JPS62209506A - Laser optical device - Google Patents

Laser optical device

Info

Publication number
JPS62209506A
JPS62209506A JP5309986A JP5309986A JPS62209506A JP S62209506 A JPS62209506 A JP S62209506A JP 5309986 A JP5309986 A JP 5309986A JP 5309986 A JP5309986 A JP 5309986A JP S62209506 A JPS62209506 A JP S62209506A
Authority
JP
Japan
Prior art keywords
thermal expansion
support member
coefficient
lens barrel
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5309986A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kurahashi
倉橋 芳幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP5309986A priority Critical patent/JPS62209506A/en
Publication of JPS62209506A publication Critical patent/JPS62209506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lens Barrels (AREA)

Abstract

PURPOSE:To reduce the influence upon D (the length between the light emission point of a light emitting part and the first incidence-side lens face of a collimator lens) accompanied with thermal expansions of materials due to the variation of temperature so that this influences can be ignored, by partially and effectively arranging materials having a very small coefficient of thermal expansion like a glass in a constituting part which has an influence upon the precision of D and devising selection of materials to be used. CONSTITUTION:This device is constituted to satisfy l1.beta1+l4.beta4 l2.beta2+l3-.beta3 where l1, l2, l3, l4, beta1, beta2, beta3, and beta4 are the length between the light emission point and a semiconductor laser attaching reference face, the length between the attaching reference face and the first supporting member (collar) in a part brought into contact with the second supporting member, the length of the second supporting member from the part brought into contact with the first supporting member and a fixing means, the length from the fixing means (collimator lock screw) to the first lens surface of the collimator lens, the coefficient of thermal expansion of the light emitting part, the coefficient of thermal expansion of the first supporting member, the coefficient of thermal expansion of the second supporting member, and the coefficient of thermal expansion of a barrel respectively. Variations of length l1-l4 due to thermal expansion are DELTAl1=1.7mum, DELTAl2=1.6mum, DELTAl3=0.6mum, and DELTAl4=1.2mum at 25 deg.C, and the difference between right and left terms is 0.7mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、レーザを光源として用いる装置におけるレー
デ光学装置にgQ″tJる。本発明のレーザ光学装置は
レーザプリンタ等の光学系に適用できる[従来の技術] 近年、テレビのラスク走査と同様に、レーザ出力を変調
しながらレーザビームを走査することにJ:って画像を
作成し、これを電子写真技術によってコピーするレーザ
プリンタの如き記録vtIが注目されてきている。この
レーザプリンタは、高解像度、グラフィック処理が可能
等の特徴をもち、新しいレーザ応用技術として有望視さ
れている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a Rede optical device in a device using a laser as a light source.The laser optical device of the present invention can be applied to an optical system such as a laser printer. [Prior Art] In recent years, similar to the rask scanning of televisions, recording devices such as laser printers have created an image by scanning a laser beam while modulating the laser output, and then copied the image using electrophotographic technology. VtI is attracting attention.This laser printer has features such as high resolution and the ability to perform graphic processing, and is seen as a promising new laser application technology.

レーザプリンタに関する従来技術としては、例えば、特
開昭59−15204号公報に示されるように、環境温
度変化時に、光導電体(P/C’)上のビーム径が変動
しないように、熱膨脹係数の貢なる2種類の材料を光学
系部分に使用するとともに、レーザ光源部の取付部材の
材料にペルチェ素子(電子冷却素子)を用いて常時一定
4度にコントロールする技術が開示されている。
As a conventional technique related to laser printers, for example, as shown in Japanese Patent Application Laid-Open No. 59-15204, in order to prevent the beam diameter on the photoconductor (P/C') from changing when the environmental temperature changes, the thermal expansion coefficient A technique has been disclosed in which two types of materials that contribute to the optical system are used for the optical system part, and a Peltier element (electronic cooling element) is used as the material for the mounting member of the laser light source to constantly control the angle at a constant 4 degrees.

ざらに特開昭59−15205号公報においては、上記
した特開昭59−152048と同じ目的を達成するた
めに、コリメータレンズIJltiを熱膨張の影響の少
ないBs(銅)あるいは5US(ステンレス)を使用し
て製作するとともに、待6VI昭59−15204号と
同じ(光学部分の材料として熱膨脹係数の異なる2種類
の材料を使用する技術が開示されている。
In order to achieve the same purpose as in JP-A-59-152048, the collimator lens IJlti is made of Bs (copper) or 5US (stainless steel) which is less affected by thermal expansion. It discloses a technique of using two types of materials with different coefficients of thermal expansion as the materials for the optical part (the same as in Mach 6VI No. 59-15204).

これら従来技術に加えて、ざらにレーザ光源及びコリメ
ータレンズ取付構成材料の選定を工夫した改良案として
第7図および第8図に示す技術が従業されている。
In addition to these conventional techniques, the techniques shown in FIGS. 7 and 8 have been used as improved proposals in which the materials for mounting the laser light source and the collimator lens are carefully selected.

