JPH06123849A - Scanning optical device - Google Patents

Scanning optical device

Info

Publication number
JPH06123849A
JPH06123849A JP29767992A JP29767992A JPH06123849A JP H06123849 A JPH06123849 A JP H06123849A JP 29767992 A JP29767992 A JP 29767992A JP 29767992 A JP29767992 A JP 29767992A JP H06123849 A JPH06123849 A JP H06123849A
Authority
JP
Japan
Prior art keywords
optical device
pedestal
scanning optical
scanning
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29767992A
Other languages
Japanese (ja)
Inventor
Atsutomo Yoshizawa
敦朋 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29767992A priority Critical patent/JPH06123849A/en
Publication of JPH06123849A publication Critical patent/JPH06123849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To prevent the distortion in the pedestal of a scanning optical device. CONSTITUTION:The pedestal 11 is not moved in the direction of Z but moved only in the direction of X, by supporting the pedestal 11 on the supporting part 18a of a supporting member 18, housing a spring 23 and a ball 24 into the holder part 21b of a fixing member 21 successively and fixing the fixing part 21a of the fixing member 21 to the supporting member 18 so that the ball 24 is confronted with the supporting part 18a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばレーザービーム
プリンタ等においてレーザー光を回転多面鏡で偏向し、
走査レンズを通して感光体面を走査する走査光学装置に
関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a laser beam printer or the like for deflecting laser light with a rotating polygon mirror,
The present invention relates to a scanning optical device that scans a surface of a photoconductor through a scanning lens.

【0002】[0002]

【従来の技術】従来、この種の走査光学装置は、レーザ
ー光を感光体面の所定の範囲内に高速度で走査させなが
ら、レーザー光の強度を画像信号に変調して所望の画像
を得るようになっている。
2. Description of the Related Art Conventionally, a scanning optical device of this type is designed to obtain a desired image by modulating the intensity of the laser light into an image signal while scanning the laser light within a predetermined range of the surface of the photoreceptor at a high speed. It has become.

【0003】例えば、図6に示すように光源1から射出
されたレーザー光は、モータ2に載置された回転多面鏡
3により等角速度で偏向され、f−θレンズ系から成る
レンズ群4a、4bで集束されながら走査面5を等速度
で走査するようになっている。また、レンズ群4a、4
bは同一の剛体から成る台座6の上に接着剤により固着
されるか、或いはねじ等により台座6に固定された圧接
部材に挟持されるかしている。このような台座6は、合
成樹脂、アルミニウム、鉄系、亜鉛系等の諸材料から製
造され、3個所のビス7により支持部材8に固定されて
いる。
For example, as shown in FIG. 6, a laser beam emitted from a light source 1 is deflected at a constant angular velocity by a rotary polygon mirror 3 mounted on a motor 2, and a lens group 4a composed of an f-θ lens system, The scanning surface 5 is scanned at a constant speed while being focused by 4b. In addition, the lens groups 4a and 4
b is fixed to the pedestal 6 made of the same rigid body with an adhesive, or is clamped by a pressure contact member fixed to the pedestal 6 with screws or the like. The pedestal 6 is manufactured from various materials such as synthetic resin, aluminum, iron-based, zinc-based, etc., and is fixed to the support member 8 by screws 7 at three positions.

【0004】なお、レンズ群4a、4bは走査面5に平
行な方向の屈折力と、走査面5に垂直な方向の屈折力が
レーザー光の入射角度によって異なることが必要とされ
るため、光学的に極めて高い精度で製作され、かつ光学
的に極めて厳密な精度で配置されている。
The lens groups 4a and 4b are required to have different refracting power in the direction parallel to the scanning surface 5 and different refracting power in the direction perpendicular to the scanning surface 5 depending on the incident angle of laser light. Are manufactured with extremely high precision and are arranged with extremely high precision optically.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述した
従来例は、小型のプリンタ等には適しているが、高画質
・高速度を目的とする大型のプリンタにおいては、回転
多面鏡3が大型化して回転多面鏡3を回転させるモータ
2の消費電力が増加し、それに伴い発熱量も増加して台
座6が歪み易いという欠点がある。
However, although the above-mentioned conventional example is suitable for a small printer or the like, in a large printer for the purpose of high image quality and high speed, the rotary polygon mirror 3 becomes large. There is a drawback in that the power consumption of the motor 2 for rotating the rotary polygon mirror 3 increases, and the amount of heat generated also increases accordingly, and the pedestal 6 is easily distorted.

