JPH01263599A - Manufacture of semiconductor - Google Patents

Manufacture of semiconductor

Info

Publication number
JPH01263599A
JPH01263599A JP63093082A JP9308288A JPH01263599A JP H01263599 A JPH01263599 A JP H01263599A JP 63093082 A JP63093082 A JP 63093082A JP 9308288 A JP9308288 A JP 9308288A JP H01263599 A JPH01263599 A JP H01263599A
Authority
JP
Japan
Prior art keywords
ray
bragg
incident
optical system
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63093082A
Other languages
Japanese (ja)
Inventor
Shigeji Tonishi
遠西 繁治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63093082A priority Critical patent/JPH01263599A/en
Publication of JPH01263599A publication Critical patent/JPH01263599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable a precise printing of a very fine mask pattern on a semiconductor wafer, by obtaining an X-ray highly parallel and of single wave length utilizing two times Bragg's reflections in an optical system of an X-ray stepper. CONSTITUTION:A parallel flat plates and double crystals monochrometer 1-1 has double reflection surfaces 1-4 and 1-4 which are cut out from a single crystal, and these reflection surfaces face parallelly each other and also are placed at a Bragg's reflection angle thetaB to an incident X-ray 1-2. The Bragg's reflection angle thetaB is calculated from a distance between the two crystal surfaces and wave lengths of incident and emitting X-rays. In this way, the incident X-ray 1-2 is emitted as a highly parallel monochrome X-ray 1-3 after repeating the Bragg's reflections twice, and because the directions of incident and emitting rays are the same, a mask at the tip end of an optical system can be easily prepared.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はX線ステッパーに関し、特にその光学系に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray stepper, and particularly to its optical system.

〔従来の技術〕[Conventional technology]

従来、ステッパーの光学系においては、X線に限らず、
可視光、紫外光を使用する系においても。
Conventionally, in the optical system of steppers, not only X-rays but also
Also in systems that use visible light and ultraviolet light.

一定の波長で平行度の高い光を得ることは重要な課題と
なっていた0本発明の対象とするX線を用いるステッパ
ーの光学系では、1結晶モノクロメータ−による1回の
ブラッグ反射を利用する方法が主に用いられる。
Obtaining highly parallel light at a constant wavelength has become an important issue.The optical system of a stepper that uses X-rays, which is the subject of the present invention, utilizes one Bragg reflection from a single crystal monochromator. This method is mainly used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上′述した1回反射を用いる方法では、目的とするブラ
ッグ反射の他に、X線源からの入射方向と波長の異なる
X線をも一部反射してしまう可能性があり、またブラッ
グ反射自体も通常半値幅として代表されるように、ある
程度の角度幅を持っているため、充分に平行度が高く単
色の光を得ることは難しい、また、光学系の設置におい
ても、モノクロメータ−からの反射光が入射光に対して
用いるブラッグ反射角の2倍だけずれているため。
In the method using single reflection described above, in addition to the desired Bragg reflection, there is a possibility that some X-rays from the X-ray source with a different incident direction and wavelength will be reflected, and Bragg reflection may also occur. Since the light itself usually has a certain angular width, as represented by the half-width, it is difficult to obtain monochromatic light with sufficiently high parallelism. Because the reflected light of is shifted by twice the Bragg reflection angle used with respect to the incident light.

光学系の先のマスク、ウェハーの設定が困難である。It is difficult to set up the mask and wafer beyond the optical system.

本発明の目的は前記課題を解決した半導体製造装置を提
供することにある。
An object of the present invention is to provide a semiconductor manufacturing apparatus that solves the above problems.

〔発明の従来技術に対する相違点〕[Differences between the invention and the prior art]

上述した従来の1回反射を用いる光学系に対し、本発明
は多数回、主に2回の反射を用いるという相違点を有す
る。また、2回(もしくは多数回)反射用のモノクロメ
ータ−として、2個(もしくは多数個)の別々の結晶を
用いず、単一結晶よりなる2つの互いに平行で向かいあ
う面をもつモノクロメータ−を使用するという相違点を
有する。さらに、多数回反射条件においても、多数個の
モノクロメータ−を必要とせず、本発明のモノクロメー
タ−の大きさとブラッグ反射条件さえ適切に設定すれば
、1個のモノクロメータ−だけで多数回反射を行うこと
ができるという相違点を有する。
The present invention differs from the above-described conventional optical system that uses one reflection in that it uses multiple reflections, mainly two reflections. In addition, as a monochromator for double (or multiple) reflections, a monochromator with two parallel and opposing surfaces made of a single crystal is used instead of using two (or many) separate crystals. The difference is that it is used. Furthermore, even under multiple reflection conditions, multiple monochromators are not required; as long as the size of the monochromator of the present invention and the Bragg reflection conditions are appropriately set, multiple reflections can be achieved with just one monochromator. The difference is that it is possible to perform