光源である半導体レーザ(L、 D ) 20は、アル
ミニウム製のホルダ21により取付基準面P−P′に固
定されている。この基準面に一端が、前記ホルダ21と
当接し、他端部でコリメータレンズ鏡胴22を支持する
コリメータレンズ鏡胴支持部材23.23′が固定され
ている。コリメータレンズ&l’I胴支持部材23.2
3′は鉄系金属材料からなり、その中にアルミニウムを
材料とづ゛るコリメータレンズ鏡胴22を震動自在に支
持している。
A semiconductor laser (L, D) 20, which is a light source, is fixed to the mounting reference plane PP' by a holder 21 made of aluminum. A collimator lens barrel support member 23, 23' whose one end abuts the holder 21 and supports the collimator lens barrel 22 at the other end is fixed to this reference surface. Collimator lens &l'I trunk support member 23.2
Reference numeral 3' is made of a ferrous metal material, and a collimator lens barrel 22 made of aluminum is supported therein so as to be able to freely vibrate.

コリメータレンズ鏡胴22はロックネジ24により退官
位置固定されるようになっている。この技術はコリメー
タレンズ鏡胴の材料として加工性のよいアルミニウムを
使用している点で注目される。即ち、この改良案におい
ては、鉄とアルミニウムという2種類の材料を用いて光
学部取付部分を構成している。
The collimator lens barrel 22 is fixed at the retired position by a lock screw 24. This technology is notable in that it uses aluminum, which has good workability, as the material for the collimator lens barrel. That is, in this improved proposal, the optical part mounting portion is constructed using two types of materials: iron and aluminum.

[発明が解決しようとする問題点] 従来技術のうち、熱11111jを抑1111するため
にベルチェ素子(M予冷却素子)を用いる場合、ベルチ
ェ素子自体が高価である上に、温度−11Xl用のサー
ミスタ及び制御回路が必要となり大巾なコスト高になる
。又構造上では大きな放熱フィンの取付が必要であり、
半導体レーザ(LD) 、コリメータレンズ等の露結防
止のための対策も必要となり構造が複雑化するという問
題を有している。
[Problems to be Solved by the Invention] Among the conventional techniques, when a Beltier element (M pre-cooling element) is used to suppress the heat 11111j, the Beltier element itself is expensive, and the temperature of -11Xl is A thermistor and control circuit are required, resulting in a significant increase in cost. Also, the structure requires the installation of large heat dissipation fins.
Measures to prevent dew condensation on the semiconductor laser (LD), collimator lens, etc. are also required, resulting in a problem that the structure becomes complicated.

一方コリメータレンズ鏡胴を88(銅)あるいは5LI
S (ステンレス)等の熱膨張影響の少ない材料を使用
した場合においても、高PII像力化が進むに伴い、そ
の熱膨張による影響は無視出来ない値になってきている
。加えてこれらの材料の場合加工性に問題がありffi
産向きでないという問題点を有している。
On the other hand, the collimator lens barrel is 88 (copper) or 5LI.
Even when a material with little influence of thermal expansion, such as S (stainless steel), is used, the influence of thermal expansion has become a value that cannot be ignored as the PII image power becomes higher. In addition, these materials have problems with workability.
The problem is that it is not suitable for childbirth.

更に、コリメータレンズi胴にアルミニウムを用いた改
良例についても、実験の結果、コリメータレンズ鏡胴及
び半導体レーザユニット内の?!雑な変化により熱膨張
を十分吸収できないことがわかった。この改良例の場合
コリメータレンズ鏡胴の材料であるアルミニウムと他の
材料との組合せ方に検討の余地を残している。
Furthermore, regarding an improved example in which aluminum is used for the collimator lens barrel, as a result of experiments, ? ! It was found that thermal expansion could not be absorbed sufficiently due to rough changes. In the case of this improved example, there is still room for consideration in how to combine aluminum, which is the material of the collimator lens barrel, with other materials.

本発明は、上記の問題点がなく、温度変化に対する熱膨
張の影響を確実に吸収することが可能であり、量産性に
富むレーザ光学装置を提供づることを目的とするもので
ある。
An object of the present invention is to provide a laser optical device that does not have the above-mentioned problems, can reliably absorb the effects of thermal expansion due to temperature changes, and is highly mass-producible.

