JPS62208631A - Reduction type x-ray lithography equipment - Google Patents

Reduction type x-ray lithography equipment

Info

Publication number
JPS62208631A
JPS62208631A JP61051033A JP5103386A JPS62208631A JP S62208631 A JPS62208631 A JP S62208631A JP 61051033 A JP61051033 A JP 61051033A JP 5103386 A JP5103386 A JP 5103386A JP S62208631 A JPS62208631 A JP S62208631A
Authority
JP
Japan
Prior art keywords
rays
reflecting
monochromator
reflecting mirror
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61051033A
Other languages
Japanese (ja)
Inventor
Shigeo Suzuki
茂雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61051033A priority Critical patent/JPS62208631A/en
Publication of JPS62208631A publication Critical patent/JPS62208631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To make it feasible to perform fine processing not exceeding 1mum using existing aligner and stepper by making use of an assymetric Bragg reflection phenomenon of X-rays due to single crystal. CONSTITUTION:The titled lithgraphy equipment is provided with a monochromator 3 letting X-rays with specified wavelength only pass there- through, the first reflecting mirror 4 reflecting the X-rays from the monochromator 3 in the X direction and the second reflecting mirror 5 reflecting the X-rays reflected by the first mirror in the Y direction while the first and the second reflecting mirrors 4, 5 are composed of assymetric Bragg reflecting mirrors of X-rays due to single crystal. A specified pattern is described in a mask 6 arranged between the monochromator 3 and the first reflecting mirror 4. The pattern described in the mask 6 is not of the same size (1:1) as that of the final exposure pattern but several times larger than that of the same. Finally, an exposure substrate 7 coated with a resist film irradiation-exposed to X-rays transferred through the second reflecting mirror 5 is provided.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は縮小型X線リングラフィ装置に関する。[Detailed description of the invention] b) Industrial application field The present invention relates to a compact X-ray phosphorography device.

口)従来の技術 半導体分野に於て1囲以下の微細加工は可視光や紫外光
はその波長が長過ぎて使用出来ない。
(Example) Conventional technology In the semiconductor field, visible light and ultraviolet light cannot be used for microfabrication of less than one circle because their wavelengths are too long.

従ってそれ等の光より波長の短いX線を用いる事が提案
され、一部実用化されつつある。例えは、第29回応用
物理学関係連合会講演会予稿集364頁(3P−A−1
8)記事1ンンクロ1〜ロン軌道放射光利用によるレジ
ストの露光特性の検討」に示されている。
Therefore, it has been proposed to use X-rays with a shorter wavelength than those lights, and some of them are being put into practical use. For example, page 364 (3P-A-1) of the Proceedings of the 29th Federation of Applied Physics Conference
8) Article 1: Examination of exposure characteristics of resist using synchrotron radiation.

ハ)発明が解決しようとする問題点 ところがX線領域で使えるレンスが存在しないので、通
常フォトリソグラフィで使用している縮小投影法は採用
出来ない。従って1・1転写のためのアライナ−やステ
ッパーの開発が行なわれている。然し乍ら線幅174即
の数種類のパターンを重ねて転写するためにはマスクの
位置合わせ精度として0. OIIm以上の高いものが
要求されるので、この高精度のアライナ−やステッパー
の出現が待たれているのが現状である。
C) Problems to be Solved by the Invention However, since there is no lens that can be used in the X-ray region, the reduction projection method normally used in photolithography cannot be employed. Therefore, aligners and steppers for 1:1 transfer are being developed. However, in order to overlay and transfer several types of patterns with a line width of 174, the mask alignment accuracy must be 0. Since something higher than OIIm is required, the appearance of highly accurate aligners and steppers is currently awaited.

二)問題点を解決するための手段 本発明は単結晶によるX線の非対称ブラッグ反射現象を
用いて斯る問題点を解決している。
2) Means for solving the problems The present invention solves the problems by using the asymmetric Bragg reflection phenomenon of X-rays by a single crystal.

ホ)作用 単結晶によるX線の非対称ブラッグ反射現象を用いるこ
とに依ってX線領域であるにも拘らず、通常のフォトリ
ソグラフィと同様の縮小投影法が採用できる。
(e) Operation By using the asymmetric Bragg reflection phenomenon of X-rays by a single crystal, a reduction projection method similar to that of ordinary photolithography can be employed, even though the method is in the X-ray region.

へ)実施例 第2図に本発明に用いている単結晶によるX線の非対称
ブラッグ反射現象を示す。同図(a)はブラ/グ反I4
の原理の説明図であって等間隔の平行線で模式的に示し
た単結晶(1)の格子面にブラッグ角θで入射したX線
(2)は対称的に反射する。
f) Example FIG. 2 shows the asymmetric Bragg reflection phenomenon of X-rays by the single crystal used in the present invention. The same figure (a) is Bra/G anti-I4.
This is an explanatory diagram of the principle of X-rays (2) incident on the lattice plane of a single crystal (1) schematically shown by equally spaced parallel lines at a Bragg angle θ and reflected symmetrically.

