粉末は炭素0.2%の構造材用鋼で作られた容器に注ぎ入れ られた。容器は円筒形で直径J 00 ws 、深さがAOOtsである。この 容器内の磁化された粉末はこの容器を周波数j(7Hz、振巾O0j闘で加振す ることにより稠密化された。この加振圧縮作業は3分で停止され、この容器の開 放端は管接続具を有する蓋を溶接することにより閉じられた。この管接続具は真 空ポンプに接続されて上記容器内をto−2W fl Hの真空にした。これと 同時に上記容器Fil130℃迄加熱され、この温度にλ時間保たれて焼結と脱 気が行なわれる。脱気が完了すれば、この容器は上記管接続具の閉塞、及びこの 閉塞部の密封によって密封された。In line with this result, the sieve content was removed from the particles with a particle size exceeding 100 μm in the above powder. . Particles with a particle size of too μm or less are mixed in the above mixing tank for 30 minutes to make the particle size distribution uniform. combined. The powder with this uniform particle size distribution has a hardness of 1×10 A/m. Magnetized by exposure to the action of a fixed field. This magnetization work continues for 1ltO,/min. Ta. This magnetized powder is poured into a container made of structural steel with 0.2% carbon. It was done. The container is cylindrical, with a diameter of J00ws and a depth of AOOts. this The magnetized powder in the container excites the container at frequency j (7 Hz, amplitude O0j). It was densified by This vibration compression work is stopped after 3 minutes, and the container is opened. The open end was closed by welding a lid with pipe fittings. This pipe fitting is true It was connected to an empty pump and the inside of the container was evacuated to -2W fl H. With this At the same time, the above container Fil is heated to 130℃ and kept at this temperature for λ hours to perform sintering and desorption. Qi is done. Once deaeration is complete, this container will be free from occlusion of the pipe fittings and this Sealed by sealing the occlusion.

上記粉末を収容し上記温度に加熱された上記容器は引抜かれ直径100mの円柱 状の棒にされた。The container containing the powder and heated to the above temperature is pulled out and becomes a cylinder with a diameter of 100 m. was made into a stick.

この棒はそれぞれ核として、また上記容器は外殻として作用する。この棒はrs o℃で参時間焼もどされ、−〇℃/分の割合でSOO℃迄冷却された後室温迄空 冷された。この外殻は旋盤の回転によって上記核から取り外された。This rod each acts as a core and the container as an outer shell. This rod is rs Tempered at 0°C for 3 hours, cooled to SOO°C at a rate of -0°C/min, then emptied to room temperature. Chilled. This shell was removed from the core by turning the lathe.

このようにして予熱処理(硬化、焼もどし)の後に作られた製品は組織分析、物 理試験及び機械的試験に供されて曲げ強さ、ロックフェル硬さ、及び衝撃強さが 測定された。Products made in this way after preheating treatment (hardening, tempering) can be used for structural analysis and physical examination. The bending strength, Rockfel hardness, and impact strength were determined by physical and mechanical tests. Measured.

この試験の結果は次のとおりであった。The results of this test were as follows.

曲げ強さ Kp/m ・・・・・・・・・・・・・・・310ロックウェル硬さ  C・・・・・・・・・6r衝撃強さ Kp m / tx ・・・・・・・・ ・・・・1.1製品を上記と同一の粉末で、磁化の程度を少くして作り、これを 試験した。上記製品をこの製品と比較すると、強さが平均で20乃至27%、衝 撃強さが平均で30−大きいことがわかる。Bending strength Kp/m 310 Rockwell hardness C・・・・・・・・・6r Impact strength Kp m/tx・・・・・・・・・ ...1.1 A product is made from the same powder as above with a reduced degree of magnetization, and this is Tested. Comparing the above products to this product, the strength is on average 20-27%, It can be seen that the impact strength is 30-larger on average.