[発明の構成] (問題点を解決するための手段) 本発明によるレーザ光学装置は、固体発光素子を保持し
取付基準面をもつ発光部と、コリメータレンズ面を保持
する鏡胴と、一端が該取付基準面に当接し、他端部で咳
鏡胴を支持し該発光部と該鏡胴とを同一光軸上に固定J
る支持部材および該鏡胴を該支持部材に固定する固定手
段とからなるレーザ光学装置であって、 上記支持部材は該発光部の該取付基準面と当接する第1
支持部材と該第1支持部材と一体的に固定され該鏡胴を
支持する第2支持部材とで構成され、該光軸方向の距離
で該固体発光素子の発光点と、該取付基準面までの距離
を又1、該取付基準面および第2支持部材と当接部分の
該第1支持部材の距離を又2、該第1支持部材と当接し
た部分から上記固定手段までの該第2支持部材の長さを
文3、該固定手段から該コリメータレンズの第1921
表面までの距離を交4とし、かつ、該発光部の熱WB服
係数をβ!、該第1支持部材の熱W服係数をβ2、該第
2支持部材の熱膨脹係数をβ3および咳鏡胴の熱膨脹係
数をβ4とした詩文1・β1+又4・β4÷又2・βを
十交3・β3の関係になるようにしたことを特徴とする
ものである。
[Structure of the Invention] (Means for Solving the Problems) A laser optical device according to the present invention includes a light emitting section that holds a solid state light emitting element and has a mounting reference surface, a lens barrel that holds a collimator lens surface, and one end of which is attached. Abuts against the mounting reference surface, supports the cough lens barrel with the other end, and fixes the light emitting part and the lens barrel on the same optical axis.
A laser optical device comprising a support member and a fixing means for fixing the lens barrel to the support member, wherein the support member has a first support member that abuts the mounting reference surface of the light emitting section.
It is composed of a support member and a second support member that is integrally fixed to the first support member and supports the lens barrel, and the distance in the optical axis direction is between the light emitting point of the solid state light emitting element and the mounting reference plane. The distance between the mounting reference surface and the first support member at the abutting portion between the second support member and the second support member is also 2, and the second distance from the abutment portion to the first support member to the fixing means is 1. The length of the support member is 3, and the length of the collimator lens is 1921 from the fixing means.
The distance to the surface is 4, and the thermal WB coefficient of the light emitting part is β! , the thermal expansion coefficient of the first supporting member is β2, the thermal expansion coefficient of the second supporting member is β3, and the thermal expansion coefficient of the cough lens barrel is β4. It is characterized by having a relationship of intersection 3 and β3.

本発明においては、コリメータレンズ鏡胴を加工性にす
ぐれたアルミニウム系金属で構成するとともに、コリメ
ータレンズ&1IIN4オよび半導体レーザ(固体発光
素子)を含む発光部を同一光軸上に保持する支持部材を
、第1の支持部材と第2の支持部材に分けている。第1
の支持1’gs材は発光部の取付基準面と当接する部分
であり、第2の支持部材は第1の支持部材と一体的に固
定され、上記した鏡胴を支持Jる部分である。これら第
1支持部材と第2支持部材はそれぞれ熱膨脹係数の異な
る材料で構成されている。即ち、発光部の発光点とコリ
メータレンズの入射側第1レンズ面間の距離りが環境温
度変化に伴う熱膨張により変動しないよう、この距11
1Dを一定に保つ材料構成を選定したレーザ光学装置を
得るものである。
In the present invention, the collimator lens barrel is constructed of an aluminum-based metal with excellent workability, and a support member is provided to hold the light emitting section including the collimator lens &1IIN4 and the semiconductor laser (solid-state light emitting device) on the same optical axis. , is divided into a first support member and a second support member. 1st
The supporting member 1'gs is a part that comes into contact with the mounting reference surface of the light emitting section, and the second supporting member is a part that is integrally fixed with the first supporting member and supports the above-mentioned lens barrel. The first support member and the second support member are each made of materials having different coefficients of thermal expansion. In other words, this distance 11
A laser optical device is obtained in which a material composition that keeps 1D constant is selected.

(発明の構成の詳細な説明) ここで発光部(よ光源である半導体レーザと、このレー
ザを取付ける取付部とからなる。
(Detailed Description of the Structure of the Invention) Here, the light emitting section consists of a semiconductor laser which is a light source and a mounting section to which this laser is attached.

支持部材とは、一端が発光部の取付基準面に当接し、他
端部でコリメータレンズ&fif11を支持し、これら
発光部と81IIi1とを同一光軸上に固定する部材の
ことである。&1IItlを支持部材に固定づる固定手
段とは、コリメータレンズm胴を適正位置でロック可能
にづる、例えばコリメータロックどスのことである。
The support member is a member whose one end abuts the mounting reference surface of the light emitting section, supports the collimator lens &fif11 at the other end, and fixes the light emitting section and 81IIi1 on the same optical axis. The fixing means for fixing &1IItl to the support member is, for example, a collimator lock that locks the collimator lens m cylinder in an appropriate position.

第1支持部材とは、前記支持部材のうち発光部の取付1
準面と当接する部分のことである。
The first support member refers to the first support member to which the light emitting part is attached.
This is the part that comes into contact with the semi-surface.

第2支持部材とは、前記第1支持部材と一体的に固定さ
れ、コリメータレンズ鏡胴を支持する部分のことである
The second support member is a portion that is integrally fixed with the first support member and supports the collimator lens barrel.

発光部の熱膨脹係数β1は、例えば半導体レーザー(L
D>の発光点と取付基準面との間につながっているリー
ド線が銅である場合、値は16゜6X10−6 [’C
−11となる。
The thermal expansion coefficient β1 of the light emitting part is, for example, a semiconductor laser (L
If the lead wire connected between the light emitting point of D> and the mounting reference surface is copper, the value is 16°6X10-6 ['C
-11.