一方、第2図(b)に示すようにX線が入射する結晶表
面を格子面に対して角度αだけ傾斜させておけば、X線
の反射条件は変わらないがX線束の幅が変化する。ブラ
ッグ角θは結晶の種類、使用する反射面、使用するX線
の波長に依って種々選択可能で、格子面を入射X線との
角度グと、ブラッグ角0との組合わせに依って縮小率は
任意に制御出来る。
On the other hand, if the crystal surface on which the X-rays are incident is tilted by an angle α with respect to the lattice plane, as shown in Figure 2(b), the X-ray reflection conditions will not change, but the width of the X-ray flux will change. . Various Bragg angles θ can be selected depending on the type of crystal, the reflective surface used, and the wavelength of the X-rays used, and the lattice plane can be reduced depending on the combination of the angle with the incident X-rays and the Bragg angle of 0. The rate can be controlled arbitrarily.

第1図に本発明装置の構成を示す。同図において、(3
)は所望の波長のX線のみを通過させるモノクロメータ
、(4)はこのモノクロメータから得られる所望波長の
X線をX方向に反射させる第1の反射ミラー、〈5)は
第一のミラーで反射して来たX線をY方向に反射させる
第2の反射ミラーで、これ等の第1、第2の反射ミラー
は、第2図(b)に示した単結晶に依るX線の非対称ブ
ラッグ反射ミラーから成る。(6〉は上記モノクロメー
タ−と第1の反射ミラー(4)との間に配置されたマス
クで、所望のパターンが描かれている。このマスク(6
)に描かれているパターンは最終的な露光パターンと1
=1ではなく、数倍の大きさのものである。(7)は第
2の反射ミラーく5)を経て得られるX線にて照射露光
されるレジスト膜が塗布きれた露光基板である。
FIG. 1 shows the configuration of the apparatus of the present invention. In the same figure, (3
) is a monochromator that allows only X-rays of a desired wavelength to pass through, (4) is a first reflecting mirror that reflects X-rays of a desired wavelength obtained from this monochromator in the X direction, and (5) is a first mirror. This is a second reflecting mirror that reflects the X-rays reflected by the Consists of an asymmetric Bragg reflector. (6> is a mask placed between the monochromator and the first reflecting mirror (4), on which a desired pattern is drawn. This mask (6)
) is the final exposure pattern and 1
= 1, but several times as large. (7) is an exposed substrate coated with a resist film which is exposed to X-rays obtained through the second reflecting mirror (5).

次に本発明の具体的実施例を数値を挙げて説明する。Next, specific examples of the present invention will be described by citing numerical values.

入射線束の幅aと反射線束の幅すの比はa:b=sin
(θ+a ):5in(θ−a)である。
The ratio of the width a of the incident ray bundle to the width of the reflected ray bundle is a:b=sin
(θ+a): 5 inches (θ−a).

−例として波長3人のX線がシリコン単結晶(格子定数
5.4301人)の(111)反射で反射する場合をと
る。ブラッグ角はθ= 28.585’である。
- As an example, take the case where X-rays with three wavelengths are reflected by (111) reflection of a silicon single crystal (lattice constant: 5.4301). The Bragg angle is θ=28.585'.

結晶表面の傾き角改を種々変えた時の縮小率はa=10
.30°の時a:b=  2:1a = 19.98@
の時a:b=  5:1.2 = 24.05@の時a
:b=10:1  である。
The reduction rate when changing the tilt angle of the crystal surface is a=10
.. At 30° a:b = 2:1a = 19.98@
When a: b = 5:1.2 = 24.05 @ when a
:b=10:1.

角度グをθに近ずければ縮小率は大きくなる。実際に使
用出来る角度範囲は理論的にはQ<d<θ〈45mであ
るが0が45°に近いとX線の反射率が低下し、θ= 
45’でOになるので実際に使用できる範囲はもう少し
狭い。結晶としてシリコンを取ったがもし完全結晶であ
ればゲルマニウムの様に重い結晶の方が望ましい。さら
に長波長のX線を使う必要がある場合には格子定数の大
きい単結晶が必要である。
The closer the angle is to θ, the greater the reduction rate will be. Theoretically, the usable angle range is Q<d<θ<45m, but when 0 is close to 45°, the X-ray reflectance decreases, and θ=
Since it becomes O at 45', the range that can actually be used is a little narrower. Silicon is used as the crystal, but if it is a perfect crystal, a heavier crystal like germanium is preferable. If it is necessary to use X-rays with longer wavelengths, a single crystal with a large lattice constant is required.