組織分析によって本発明に基づく製品を形成する材料の粒子構造の方が均一性の 食込ことか明らかにされた0 実施例を 製品は本発明に基づいて工具鋼で作られ、この工具鋼の組成は重量−で、炭素/ 、0.マンガン0.4E、硅素0.*、クロム3.り、タングステンt、0、モ !J フ7 ンa 、 z 、 、(ナシクム1.7、コバル)s、 1、硫黄 0.OJ、リン0.OJ、残量が鉄であつた。Textural analysis shows that the grain structure of the material forming the product according to the invention is more uniform. It was revealed that it was a bite 0 Example The product is made of tool steel according to the invention, the composition of which is by weight, carbon/ ,0. Manganese 0.4E, silicon 0. *, chrome 3. , tungsten t, 0, mo ! J F7 a, z, (Nashikum 1.7, Kobal) s, 1, sulfur 0. O.J., Lin 0. OJ, the remaining amount was iron.

この結果に合せて、100μ漢を越える粒度の粒子は篩分除去された。粒度10 0μm以下の粒子l’lJO分間、上記混合槽で粒度分布均一化のために混合さ れた0この粒度が均一化された粉末は強度l×IO^/mの固定場の作用に曝す ことで磁化された。この磁化作業FiO,j分継続された。この磁化された粉末 は炭素0.コチの構造材用−で作られた容器に注ぎ込まれた。容器は円筒形で直 径JOO■、深さ600m5である。この容器内の上記磁化された粉末に、この 容器を周波数!OHt、振巾0.311Mで加振することにより稠密化された。In accordance with this result, particles with a particle size exceeding 100 μm were removed by sieving. particle size 10 Particles of 0 μm or less were mixed in the mixing tank for 1 minute to make the particle size distribution uniform. This uniformly sized powder is exposed to the action of a fixed field of intensity l×IO^/m. It was magnetized by this. This magnetization work was continued for FiO,j minutes. This magnetized powder is carbon 0. It was poured into a container made from flathead structural material. The container is cylindrical and straight. The diameter is JOO■ and the depth is 600m5. Add this magnetized powder to the magnetized powder in this container. Frequency the container! It was densified by shaking it with OHt and a vibration width of 0.311M.

この加振圧縮作業は3分で停止され、この容器の開放端は管接続具を有する蓋を 溶接することによって閉じられた。この管接続具に真空ポンプ 2 に接続されて上記容器の内部を10 鵡H,の真空にした。これと同時に上記容 器は1130℃まで加熱され、この温度Vr、λ時間保たれて焼結と脱気が行な われた。The vibratory compression operation was stopped after 3 minutes, and the open end of the container was closed with a lid with a pipe fitting. Closed by welding. Vacuum pump 2 to this pipe connector The inside of the container was evacuated to a pressure of 10 mm. At the same time, the above contents The vessel was heated to 1130°C and maintained at this temperature Vr for a time λ to perform sintering and degassing. I was disappointed.

脱気が済んだところで、この容器は上記管接続具が閉塞され、この閉塞部が密封 されることにより密封された。この上記粉末を収容して上記温度に加熱された容 器は引抜きにより直径100mの円柱状の棒に作られた。Once the air has been degassed, the pipe fittings in this container are closed, and this closed part is sealed. sealed by being A container containing the above powder and heated to the above temperature. The vessel was made into a cylindrical rod with a diameter of 100 m by drawing.

上記各棒用の粉末金属は核として作用し、上記変形した容器は外殻として作用す る。この製造された棒は110℃で参時間焼麹もとされ、コO℃/分の割合でj OO℃迄冷却された後室温まで空冷された。上記外殻は旋盤回転により上記核か ら外された0このようにして予熱処理(硬化、焼きもどし)の後に作られた製品 は組織分析、物理試験及び機械的試験に供せられて曲は強さ、ロックフェル硬さ 及び衝撃強さが測定された。The powdered metal for each rod above acts as the core and the deformed container above acts as the outer shell. Ru. The produced bar was heated at 110°C for an hour and then heated at a rate of 0°C/min. After being cooled to OO°C, it was air cooled to room temperature. The above outer shell is turned into the above core by lathe rotation. 0Products made in this way after preheating treatment (hardening, tempering) is subjected to structural analysis, physical test and mechanical test to determine the strength, Rockfel hardness and impact strength were measured.