第1支持部材の熱膨脹係数β2は、例えば第1支持部材
をガラスで構成した場合、値は7.0×10″″’[’
C−’]となる。
For example, when the first support member is made of glass, the coefficient of thermal expansion β2 of the first support member is 7.0×10''''['
C-'].

第2支持部の熱膨脹係数β3は、例えば第2支持部を鉄
で構成した場合、値は11.7x10−6[’C−’]
となる。
For example, when the second support part is made of iron, the coefficient of thermal expansion β3 of the second support part is 11.7x10-6 ['C-']
becomes.

コリメータレンズ鏡胴の熱膨脹係数β4は、鏡胴をアル
ミニウムで構成したとき、値は23.6XIO−6[’
C−’]となる。
The thermal expansion coefficient β4 of the collimator lens barrel is 23.6XIO-6[' when the barrel is made of aluminum.
C-'].

式交盲・β1+交4・β4÷9.2・β2+交3・β3
において左側と6項の差が±1μm以内におさまること
が望ましい。レーザプリンタのtSwI像化がざらに進
めば、この値よりさらに小さな値が要求されることにな
る。
Formula cross blindness・β1+cross4・β4÷9.2・β2+cross3・β3
It is desirable that the difference between the left side and the 6th term is within ±1 μm. If tSwI imaging of laser printers becomes more advanced, a value even smaller than this value will be required.

第2支持部材および鏡胴盆例えば、と6にアルミニウム
系金属材料で構成し、第1支持部材を例えばガラスのよ
うにアルミニウム系金属材料より熱膨脹係数の小さい材
料で構成し、上記した関係式%式% さらに、第2支持部材および鏡胴を同じアルミニウム系
金属材料で構成し、第1支持部材をセラミックスで構成
し、上記したII係式を得ることもできる。
The second support member and the lens barrel basin, for example, and 6, are made of an aluminum-based metal material, and the first support member is made of a material such as glass, which has a coefficient of thermal expansion smaller than that of the aluminum-based metal material, and the above relational expression % is used. Formula % Furthermore, the second support member and the lens barrel may be made of the same aluminum-based metal material, and the first support member may be made of ceramics, thereby obtaining the above-mentioned formula II.

即ち、本発明の構成においては、支持部材が第1と第2
のそれぞれ素材を異にする支持部材によって構成されて
いる点に特徴があり、これら支持部材とコリメータレン
ズ鏡胴材料として使用されるアルミニウム系金属との最
適な組合せ方にJ:って温度変化による熱膨張の影響を
極小にしているのである。
That is, in the configuration of the present invention, the support member is the first and second support member.
The feature is that each support member is made of a different material, and the optimal combination of these support members and the aluminum metal used as the collimator lens barrel material is determined by temperature changes. This minimizes the effects of thermal expansion.

[発明の実施例] レーザプリンタの光学部の全体m成を第1図に示す。レ
ーザ光源の一例としてここでは半導体レーザ(LD)1
の如き固体発光素子を用いた場合について説明する。
[Embodiments of the Invention] FIG. 1 shows the overall configuration of the optical section of a laser printer. Here, a semiconductor laser (LD) 1 is used as an example of a laser light source.
A case in which a solid-state light emitting device such as the one shown in FIG. 1 is used will be explained.

半導体レーザ(+−D)1から発ぜられた光束はコリメ
ータレンズ2によって平行光にされ、続い゛Cシリンド
リカルレンズ3とトロイダルレンズ5の組合せにより光
学補正するために、回転多面鏡4の反射面に集光される
。回転多面鏡4は入射したレーザ光を扇形に振って偏向
走査する。このように走査された光はトロイダルレンズ
5により再び平行光に戻されレーザ光を所定の径のスポ
ット光にして結像させるfθレンズ群6を通りて集光さ
れた後、折り返しミラー7によって光導電体からなる感
光体(ドラム状)81に折り返して露光している。
The light beam emitted from the semiconductor laser (+-D) 1 is made into parallel light by the collimator lens 2, and then the reflecting surface of the rotating polygon mirror 4 is used for optical correction by the combination of the cylindrical lens 3 and the toroidal lens 5. The light is focused on. The rotating polygon mirror 4 deflects and scans the incident laser light in a fan shape. The light scanned in this way is returned to parallel light by the toroidal lens 5, passes through an fθ lens group 6 that converts the laser light into a spot light of a predetermined diameter, focuses the light, and is then focused by a folding mirror 7. A photoreceptor (drum-shaped) 81 made of a conductor is folded back and exposed.

走査のスタートはSOSミラー9とSOSセンサ10に
より感知される。なお前記感光体8はまず帯電され、次
いでレーザスポット光により露光される。ぞの後は図示
してないが、現像、転写、定着ブOセスによって印字が
完成する。
The start of scanning is sensed by the SOS mirror 9 and the SOS sensor 10. Note that the photoreceptor 8 is first charged and then exposed to laser spot light. After that, although not shown, printing is completed by development, transfer, and fixing steps.