【0006】例えば、台座6が線膨張係数6.6×10
-5/℃のポリカーボネートから製作され、ビス7間のピ
ッチが200mmである場合には、モータ2の近傍の昇
温が20℃、モータ2から離れた外周部の昇温が3℃と
すると、平均昇温は(20+3)/2=11.5℃とな
り、この昇温による台座6の膨張量は、(6.6×10
-5/℃)×200mm×11.5℃=0.152mmと
なる。ここで、支持部材8の昇温は略0℃であるので、
台座6のみが0.152mmだけ膨張することになる。
For example, the pedestal 6 has a linear expansion coefficient of 6.6 × 10.
Fabricated from -5 / ° C. of polycarbonate, when the pitch between the screws 7 is 200mm, the Atsushi Nobori is 20 ° C. in the vicinity of the motor 2, the Atsushi Nobori of the outer peripheral portion away from the motor 2 to 3 ° C., The average temperature rise is (20 + 3) /2=11.5° C., and the expansion amount of the pedestal 6 due to this temperature rise is (6.6 × 10
−5 / ° C.) × 200 mm × 11.5 ° C. = 0.152 mm. Here, since the temperature rise of the support member 8 is approximately 0 ° C.,
Only the pedestal 6 will expand by 0.152 mm.

【0007】このように台座6が膨張すると、図7に示
すように台座6の固定部6a、6aがビス7、7で固定
されて動かないため、台座6の中央部近傍がZ方向つま
り上方に歪むことになる。台座6が歪むと、レーザー光
の回転多面鏡3での反射位置3aが反射位置3bに変化
し、図8に示すようにレーザー光の走査面5への走査位
置5aが走査位置5bに変化してしまうことになる。
When the pedestal 6 expands in this manner, the fixing portions 6a, 6a of the pedestal 6 are fixed by the screws 7, 7 as shown in FIG. Will be distorted. When the pedestal 6 is distorted, the reflection position 3a of the laser light on the rotary polygon mirror 3 changes to the reflection position 3b, and the scanning position 5a of the laser light on the scanning surface 5 changes to the scanning position 5b as shown in FIG. Will be lost.

【0008】一般に、台座6の歪み量はモータ2の昇温
量に比例し、モータ2の昇温が通電直後に始まって約3
時間後に飽和する場合には、走査位置5aは徐々に走査
位置5b方向に移動し、約3時間後に最大の歪み量の走
査位置5bに移動する。このように走査位置が時間によ
って変化すると、画像の書き込み位置や色ずれが時間と
共に変化して画像が著しく劣化する。また、走査位置が
変化すると画像の書き込み位置が変化し、画像の品位が
低下したり走査線弯曲も増加する。更に、複数本のレー
ザー光を重ねてカラー画像を得るカラープリンタにおい
ては、色ずれが発生する。
Generally, the amount of strain of the pedestal 6 is proportional to the amount of temperature rise of the motor 2, and the temperature rise of the motor 2 starts about immediately after energization and is about 3
When it is saturated after the elapse of time, the scanning position 5a gradually moves in the direction of the scanning position 5b, and after about 3 hours, moves to the scanning position 5b with the maximum distortion amount. When the scanning position changes with time in this way, the writing position of the image and the color shift change with time, and the image is significantly deteriorated. Further, when the scanning position changes, the writing position of the image also changes, which deteriorates the quality of the image and increases the scan line curve. Further, in a color printer that obtains a color image by superimposing a plurality of laser beams, color misregistration occurs.