この試験の結果に次のとおりである。The results of this test are as follows.

曲は強さ 却/鵡 ・・・・・・・・・・・・・・・3コOロフククエル硬さ  C・・・・・・・・・tr衝撃強さ Kp m / cm ・・・・・・・・・ ・・・λ、Oこの事実から本発明に基づく方法で作られた製品は先行技術による 方法で作られた製品と較べて単位強度が平均で2!チ増加し、他方、衝撃強さが 平均で30係増加していることがわかる。The song is strength / parrot ・・・・・・・・・・・・・・・・・・3 C・・・・・・・・・tr Impact strength Kp m/cm・・・・・・・・・ ...λ, O From this fact, products made by the method based on the present invention are not based on the prior art. Compared to products made using this method, the unit strength is on average 2! On the other hand, the impact strength increases It can be seen that the number has increased by 30% on average.

実施例7(否定的) 製品は実施例1とほぼ同様K、類似の材料で作られた。しかしながら、上記粉末 の磁化工程で、固定磁場の強度がtxto h/mc即ち、これは特許請求の範 囲外で、最小値以下)に変えられた。Example 7 (negative) The product was made in much the same manner as in Example 1 and of similar materials. However, the above powder In the magnetization process, the strength of the fixed magnetic field is txtoh/mc, which is below the minimum value).

作られた製品の試験結果は次のとおりである。The test results of the manufactured products are as follows.

曲げ強度 Q / W ・・・・・・・・・・・・・・・210ロッククエル硬 さ C・・・・・・・・・tり衝撃強さ KIN/6m ・・・・・・・・・・ ・・1./この事実から、上記固定場の上記強度では上記粉末が要求された範囲 まで磁化されず、このことは、上記粉末の粒度に基づく粒子の分離を生じさせ、 この粉末が上記容器に注ぎ込まれた時に製品の特性を劣化させる(実施例1の製 品との比較において)0特に、曲げ強さは磁化しない製品よりわずかlチしか大 きくない実施例t(否定的) 製品は冥施例とほぼ同様に、類似の材料で作られた0ただし上記粉末の磁化工程 で固足場の強度はjx10 A/m(即ち、この値は特許請求の範囲第一項の範 囲外で、上記最大値より大きい)のように変えられた0 作られた製品の試験結果は次のとおりである。Bending strength Q / W 210 Rockquel hardness C・・・・・・・・・timpact strength KIN/6m・・・・・・・・・・・・ ・・1. / From this fact, at the above strength of the above fixed field, the above powder is within the required range. is not magnetized until This powder deteriorates the properties of the product when poured into the container (manufactured in Example 1). In particular, the bending strength is only 1 inch greater than that of non-magnetized products. Unsatisfactory example t (negative) The product is almost the same as the example, made of similar materials, but the magnetization process of the powder described above is The strength of the solid scaffold is j x 10 A/m (i.e., this value falls within the range of claim 1). outside the range, greater than the maximum value above) changed to 0 The test results of the manufactured products are as follows.

曲は強さ KP/ m ・・・・・・・・・・・・・・・3λOロックウェル硬 さ C・・・・・・・・・t7衝撃強さ Kp m / cs ・・・・・・・ ・・・・・1.fこの事実から上記固定場のこの強度では本発明に基づく強度に 比較して製品の特性が改善されないことがわかる。それと同時に、この場合はエ ネルギー消費がより大きくなり使えるあてかない。The song is strength KP/m・・・・・・・・・・・・・・・3λO Rockwell hardness C・・・・・・・・・t7 Impact strength Kp m/cs・・・・・・・・・ ...1. f From this fact, at this strength of the above fixed field, the strength according to the present invention is It can be seen that the characteristics of the product are not improved by comparison. At the same time, in this case Energy consumption becomes greater and it becomes unreliable to use.