かかるレーザプリンタにおい“Cは記録速度の^連化が
進み、それに伴って高解像力をもつ高品質の画像が要求
され、結像面である感光体上のスポット光の径はより小
さいものが必要となってくる。
In such laser printers, as the recording speed increases, high-quality images with high resolution are required, and the diameter of the spot light on the photoreceptor, which is the imaging surface, needs to be smaller. It becomes.

このにうな高解像力化の要求により、コリメータレンズ
2の深度、即ち、第2図に示すようにレーザ発光点Sと
コリメータレンズ2の入射側レンズ第1面L+までの距
離りの寸法精度を高くする必要がある。このDは大きく
増巾され、感光体上のビーム径に数百倍のオーダの影響
を与える。即ち、温度変化に対する熱膨張のμオーダの
変化にも影響を受けることになる。、Dの温度変化によ
る変vJを極力吸収するため、本発明においては、発光
源として固体発光素子である半導体レーザ(LD)を使
用し、この半導体レーザ部1およびコリメータレンズの
組立部11を第3図および第4図のように構成した。
Due to this demand for higher resolution, the dimensional accuracy of the depth of the collimator lens 2, that is, the distance between the laser emission point S and the first surface L+ of the incident side lens of the collimator lens 2, has been increased as shown in Fig. 2. There is a need to. This D is greatly amplified and affects the beam diameter on the photoreceptor by several hundred times. That is, it is also affected by μ-order changes in thermal expansion due to temperature changes. In order to absorb as much as possible the variation in vJ caused by temperature changes in It was constructed as shown in Figures 3 and 4.

半導体レーザ(LD)1を、第3図および第4図に示す
ように、Bs(銅)製の材料からなる半導体レーザ(L
D)を半導体レーザホルダ12により取付基準面P−P
=に光軸調整ビス13により固定しこれを発光部とした
。この発光部の取付基準面P−P=に対し、更に、熱膨
脹係数の小さいガラス製のカラー14.14′を光軸調
整ビス15.15′により軸装固定し、かつこれらカラ
ー14.14′に一端が当接し、他端がコリメータレン
ズ鏡胴16を支持する第2支持部材17.17−を光軸
!!Iビス15.15′によって取付基準面P−P−に
固定し、発光部とm1116とを同一光軸上に固定した
。コリメータレンズ1lIi!支持部材(第2支持部材
)17.17′によりアルミニウム製のコリメータレン
ズ鏡胴16を光軸方向へ摺動自在に保持さV、固定手段
であるコリメータロックビス19によってコリメータレ
ンズ鏡胴を適性位置でロック可能にした。支持部材18
.18−はカラー14.14′で構成された第1支持部
材とこの第1支持部材と一体的に固定され鏡胴を支持す
る第2支持部材17.17′とからなっでいる。
As shown in FIGS. 3 and 4, the semiconductor laser (LD) 1 is a semiconductor laser (LD) made of Bs (copper) material.
D) with the semiconductor laser holder 12 on the mounting reference plane P-P.
= was fixed with an optical axis adjustment screw 13, and this was used as a light emitting part. Further, a collar 14.14' made of glass with a small coefficient of thermal expansion is mounted and fixed with an optical axis adjustment screw 15.15' to the mounting reference plane P-P= of the light emitting part, and these collars 14.14' A second support member 17.17- whose one end abuts and the other end supports the collimator lens barrel 16 is the optical axis! ! It was fixed to the mounting reference plane PP- using I screws 15 and 15', and the light emitting part and m1116 were fixed on the same optical axis. Collimator lens 1lIi! The collimator lens barrel 16 made of aluminum is held slidably in the optical axis direction by support members (second support members) 17 and 17', and the collimator lens barrel is held at an appropriate position by the collimator lock screw 19, which is a fixing means. It can be locked with . Support member 18
.. 18- is composed of a first support member constituted by a collar 14, 14' and a second support member 17, 17' which is integrally fixed with the first support member and supports the lens barrel.

又、半導体レーザ(L D )ホルダ12は放熱板を兼
ねている。ホルダ12は、その全体のY方向(主走査方
向)おJ:び2方向(副走査方向)の調整後、光軸調整
ビスによって基準面に固定した。
Further, the semiconductor laser (LD) holder 12 also serves as a heat sink. After adjusting the entire holder 12 in the Y direction (main scanning direction) and the J direction (sub scanning direction), it was fixed to the reference surface using an optical axis adjustment screw.

又、コリメータレンズ鏡胴16はホルダ17.17−内
に支持し外部冶具によりX方向(レーザ進行方向)の調
整を行い、ロックビス19により固定した。
Further, the collimator lens barrel 16 was supported in a holder 17, 17-, adjusted in the X direction (laser traveling direction) with an external jig, and fixed with a lock screw 19.