ト)発明の効果 本発明は以上の説明から明らかな如く、X線が入射する
単結晶表面を格子面に対して傾斜した一対の反射ミラー
を互いに直交する方向に反射すべく配置しているので、
X線をレンズ系を用いる事なく実質的に集光させる事が
出来る。その結果、現存のアライナ−やステッパーを用
いて11JI′11以下の微細加工が可能となる。
g) Effects of the Invention As is clear from the above description, the present invention uses a pair of reflecting mirrors that are inclined with respect to the lattice plane to reflect the single crystal surface on which X-rays are incident in directions perpendicular to each other. ,
X-rays can be substantially focused without using a lens system. As a result, microfabrication of 11JI'11 or less becomes possible using existing aligners and steppers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の構成を示す斜視図、第2図は本発
明の基本原理を説明するための断面図である。 (1)・・・単結晶、(2)・・・X線、(3)・・・
モノクロメータ、(4)(5)・・・反射ミラー、(6
)・・・マスク、(7)・・・露光基板。
FIG. 1 is a perspective view showing the configuration of the apparatus of the present invention, and FIG. 2 is a sectional view for explaining the basic principle of the present invention. (1)...Single crystal, (2)...X-ray, (3)...
Monochromator, (4) (5)...Reflection mirror, (6
)...Mask, (7)...Exposure substrate.

Claims (1)

【特許請求の範囲】[Claims] 所望の波長のX線のみを通過させるモノクロメータと、
このモノクロメータから得られる所望波長のX線を互に
直交する方向に反射させる第1、第2の反射ミラーとを
備え、この反射ミラーは夫々X線が入射する単結晶表面
を格子面に対して所望の角度傾斜しており、上記モノク
ロメータと第1の反射ミラーとの間にマスクを配置する
と共に第2の反射ミラーを経て得られるX線にてレジス
ト膜を照射する事を特徴とした縮小型X線リソグラフィ
装置。
a monochromator that allows only X-rays of a desired wavelength to pass;
The monochromator includes first and second reflecting mirrors that reflect X-rays of a desired wavelength obtained from the monochromator in mutually orthogonal directions, and each of the reflecting mirrors aligns the single crystal surface on which the X-rays are incident with respect to the lattice plane. The resist film is tilted at a desired angle, and a mask is placed between the monochromator and the first reflecting mirror, and the resist film is irradiated with X-rays obtained through the second reflecting mirror. Miniaturized X-ray lithography equipment.
JP61051033A 1986-03-07 1986-03-07 Reduction type x-ray lithography equipment Pending JPS62208631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61051033A JPS62208631A (en) 1986-03-07 1986-03-07 Reduction type x-ray lithography equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61051033A JPS62208631A (en) 1986-03-07 1986-03-07 Reduction type x-ray lithography equipment

Publications (1)

Publication Number Publication Date
JPS62208631A true JPS62208631A (en) 1987-09-12

Family

ID=12875492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61051033A Pending JPS62208631A (en) 1986-03-07 1986-03-07 Reduction type x-ray lithography equipment

Country Status (1)

Country Link
JP (1) JPS62208631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153520A (en) * 1988-12-05 1990-06-13 Mitsubishi Electric Corp Exposure device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107774A (en) * 1976-03-08 1977-09-09 Toshiba Corp Microscopic figure copy unit
JPS5342679A (en) * 1976-09-29 1978-04-18 Xonics Inc Apparatus for and method of manufacturing miniature object such as integrated circuit and the like
JPS58101426A (en) * 1981-12-11 1983-06-16 Nec Corp X-ray exposing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107774A (en) * 1976-03-08 1977-09-09 Toshiba Corp Microscopic figure copy unit
JPS5342679A (en) * 1976-09-29 1978-04-18 Xonics Inc Apparatus for and method of manufacturing miniature object such as integrated circuit and the like
JPS58101426A (en) * 1981-12-11 1983-06-16 Nec Corp X-ray exposing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153520A (en) * 1988-12-05 1990-06-13 Mitsubishi Electric Corp Exposure device

Similar Documents

Publication Publication Date Title
US7411656B2 (en) Optically polarizing retardation arrangement, and a microlithography projection exposure machine
US5089913A (en) High resolution reduction catadioptric relay lens
JP5436853B2 (en) Projection exposure system and polarizing optical element
US7548370B2 (en) Layered structure for a tile wave plate assembly
KR20040004384A (en) Illumination system particularly for microlithography
JP2003092257A (en) Substrate provided with alignment mark in substantially transmissive process layer, mask for exposing the mark, device manufacturing method, and device manufactured thereby
JP2015163994A (en) Lighting optical unit for euv microlithography
JPH04225357A (en) Projection type exposure device
US20180314165A1 (en) Illumination system of a microlithographic projection exposure apparatus
US20150253677A1 (en) Optical system of a microlithographic projection exposure apparatus
TW200528927A (en) Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
JP3067491B2 (en) Projection exposure equipment
US11061334B2 (en) Pupil facet mirror, illumination optics and optical system for a projection lithography system
JPS62208631A (en) Reduction type x-ray lithography equipment
JP2614863B2 (en) X-ray reduction projection exposure equipment
JP3371512B2 (en) Illumination device and exposure device
US6924081B1 (en) Photosensitive material for immersion photolithography
JPH07244199A (en) Projective exposure method and device
JP3521506B2 (en) Illumination device and exposure device
JPH0359569B2 (en)
JPH0789537B2 (en) X-ray reduction projection exposure system
JPH01205528A (en) Contraction-type x-ray lithographic apparatus
JPH02153520A (en) Exposure device
JPH08160200A (en) Illumination optical system
JPH01263599A (en) Manufacture of semiconductor