実施例り 製品は実施例3に殆んど同じで類似材料で作られた。ただし、上記粉末の磁化工 程で、磁化時間が0.Q参会(即ち、この値は特許請求の範囲第2項の範囲外で 、上記最小値より小さい)に変えられた。Examples The product was much the same as Example 3 and was made from similar materials. However, the magnetization process of the above powder When the magnetization time is 0. Q participation (i.e., this value is outside the scope of claim 2) , smaller than the above minimum value).

作られた製品は試験に供せられ、その結果は次の通りである。The manufactured products were subjected to testing, and the results are as follows.

曲げ強さ 縁/鵡 ・・・・・・・・・・・・・・・2JOロブクウエル硬さ  C・・・・・・・・・tr衝撃強さ麺Ill / cm ・・・・・・・・・・ ・・・・・1.コこの事実から、上記特定の磁化時間に、上記粉末を要求された 範囲まで磁化するには充分ではないといえる。このことは上記粉末が上記容器に 注ぎ込まれる時に粉末の粒度に基因する上記粉末の部分的分離を招いて製品の特 性を劣化させる(本発明の特許請求の範囲の記載に基づいて作られた製品と比較 すれば)0実施例10 製品は実施例λに殆んど同様に、類似の材料で作られた。ただし、上記粉末を磁 化する工程で磁化時間が1分に変えられた(即ち、この値は特許請求の範囲第2 項記載の範囲外であシ、最大値を越えるものである製造された製品に試験され、 その結果は次のとおりである。Bending strength Edge/Parrot・・・・・・・・・・・・・・・2JO Robkwell hardness C・・・・・・・・・TR Impact strength noodles Ill/cm・・・・・・・・・・・・ ...1. From this fact, the above powder is required at the above specific magnetization time. It can be said that it is not sufficient to magnetize to a certain extent. This means that the above powder is placed in the above container. Due to the particle size of the powder when poured, it may lead to partial separation of the powder, resulting in product characteristics. (compared to products made according to the claims of the present invention) If) 0 Example 10 The product was made much like Example λ and from similar materials. However, if the above powder is In the magnetization step, the magnetization time was changed to 1 minute (i.e., this value was changed to 1 minute). If the manufactured product is outside the range stated in the section and exceeds the maximum value, The results are as follows.

曲げ強さ KP/■ ・・・・・・・・・・・・・・・270ロックウェル硬さ  C・・・・・・・・・tr衝撃強さ Kp m / x ・・・・・・・・・ ・・・/、jこの事実から特定の磁化時間に本発明に基づく磁化時間に比べて製 品の特性を改善しなりと言える。それと同時にこの場合、エネルギー消費が一層 多くなるし使えるあてかない。Bending strength KP/■・・・・・・・・・・・・・・・270 Rockwell hardness C・・・・・・・・・tr Impact strength Kp m/x・・・・・・・・・ .../,j From this fact, the specific magnetization time is compared to the magnetization time based on the present invention. It can be said that the characteristics of the product are improved. At the same time, in this case, energy consumption is even higher. There will be a lot of them, and you won't be able to use them.