一般に画像に影響を与えないビーム径の変動中は光導電
体(I:4光休)上のビーム径の±10%程度であり、
それより逆W′lるとDの変動許容中は次式より±1.
1μmとなる(第5図参照)10%のディフォーカス予 4λ −1,3mm D−x/(fθ/fc)2÷1.1μmd o −25
,4/ 480÷53μmfθ=fθレンズの焦点距M
(350mm)f c −=+ +)メータ焦点距l1
11 (9mm)コリメータレンズ鏡胴部での熱膨張の
影響を少なくするkめには、この鏡胴のロック位置と入
射側第1レンズ面の距離をできるだけ短くすれば良いが
、その場合、鏡胴自体の保持が不確実となる。
Generally, during beam diameter fluctuations that do not affect images, it is about ±10% of the beam diameter on the photoconductor (I: 4 optical beams).
From the following equation, if the reverse W'l is allowed to fluctuate in D, ±1.
1 μm (see Figure 5) 10% defocus pre-4λ −1.3 mm D−x/(fθ/fc)2÷1.1 μmd o −25
, 4/480÷53μmfθ=fθ lens focal length M
(350mm) f c -=+ +) meter focal length l1
11 (9mm) Collimator lens In order to reduce the effect of thermal expansion on the lens barrel, the distance between the lock position of this lens barrel and the first lens surface on the incident side should be made as short as possible. The holding of the torso itself becomes uncertain.

このために振!!1JWe19をうけ2方向(副走査方
向)のピッチムラ及び光軸ズレの原因となることが確認
されている。
Shake for this! ! 1JWe19 has been confirmed to cause pitch unevenness and optical axis deviation in two directions (sub-scanning direction).

本発明は、鏡胴材料として生産性のあるアルミニウムを
使用することを優先条件とし、このように熱膨脹係数の
大きなアルミニウムを人中に使用した場合でも熱膨張の
影響の吸収が容易で、かつ高解像力化に伴い大型化する
コリメータレンズ鏡胴を確実に保持するようにコリメー
タレンズ鏡胴ホルダ内に鏡胴の半分以上を^精度な嵌合
により収納する構成とした。
The present invention prioritizes the use of highly productive aluminum as the lens barrel material, and even when aluminum with a large coefficient of thermal expansion is used for the human body, it is easy to absorb the effects of thermal expansion and has a high In order to reliably hold the collimator lens barrel, which is becoming larger as resolution increases, more than half of the lens barrel is housed in the collimator lens barrel holder through precise fitting.

本実施例では第6図に示すように、従来、鉄等で一体に
作られていたコリメータレンズ鏡胴支持部材23.23
′(第7図参照)を、取付基準面P−P−と当接する第
1支持部材とこの第1支持部材と一体的に固定され鏡胴
を支持する第2支持部材とに分tノ第1支持部材を熱膨
脹係数の非常に小さいガラスを素材とするカラー14.
14′とした。
In this embodiment, as shown in FIG. 6, the collimator lens barrel support member 23.
' (see Fig. 7) is divided into a first support member that comes into contact with the mounting reference plane P-P- and a second support member that is integrally fixed with this first support member and supports the lens barrel. 1. Collar whose support member is made of glass with a very small coefficient of thermal expansion 14.
It was set to 14'.

ここで、発光点と半導体レーザ取付基準面までの距離を
交電、取付基準面および第2支持部材と当接部分の第1
支持部材(カラー)の距離を22、第1支持部材と当接
した部分から固定手段〈コリメータロックビス)までの
第2支持部材の長さを又3、固定手段(コリメータロッ
クビス)からコリメータレンズの第1121表面までの
距離を文4とし、かつ発光部の熱膨脹係数をβ盲、第1
支持部材の熱膨脹係数β2、第2支持部材の熱膨脹係数
をβ3および鏡胴の熱膨脹係数をβ4としだ時 !1・β++R4・β4≒l2・β2 +9.s・β3
の関係になるようにした。
Here, the distance between the light emitting point and the semiconductor laser mounting reference surface is determined by changing the distance between the light emitting point and the semiconductor laser mounting reference surface, and the distance between the mounting reference surface and the second support member and the first
The distance of the support member (collar) is 22, the length of the second support member from the part that contacts the first support member to the fixing means (collimator lock screw) is also 3, and the length from the fixing means (collimator lock screw) to the collimator lens The distance to the 1121st surface of the
When the coefficient of thermal expansion of the supporting member is β2, the coefficient of thermal expansion of the second supporting member is β3, and the coefficient of thermal expansion of the lens barrel is β4! 1・β++R4・β4≒l2・β2 +9. s・β3
I made it so that the relationship is as follows.