【0009】本発明の目的は、上述した問題点を解消
し、昇温があっても光軸がずれることのない走査光学装
置を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a scanning optical device in which the optical axis does not shift even when the temperature rises.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る走査光学装置は、レーザー光を発生す
る光源と、レーザー光を偏向する回転多面鏡と、偏向し
たレーザー光を感光体面に結像する光学系とから成る走
査光学装置において、前記走査光学装置の位置をレーザ
ー光の走査平面に平行な平面内に決める位置決め部材
と、前記走査光学装置の移動を前記平面に平行な方向に
許容し前記平面に垂直な方向に阻止する固定部材とを設
けたことを特徴とする。
A scanning optical device according to the present invention for achieving the above object comprises a light source for generating a laser beam, a rotary polygon mirror for deflecting the laser beam, and a deflected laser beam for exposure. In a scanning optical device including an optical system for forming an image on a body surface, a positioning member that positions the scanning optical device in a plane parallel to a scanning plane of laser light, and a movement of the scanning optical device parallel to the plane. And a fixing member that allows the direction and blocks in the direction perpendicular to the plane.

【0011】[0011]

【作用】上述の構成を有する走査光学装置は、走査光学
装置の位置をレーザー光の走査平面に平行な平面内に決
める位置決め部材と、走査光学装置の移動を平面に平行
な方向に許容し、平面に垂直な方向に阻止する固定部材
とを設けたので、走査光学装置は平面に平行な方向にの
みに移動し平面に垂直な方向には移動することはない。
In the scanning optical device having the above-mentioned structure, the positioning member for positioning the scanning optical device in the plane parallel to the scanning plane of the laser beam and the movement of the scanning optical device in the direction parallel to the plane, Since the fixing member for blocking in the direction perpendicular to the plane is provided, the scanning optical device moves only in the direction parallel to the plane and does not move in the direction perpendicular to the plane.

【0012】[0012]

【実施例】本発明を図1〜図5に図示の実施例に基づい
て詳細に説明する。図1は第1の実施例の走査光学装置
の構成図であり、例えば合成樹脂材料から成る台座11
にはレーザー光源12が固定され、レーザー光源12か
ら射出されたレーザー光の進行方向の光軸L1上には、回
転多面鏡13を載置したモータ14が固定され、回転多
面鏡13の反射方向には、f−θ光学系を構成するレン
ズ群15a、15bが配置されている。このような台座
11の下面には、図2の断面図に示すように2本の位置
決めピン16、17が走査中心の光軸L2と垂直方向に取
り付けられ、位置決めピン16は支持部材18に形成さ
れた嵌合孔19に嵌合し、位置決めピン17は嵌合長孔
20に長手方向に移動可能に嵌合している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is a block diagram of a scanning optical device according to the first embodiment, for example, a pedestal 11 made of a synthetic resin material.
A laser light source 12 is fixed on the optical axis L1 in the traveling direction of the laser light emitted from the laser light source 12, and a motor 14 having a rotary polygon mirror 13 is fixed on the optical axis L1. The lens groups 15a and 15b forming the f-θ optical system are arranged in the. As shown in the sectional view of FIG. 2, two positioning pins 16 and 17 are attached to the lower surface of the pedestal 11 in a direction perpendicular to the optical axis L2 of the scanning center, and the positioning pin 16 is formed on the support member 18. The positioning pin 17 is fitted in the fitted fitting hole 19 so as to be movable in the longitudinal direction in the fitting elongated hole 20.

【0013】ここで、嵌合孔19は回転多面鏡13がレ
ーザー光を偏向走査する際の光学的中心の近傍に設けら
れ、嵌合長孔20は偏向走査されたレーザー光の走査平
面と平行な平面内の中心の光軸L2上に設けられている。
このように位置決めされた嵌合孔19、嵌合長孔20に
位置決めピン16、17が嵌合することにより、台座1
1が支持部材18に対して位置決めされるようになって
いる。
Here, the fitting hole 19 is provided near the optical center when the rotary polygon mirror 13 deflects and scans the laser light, and the fitting long hole 20 is parallel to the scanning plane of the deflected and scanned laser light. It is provided on the center optical axis L2 in a plane.
By fitting the positioning pins 16 and 17 into the fitting hole 19 and the fitting long hole 20 positioned in this way, the pedestal 1
1 is positioned with respect to the support member 18.