産業上の利用可能性 本発明は冶金及び機械工学の分野で円筒状又は形付けられた半製品、例えば構造 材用鋼材等を磁性鉄粉で作るのに応用可能であシ、同様にサーメット材料のよう な可鍛性の乏しい材料で作るのに応用することもできる。また、本拠明け、一つ の金属を様々に組み合せた複合半製品の製造への応用も可能である。これらの半 製品は強度の大きい切削工具や打ち型の製造への応用も可能である。Industrial applicability The invention relates to cylindrical or shaped semi-finished products, e.g. structures, in the field of metallurgy and mechanical engineering. It can be applied to making steel materials etc. with magnetic iron powder, and it can also be applied to making materials such as cermet materials. It can also be applied to fabrication from materials with poor malleability. Also, one more thing after leaving the base. It can also be applied to the production of composite semi-finished products that combine various metals. These half The product can also be applied to the production of strong cutting tools and punching dies.

E1 f/12 1lII#ffll116MIAIllbCJWMva、PCTISL:80I 00194第1頁の続き @発明者 アルタモノフ・ユーリー・ヴイクトロウイツチ ソヴイエト連邦330009ザポロジエ・ウーリツツア・ウシャコワ・デー22 6 0発 明 者 クリメンコ・アレクサンドル・フィヨードロウイツチ ソヴイエト連邦330059ザポロジエ・ウーリツツア・コマロワ・デー5力一 ヴ工一6E1 f/12 1lII#ffll116MIAIllbCJWMva, PCTISL:80I 00194 Continuation of page 1 @Inventor Artamonov Yuri Viktorovich Soviet Union 330009 Zaporozhye Uritsutsa Ushakova Day 22 6 0 shots clear by Klimenko Aleksandr Fyodorovich Soviet Union 330059 Zaporozhye Uritsutsa Komarova Day 5 Rikiichi V Koichi 6

Claims (1)

【特許請求の範囲】[Claims] 1. 粒度分布均一化のための粉末の混合、この粉末の容器への充填、この粉末 の加振圧縮とこれに後続する上記容器の上記粉末の焼結温度までの加熱、上記容 器の密封、及びその圧縮を含む、鉄磁粉で製品を製造する方法において、上記均 一化された粒度分布を有する粉末が上記容器に充填される前に磁化されることを 特徴とする鉄磁粉から製品を製造する方法シ 磁化されるべき上記粉末は強度1 xlO乃至コX10 A/mの固定磁場の作用に0./乃至0゜5分の時間間隔 でさらされることを特徴とする請求の範囲第1項記載の鉄磁粉から製品を製造す る方法O J、 吐出部に堰を有する混合槽と、上記容器の支持台を有して前記混合槽の吐 出部の堰の下方、同様に上記容器の加熱器とプレス機械の下方に配設された加振 機とを有する装置において、上記混合槽(1)に隣接して設けられた電磁石(/ /)と、上記混合槽(1)と、この混合槽の堰(j)は非磁性材料で作られるこ とを特徴とする鉄磁粉から製品を製造する装置。 気 前記電磁石(ll)は上記混合槽(1)の下方に配設されることを特徴とす る請求の範囲第3項記載の鉄磁粉から製品を製造する装置。 タ 上記電磁石(//)の接近と引離しを行なうための装置(lコ)が内部に設 けられることを特徴とする請求の範囲第3項又は第参項記載の鉄磁粉から製品を 製造する装置。 6、 上記電磁石(//)を接近させ引離すための装置(ll)は垂直な案内装 置(/3)として構成され、これに上記電磁石(//)を支持すると共に往復運 動する駆動装置(11)に結合された運搬体(l#)が装着されることを特徴と する請求の範囲第5項記載の鉄磁粉から製品を製造する装置。 2 上記電磁石(//)を近づけ、引き離すための装置(/J)は水平の回転す る腕材(17)を有する柱<11>とじて構成され、この柱(14〕に上記電磁 石が装着されることを特徴とする請求の範囲第5項記載の鉄磁粉から製品を製造 する装置。