上記式から温度を25℃とした時の5!り、又2、又3
.fL4の熱膨張による変動分は Δ又+=4X16.6X10−6X25≠ 1 、7μ
m Δ交z=9X7.0XIO−6X25 =1 、6μm Δ交3−9X11.7X10”6X25−〇、 6μm ΔLn−2X23.6x10−6x25−1 、2μm となり1.上記式での6項と左項の差は0.7μmで±
0.35μmの変化となる。この差は±1μm以内であ
り、現時点としては望ましε)値の範囲内であるが更に
高解像力が要求されるようになると、上記したようにこ
の差をもつと小さくしていく必要がある。
From the above formula, when the temperature is 25℃, it is 5! ri, again 2, again 3
.. The variation due to thermal expansion of fL4 is Δ or +=4X16.6X10-6X25≠ 1, 7μ
m Δcross z=9×7.0 The difference is 0.7 μm ±
The change is 0.35 μm. This difference is within ±1 μm, which is currently within the desired ε) value range, but as higher resolution becomes required, this difference will need to be reduced as described above. .

なお本実施例の如き材料構成の他に例えば鏡胴とaJl
lホルダはほぼ同一の熱膨脹係数をもつ金属材料で構成
すること、およびカラ一部をセラミックスで構成すると
いう構成も可能である。
In addition to the material configuration as in this embodiment, for example, the lens barrel and aJl
It is also possible that the holder is made of a metal material having substantially the same coefficient of thermal expansion, and that a portion of the collar is made of ceramics.

[発明の効果] 本発明によるレーザ光学装置は、コリメータレンズ鏡胴
等半導体レーザ光源周辺の光学部を加工性に富み、生産
性の高いアルミニウムを主体として使用してコストの低
減を実現している。特に上記したDの精度に影響をもつ
構成部をガラス等熱膨脹係数の非常に小さい素材を部分
的にh°効に配置し、使用する材料の選定を工夫するこ
とにより温度変化による素材の熱膨張に伴うDへの影響
を無視できる程度の値に維持することを可能にする。
[Effects of the Invention] The laser optical device according to the present invention achieves cost reduction by mainly using aluminum, which is highly workable and highly productive, for the optical parts around the semiconductor laser light source, such as the collimator lens barrel. . In particular, by arranging components that have an effect on the accuracy of D mentioned above using materials such as glass that have a very small coefficient of thermal expansion, and by carefully selecting the materials used, thermal expansion of the material due to temperature changes can be achieved. This makes it possible to maintain the influence on D at a negligible value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレーザプリンタの光学部全体の構成を説明′!
J6説明図、第2図は光源である半導体レーザ(LD)
とコリメータレンズの光学的位置関係を示す説明図であ
る。第3図は本発明の実施例の具体的構成を示1詳細因
であり第4図は同背面図である。第5図はビーム系の変
肋巾の説明図であり第6図は本発明の実m例の模式図で
ある。第7図は従来装置の構成を示1詳細図であり第8
図は同背面図である。 1・・・半導体レーザ(固体発光素子)11・・・半導
体レーザ(固体発光素子)およびコリメータレンズ組立
部 12・・・半導体シー1ア(固体発光素子)ホルダ14
.14′・・・ガラス製カラー(第1支持部材)16・
・・コリメータレンズ鏡胴 17.17′・・・コリメータレンズ鏡胴支持部材(第
2支持部材) 18.18′・・・支持部材 特許出願人   ミノルタカメラ株式会社代理人   
 弁理士 大川 宏 同     弁理士 丸山明夫 第1図
Figure 1 explains the overall configuration of the optical section of a laser printer'!
J6 explanatory diagram, Figure 2 is a semiconductor laser (LD) that is a light source
FIG. 3 is an explanatory diagram showing the optical positional relationship between the collimator lens and the collimator lens. FIG. 3 shows a detailed structure of an embodiment of the present invention, and FIG. 4 is a rear view of the same. FIG. 5 is an explanatory diagram of the variable width of the beam system, and FIG. 6 is a schematic diagram of an actual example of the present invention. FIG. 7 is a detailed diagram showing the configuration of the conventional device.
The figure is a rear view of the same. 1... Semiconductor laser (solid-state light-emitting device) 11... Semiconductor laser (solid-state light-emitting device) and collimator lens assembly section 12... Semiconductor seat 1a (solid-state light-emitting device) holder 14
.. 14'...Glass collar (first support member) 16.
...Collimator lens barrel 17.17'...Collimator lens barrel support member (second support member) 18.18'...Support member patent applicant Minolta Camera Co., Ltd. agent
Patent attorney Hirodo Okawa Patent attorney Akio Maruyama Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)固体発光素子を保持し取付基準面をもつ発光部と
、コリメータレンズを保持する鏡胴と、一端が該取付基
準面に当接し、他端部で該鏡胴を支持し該発光部と該鏡
胴とを同一光軸上に固定する支持部材および該鏡胴を該
支持部材に固定する固定手段とからなるレーザ光学装置
であつて、上記支持部材は該発光部の該取付基準面と当
接する第1支持部材と該第1支持部材と一体的に固定さ
れ該鏡胴を支持する第2支持部材とで構成され、該光軸
方向の距離で該固体発光素子の発光点と、該取付基準面
までの距離をl_1、該取付基準面および第2支持部材
と当接部分の該第1支持部材の距離をl_2、該第1支
持部材と当接した部分から上記固定手段までの該第2支
持部材の長さをl_3、該固定手段から該コリメータレ
ンズの第1レンズ表面までの距離をl_4とし、かつ、
該発光部の熱膨脹係数をβ_1、該第1支持部材の熱膨
脹係数をβ_2、該第2支持部材の熱膨脹係数をβ_3
および該鏡胴の熱膨脹係数をβ_4とした時l_1・β
_1+l_4・β_4≒l_2・β_2+l_3・β_
3の関係になるようにしたことを特徴とするレーザ光学
装置。
(1) A light-emitting part that holds a solid-state light-emitting element and has a mounting reference surface, a lens barrel that holds a collimator lens, one end of which is in contact with the mounting reference surface, the other end of which supports the lens barrel; and a support member for fixing the lens barrel on the same optical axis, and a fixing means for fixing the lens barrel to the support member, wherein the support member is located on the mounting reference surface of the light emitting section. and a second support member that is integrally fixed with the first support member and supports the lens barrel, the light emitting point of the solid state light emitting element being at a distance in the optical axis direction, The distance to the mounting reference plane is l_1, the distance between the mounting reference plane and the first support member at the abutting part between the second support member and the second support member is l_2, and the distance from the part abutting the first support member to the fixing means is The length of the second support member is l_3, the distance from the fixing means to the first lens surface of the collimator lens is l_4, and
The coefficient of thermal expansion of the light emitting part is β_1, the coefficient of thermal expansion of the first support member is β_2, and the coefficient of thermal expansion of the second support member is β_3.
And when the thermal expansion coefficient of the lens barrel is β_4, l_1・β
_1+l_4・β_4≒l_2・β_2+l_3・β_
3. A laser optical device characterized by having the following relationship.
(2)熱膨脹係数β_1の材料はBs(銅)等であり、
熱膨脹係数β_2の材料はガラス等であり、熱膨脹係数
β_3の材料は鉄系金属であり、熱膨脹係数β_4の材
料はアルミニウム等である特許請求の範囲第1項記載の
レーザ光学装置。
(2) The material with a coefficient of thermal expansion β_1 is Bs (copper) etc.
2. The laser optical device according to claim 1, wherein the material having a coefficient of thermal expansion β_2 is glass or the like, the material having a coefficient of thermal expansion β_3 is an iron-based metal, and the material having a coefficient of thermal expansion β_4 is aluminum or the like.
(3)第2支持部材および鏡胴はほぼ同一の熱膨脹係数
をもつ金属材料で構成し第1支持部材を該金属材料より
小さい熱膨脹係数をもつ材料で構成した特許請求の範囲
第1項記載のレーザ光学装置。
(3) The second supporting member and the lens barrel are made of a metal material having substantially the same coefficient of thermal expansion, and the first supporting member is made of a material having a smaller coefficient of thermal expansion than the metal material. Laser optical equipment.
JP5309986A 1986-03-11 1986-03-11 Laser optical device Pending JPS62209506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5309986A JPS62209506A (en) 1986-03-11 1986-03-11 Laser optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5309986A JPS62209506A (en) 1986-03-11 1986-03-11 Laser optical device