【0014】一方、支持部材18に位置決めされた台座
11は、固定部材21を介して3個所で支持部材18に
固定されている。固定部材21には、図3に示すように
支持部材18にビス22により固定される固定部21a
と、スプリング23及びボール24を収容する筒状のホ
ルダ部21bが設けられている。また、支持部材18に
は上方に膨出する半球状の支持部18aが3個所に形成
されている。このような支持部18aの上に台座11が
支持され、この台座11を挟んでボール24が支持部1
8aに対向するように固定部材21が支持部材18に固
定されている。
On the other hand, the pedestal 11 positioned on the support member 18 is fixed to the support member 18 at three points via a fixing member 21. As shown in FIG. 3, the fixing member 21 has a fixing portion 21 a fixed to the supporting member 18 with screws 22.
And a cylindrical holder portion 21b for accommodating the spring 23 and the ball 24. In addition, the support member 18 is provided with hemispherical support portions 18a that bulge upward at three locations. The pedestal 11 is supported on such a supporting portion 18a, and the balls 24 sandwich the pedestal 11 to support the supporting portion 1a.
A fixing member 21 is fixed to the supporting member 18 so as to face the 8a.

【0015】このような構成において、モータ14の近
傍の温度が昇温すると、台座11は嵌合穴19を中心に
して周辺部に向けて熱膨張する。このとき、ボール24
はスプリング23により台座11方向に付勢されている
ため、台座11はボール24により押圧されてZ方向に
浮き上がることがない。同時に、台座11はボール24
を転がすことにより、X方向に自由に移動して歪むこと
がない。また、固定部材21はレーザー光源12の近傍
にも配置されているため、レーザー光源12がZ方向に
浮き上がることがなく、更に台座11の膨張方向が光軸
L2の方向と一致しているため、fθ特性、片倍率等の光
学性能も悪化することはない。
In such a structure, when the temperature in the vicinity of the motor 14 rises, the pedestal 11 thermally expands around the fitting hole 19 toward the peripheral portion. At this time, the ball 24
Is urged in the direction of the pedestal 11 by the spring 23, the pedestal 11 is not pushed by the balls 24 and does not float in the Z direction. At the same time, the pedestal 11 has a ball 24
By rolling, it is free to move in the X direction and is not distorted. Further, since the fixing member 21 is also arranged in the vicinity of the laser light source 12, the laser light source 12 does not float in the Z direction, and the expansion direction of the pedestal 11 is the optical axis.
Since it coincides with the direction of L2, the optical performance such as fθ characteristic and single magnification does not deteriorate.

【0016】図4は第2の実施例の断面図であり、ここ
では固定部材25のホルダ部25b内にはスプリング2
6とスライダ27が収容されている。本実施例でも、ス
ライダ27はスプリング26により付勢されているた
め、台座11はZ方向に浮き上がることはない。また、
台座11はスライダ27の先端を滑ることにより、X方
向に自在に移動して歪むことがない。
FIG. 4 is a sectional view of the second embodiment, in which the spring 2 is provided in the holder portion 25b of the fixing member 25.
6 and the slider 27 are accommodated. Also in this embodiment, since the slider 27 is biased by the spring 26, the pedestal 11 does not float in the Z direction. Also,
The pedestal 11 slides on the tip of the slider 27 to freely move in the X direction and is not distorted.