1. Mixing of powder for uniform particle size distribution, filling of this powder into a container, this powder Vibratory compression of the powder, followed by heating the powder in the container to the sintering temperature, and In the method of manufacturing products with ferromagnetic powder, including the sealing of the container and its compression, the above-mentioned uniform The powder with uniform particle size distribution is magnetized before being filled into the container. Method for manufacturing products from iron magnetic powder characterized by the above powder to be magnetized has a strength of 1 xlO to x10 A/m of fixed magnetic field. / to 0°5 minute time interval For manufacturing a product from the ferromagnetic powder according to claim 1, which is exposed to How to J. A mixing tank with a weir at the discharge part, and a support for the container to support the discharge of the mixing tank. Vibrator installed below the weir at the exit, and also below the heater and press machine of the container mentioned above. In the apparatus having an electromagnet (/ /), the mixing tank (1), and the weir (j) of this mixing tank may be made of non-magnetic material. A device for manufacturing products from ferromagnetic powder, characterized by: The electromagnet (ll) is arranged below the mixing tank (1). An apparatus for manufacturing products from ferromagnetic powder according to claim 3. A device (1) is installed inside to approach and separate the electromagnet (//) above. A product made from the ferromagnetic powder according to claim 3 or reference item 3, characterized in that Equipment to manufacture. 6. The device (ll) for approaching and separating the electromagnet (//) is a vertical guide device. The electromagnet (//) is supported by the electromagnet (//), and the reciprocating movement is characterized in that it is equipped with a carrier (l#) coupled to a moving drive device (11). An apparatus for manufacturing products from ferromagnetic powder according to claim 5. 2 The device (/J) for bringing the electromagnet (//) closer together and separating it is a horizontal rotating The pillar <11> has an arm member (17) which is attached to the pillar (14). Manufacture a product from the ferromagnetic powder according to claim 5, characterized in that a stone is attached. device to do.
JP81501106A 1980-11-28 1980-11-28 Method for manufacturing products from iron magnetic powder and its manufacturing device Granted JPS58500131A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1980/000194 WO1982001837A1 (en) 1980-11-28 1980-11-28 Method and device for making articles of ferromagnetic powder materials