Publications (1)

Publication Number Publication Date
JPS62209506A true JPS62209506A (en) 1987-09-14

Family

ID=12933338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5309986A Pending JPS62209506A (en) 1986-03-11 1986-03-11 Laser optical device

Country Status (1)

Country Link
JP (1) JPS62209506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112072A (en) * 2006-10-31 2008-05-15 Ricoh Co Ltd Image reading unit, image reading device and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112072A (en) * 2006-10-31 2008-05-15 Ricoh Co Ltd Image reading unit, image reading device and image forming apparatus

Similar Documents

Publication Publication Date Title
JP5062219B2 (en) Mounting structure of light source device
JPS5915206A (en) Laser unit
JP2690642B2 (en) Scanning optical system
JPS62209506A (en) Laser optical device
JPS5915204A (en) Laser unit
JPH03179420A (en) Optical apparatus
JP4401088B2 (en) Optical scanning device
JPS5915205A (en) Laser unit
JPH10133135A (en) Light beam deflecting device
JP2000330046A (en) Optical scanner
JP4366819B2 (en) Optical scanning device
JP3275467B2 (en) Light source device
JP2002169115A (en) Structure for fixing light source unit
JPH11202232A (en) Multibeam scanning device
JPS62205305A (en) Laser diode holding structure for laser scanning device
US5381259A (en) Raster output scanner (ROS) using an overfilled polygon design with minimized optical path length
JP4132899B2 (en) Light source device, image output device, and optical recording / reproducing device
JP2000275558A (en) Optical deflecting scanner
JPH06123849A (en) Scanning optical device
JPH11153740A (en) Light source device
JPH11154773A (en) Light source device
JP2978213B2 (en) Lens holding device in optical scanning device
JP2907292B2 (en) Achromatic laser scanning optics
JPS6167817A (en) Semiconductor laser light scanner
JP3008697U (en) Imaging mirror for constant velocity light scanning