【0017】図5は第3の実施例の断面図であり、ここ
では固定部材28の棒状のホルダ部28bの先端にねじ
部28aが設けられている。また、ねじ部28aはホル
ダ部28bにスプリング29及びスライダ30を外嵌し
た上で、台座11に設けられた孔11aを貫通して支持
部材18に螺合している。ここで、孔11aの直径φD
は、ホルダ部28bの直径φdよりも大きく、熱膨張に
よる台座11の移動量を加味した値とされている。従っ
て、孔11aは台座11の位置決めに使用することはで
きないが、膨張量を充分に吸収できるようになってい
る。
FIG. 5 is a sectional view of the third embodiment. Here, a threaded portion 28a is provided at the tip of a rod-shaped holder portion 28b of the fixing member 28. Further, the screw portion 28a is fitted on the holder portion 28b with the spring 29 and the slider 30, and then penetrates through the hole 11a formed in the pedestal 11 and is screwed into the support member 18. Here, the diameter φD of the hole 11a
Is larger than the diameter φd of the holder portion 28b and is a value that takes into account the amount of movement of the pedestal 11 due to thermal expansion. Therefore, the hole 11a cannot be used for positioning the pedestal 11, but can sufficiently absorb the amount of expansion.

【0018】本実施例でも、スライダ30はスプリング
29により付勢されているため、台座11はスライダ3
0により押圧されてZ方向に浮き上がることがない。ま
た、台座11はスライダ30の表面を滑ることにより、
X方向に自在に移動して歪むことがない。
Also in this embodiment, since the slider 30 is biased by the spring 29, the pedestal 11 is attached to the slider 3.
It is not pressed by 0 and does not float in the Z direction. Further, the pedestal 11 slides on the surface of the slider 30,
There is no distortion by moving freely in the X direction.

【0019】[0019]

【発明の効果】以上説明したように本発明に係る走査光
学装置は、レーザー光の走査平面に平行な方向にのみ移
動し、平面に垂直な方向には移動しないので、昇温によ
って歪むことがなく、レーザー光の光軸がずれることも
ない。
As described above, since the scanning optical device according to the present invention moves only in the direction parallel to the scanning plane of the laser light and does not move in the direction perpendicular to the plane, it may be distorted due to temperature rise. There is no deviation of the optical axis of the laser light.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の平面図である。FIG. 1 is a plan view of a first embodiment.

【図2】部分断面図である。FIG. 2 is a partial cross-sectional view.

【図3】固定部の断面図である。FIG. 3 is a sectional view of a fixed portion.

【図4】第2の実施例の固定部の断面図である。FIG. 4 is a sectional view of a fixing portion according to a second embodiment.

【図5】第3の実施例の固定部の断面図である。FIG. 5 is a sectional view of a fixing portion according to a third embodiment.

【図6】従来例の平面図である。FIG. 6 is a plan view of a conventional example.

【図7】従来例の断面図である。FIG. 7 is a sectional view of a conventional example.

【図8】従来例の断面図である。FIG. 8 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

11 台座 13 回転多面鏡 16、17 位置決めピン 18 支持部材 19 嵌合孔 20 嵌合長孔 21、25、28 固定部材 23、26、29 スプリング 24 ボール 27、30 スライダ 11 pedestal 13 rotating polygon mirror 16, 17 positioning pin 18 support member 19 fitting hole 20 fitting long hole 21, 25, 28 fixing member 23, 26, 29 spring 24 ball 27, 30 slider

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザー光を発生する光源と、レーザー
光を偏向する回転多面鏡と、偏向したレーザー光を感光
体面に結像する光学系とから成る走査光学装置におい
て、前記走査光学装置の位置をレーザー光の走査平面に
平行な平面内に決める位置決め部材と、前記走査光学装
置の移動を前記平面に平行な方向に許容し前記平面に垂
直な方向に阻止する固定部材とを設けたことを特徴とす
る走査光学装置。
1. A scanning optical device comprising a light source for generating a laser beam, a rotary polygon mirror for deflecting the laser beam, and an optical system for forming an image of the deflected laser beam on a surface of a photoconductor, the position of the scanning optical device. And a fixing member for allowing the movement of the scanning optical device in a direction parallel to the plane and preventing the movement of the scanning optical device in a direction perpendicular to the plane. Characteristic scanning optical device.
【請求項2】 前記固定部材を前記光源の近傍に設けた
請求項1に記載の走査光学装置。
2. The scanning optical device according to claim 1, wherein the fixing member is provided near the light source.
【請求項3】 前記位置決め部材を2個所に設け、一方
を前記回転多面鏡のレーザー光反射位置の光学的中心の
近傍に設け、他方を光学的中心から偏向されるレーザー
光の光軸の走査中心上で、光軸に平行な方向に移動し光
軸に直角な方向に移動しないように設けた請求項1に記
載の走査光学装置。
3. The positioning member is provided at two locations, one of which is provided near the optical center of the laser light reflection position of the rotary polygon mirror, and the other of which is provided to scan the optical axis of the laser light deflected from the optical center. The scanning optical device according to claim 1, wherein the scanning optical device is provided so as to move in a direction parallel to the optical axis and not in a direction perpendicular to the optical axis on the center.
JP29767992A 1992-10-09 1992-10-09 Scanning optical device Pending JPH06123849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29767992A JPH06123849A (en) 1992-10-09 1992-10-09 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29767992A JPH06123849A (en) 1992-10-09 1992-10-09 Scanning optical device