Publications (2)

Publication Number Publication Date
JPS58500131A true JPS58500131A (en) 1983-01-20
JPS6221043B2 JPS6221043B2 (en) 1987-05-11

Family

ID=21616688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP81501106A Granted JPS58500131A (en) 1980-11-28 1980-11-28 Method for manufacturing products from iron magnetic powder and its manufacturing device

Country Status (6)

Country Link
JP (1) JPS58500131A (en)
AT (1) AT377717B (en)
DE (1) DE3050652C2 (en)
FR (1) FR2481165A1 (en)
SE (1) SE8204351D0 (en)
WO (1) WO1982001837A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133434A (en) * 2017-02-15 2018-08-23 スミダコーポレーション株式会社 Method and device for manufacturing coil component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873605A (en) * 1986-03-03 1989-10-10 Innovex, Inc. Magnetic treatment of ferromagnetic materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216686A (en) * 1975-07-30 1977-02-08 Sumitomo Electric Ind Ltd Wires and cables coated with foaming paint for the prevention of flame spreading
JPS5230757A (en) * 1975-09-05 1977-03-08 Hitachi Metals Ltd Method to manufacture homogenious mixture

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1729A1 (en) * 1921-12-29 1924-09-15 С.Я. Турлыгин A method of manufacturing magnetic conductors from metal powders and sawdust
US3932760A (en) * 1967-12-22 1976-01-13 Inoue K Powder activation in an inert atmosphere
DE1909949A1 (en) * 1969-02-27 1970-09-10 Deutsche Edelstahlwerke Ag Metal powder with scale-like particles for - sintering porous objects such as filters or
SU529002A1 (en) * 1975-06-16 1976-09-25 Ждановский Металлургический Завод Installation for heat treatment of ferromagnetic powders
GB1593029A (en) * 1977-06-27 1981-07-15 American Can Co Powder metallurgical processes
US4152178A (en) * 1978-01-24 1979-05-01 The United States Of America As Represented By The United States Department Of Energy Sintered rare earth-iron Laves phase magnetostrictive alloy product and preparation thereof
DE2828462A1 (en) * 1978-06-13 1980-01-03 Bbc Brown Boveri & Cie Mfg. permanent magnets by pressing fine powder - esp. alloys contg. lanthanide(s) and cobalt, where powder is granulated for easy filling of pressing dies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216686A (en) * 1975-07-30 1977-02-08 Sumitomo Electric Ind Ltd Wires and cables coated with foaming paint for the prevention of flame spreading
JPS5230757A (en) * 1975-09-05 1977-03-08 Hitachi Metals Ltd Method to manufacture homogenious mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133434A (en) * 2017-02-15 2018-08-23 スミダコーポレーション株式会社 Method and device for manufacturing coil component

Also Published As

Publication number Publication date
SE8204351L (en) 1982-07-15
DE3050652A1 (en) 1982-11-18
DE3050652C2 (en) 1987-02-26
SE8204351D0 (en) 1982-07-15
WO1982001837A1 (en) 1982-06-10
JPS6221043B2 (en) 1987-05-11
ATA916080A (en) 1984-09-15
FR2481165A1 (en) 1981-10-30
FR2481165B1 (en) 1983-11-18
AT377717B (en) 1985-04-25

Similar Documents

Publication Publication Date Title
Wu et al. Flow behaviour of powders during die filling
Nowak et al. Reversibility and irreversibility in the packing of vibrated granular material
Wang et al. Taylor impact test for ductile porous materials—Part 2: experiments
Wray Strain‐Rate Dependence of the Tensile Failure of a Polycrystalline Material at Elevated Temperatures
Takagi et al. Preparation of bulk amorphous alloys by explosive consolidation and properties of the prepared bulk
Wu et al. Deformation behavior and characteristics of sintered porous 2024 aluminum alloy compressed in a semisolid state
JPS58500131A (en) Method for manufacturing products from iron magnetic powder and its manufacturing device
Baczewska-Karwan Processing and properties of Distaloy SA sintered alloys with boron and carbon
Edoziuno et al. Variation of moisture content with the properties of synthetic moulding sand produced from river Niger sand (Onitsha deposit) and Ukpor Clay
Kumar et al. Sintering of Iron Powder mixtures and determining their mechanical properties
Ameh et al. Prospect of Lateritic Sand and Periwinkle Shell as Aggregates in Concrete.
Loto Effect of cassava flour and coal dust additions on the mechanical properties of a synthetic moulding sand
Rao et al. Usage of blast furnace slag in moulding sand to produce Al-Mg alloy castings
Abolarin et al. Effect of Moisture Content on the Moulding Properties of River Niger Sand Using Tudun-Wada Clay as a Binder.
JP4910393B2 (en) Method and apparatus for producing granulated powder of rare earth alloy and method for producing sintered rare earth alloy
Williams et al. Production of Tungsten—Iron—Nickel Alloys by Mechanical Alloying Technique
Rosdi et al. Characteristics of iron (Fe) powder using underground explosion pressing
Perianayagam et al. Sintering studies on iron-carbon-copper compacts
Thomas et al. Dynamic Compaction of Copper Powder: Experimental Results and 2D Numerical Simulations
CA1037418A (en) Magnetic field expansion and compression method
Jiao et al. Active rheology control of cementitious materials with responsive mineral particles
Babayev et al. MECHANICAL PROPERTIES OF LOW DENSITY PRE-ALLOYED POWDER STEELS
Hou et al. Compatibility Test Research on Mine Cementitious Materials And Unclassified Tailings
Holsworth et al. The effects of porosity on the fatigue behaviour of Galfenol
Ugwu et al. BINDING EFFICACY OF NARAGUTA CLAY ON THE FOUNDRY PROPERTIES OF RIGISHI RIVER SAND