Publications (1)

Publication Number Publication Date
JPH06123849A true JPH06123849A (en) 1994-05-06

Family

ID=17849743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29767992A Pending JPH06123849A (en) 1992-10-09 1992-10-09 Scanning optical device

Country Status (1)

Country Link
JP (1) JPH06123849A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171649A (en) * 2004-12-20 2006-06-29 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007065003A (en) * 2005-08-29 2007-03-15 Ricoh Co Ltd Structure for supporting optical scanner, and image forming apparatus
JP2007079558A (en) * 2005-08-18 2007-03-29 Kyocera Mita Corp Light source device and optical scanner equipped with the same
US7477279B2 (en) 2005-02-28 2009-01-13 Kyocera Mita Corporation Image forming apparatus
JP2016153902A (en) * 2016-03-23 2016-08-25 シャープ株式会社 Optical scanner, and image forming apparatus including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171649A (en) * 2004-12-20 2006-06-29 Ricoh Co Ltd Optical scanner and image forming apparatus
US7477279B2 (en) 2005-02-28 2009-01-13 Kyocera Mita Corporation Image forming apparatus
JP2007079558A (en) * 2005-08-18 2007-03-29 Kyocera Mita Corp Light source device and optical scanner equipped with the same
JP2007065003A (en) * 2005-08-29 2007-03-15 Ricoh Co Ltd Structure for supporting optical scanner, and image forming apparatus
JP2016153902A (en) * 2016-03-23 2016-08-25 シャープ株式会社 Optical scanner, and image forming apparatus including the same

Similar Documents

Publication Publication Date Title
CA1087006A (en) Optical system for rotating mirror line scanning apparatus
KR960042115A (en) Optical element and scanning optical device using same
US5095383A (en) Optical unit for use in a laser beam printer or the like
EP0415236A2 (en) Optical unit for use in laser beam printer or the like
US5130839A (en) Scanning optical apparatus
US5028103A (en) Optical scanning apparatus
US4982205A (en) Laser beam scanner in which the line scan time is maintained constant by decreasing the rotating speed of a scanning element as the number of reflective facets thereon increases
JPH06123849A (en) Scanning optical device
US5159193A (en) Optical unit for use in laser beam printer or the like with temperature expansion compensation
US4999648A (en) Non-contact optical print head for image writing apparatus
US5136416A (en) Optical scanning unit for use in laser beam printer or the like
JP2001021822A (en) Optical scanning optical system and image forming device using the system
JPH0980330A (en) Multibeam scanning optical system
JPH11202232A (en) Multibeam scanning device
JPH04242215A (en) Optical scanner
KR100246445B1 (en) Multi-beam laser scanner
JP2996679B2 (en) Optical device
JPH07120697A (en) Laser beam scanning device
JP2907292B2 (en) Achromatic laser scanning optics
EP0836106B1 (en) Light-beam scanning apparatus comprising divergent or convergent light-shaping means
JP2001281588A (en) Emission position adjustment structure for plane- parallel plane
JP2000121975A (en) Resin optical element, scanning optical system and optical system using the same
JP2000019445A (en) Optical scanner
JP2757308B2 (en) Light beam scanning optical device
JP2002169116A (en) Anamorphic imaging element and optical scanner