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため5本発明の半導体製造装置にお
いては、ステッパーの光学系に、単一結晶より切り出さ
れ、かつX線を反射する面が互いに平行になって向き合
っている平行平板型2結晶モノクロメータ−を有するも
のである。
In order to achieve the above object, the semiconductor manufacturing apparatus of the present invention includes two parallel plate type crystals cut from a single crystal and having X-ray reflecting surfaces parallel to each other and facing each other in the optical system of the stepper. It has a monochromator.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の実施例の概略図である。本図面では光
学系を示し、X線源系及び光学系の先のステッパー本体
は省略しである。
FIG. 1 is a schematic diagram of an embodiment of the invention. In this drawing, the optical system is shown, and the X-ray source system and the stepper body beyond the optical system are omitted.

1−1は単一結晶より切り出した互いに平行で向かいあ
った反射面(hlQ)1−4.1−4を有する平行平板
型モノクロメータ−である。このモノクロメータ−1−
1は例えば単一のシリコンインゴット等より切り出した
ものを用いる。単一結晶より2つの反射面を切り出すた
め、結晶面間隔が2つの反射面で同一であり、また2つ
の結晶を用いて2回反射をさせる場合と異なり、光学系
の設置が容易であるというメリットもある。反射面1−
4としては反射強度を得るため及び切り出しやすさから
、(111)、 (100)面等低次の方向を持つ面が
良い。
Reference numeral 1-1 is a parallel plate monochromator having reflecting surfaces (hlQ) 1-4, 1-4 cut out from a single crystal and facing each other parallel to each other. This monochromator-1-
1 is cut out from a single silicon ingot, for example. Because two reflective surfaces are cut out from a single crystal, the spacing between the crystal planes is the same for the two reflective surfaces, and unlike the case where two crystals are used to reflect twice, it is easy to install an optical system. There are also benefits. Reflective surface 1-
4 is preferably a surface with a low-order direction such as a (111) or (100) surface in order to obtain reflection intensity and ease of cutting out.

1−2は入射X線で、モノクロメータ−1−1をこの入
射XB1−2のうちの使用したい波長の光をブラッグ反
射する条件に設定する。ブラッグ反射角OBは0B=s
in (λ/2Dbkz)−”として表わせる。ここで
、Dhk&はモノクロメータ−結晶の(hkQ)面の間
隔、先は入出射X線の波長を示す。モノクロメータ−1
−1の一方の反射面1−4で1回目の反射をしたX線1
−2はさらに反対側の反射面1−4で2回目のブラッグ
反射をし、平行度の高い単色X線として出射X線1−3
が得られる。反射は2回以上であってもよい。偶数回反
射の場合は入射光と呂射光の方向が同一のため、光学系
の先のマスクの設定がしやすいというメリットもある。
Reference numeral 1-2 is an incident X-ray, and the monochromator 1-1 is set to a condition that Bragg-reflects the light of the desired wavelength of the incident XB1-2. Bragg reflection angle OB is 0B=s
in (λ/2Dbkz)-''. Here, Dhk& is the distance between the (hkQ) planes of the monochromator crystal, and the tip indicates the wavelength of the input and output X-rays. Monochromator-1
-1 X-ray 1 reflected for the first time on one reflective surface 1-4
-2 undergoes a second Bragg reflection on the opposite reflecting surface 1-4, and the output X-ray 1-3 becomes a monochromatic X-ray with high parallelism.
is obtained. The reflection may occur two or more times. In the case of an even number of reflections, the directions of the incident light and the incident light are the same, which has the advantage of making it easier to set the mask at the end of the optical system.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はX線ステッパーの光学系で
2回のブラッグ反射を用いることにより、平行度の高い
単一波長のX線を得ることができる。
As described above, the present invention uses two Bragg reflections in the optical system of the X-ray stepper, thereby making it possible to obtain highly parallel X-rays of a single wavelength.

平行度の高い単一波長のX線を得ることは、微細なマス
クパターンを精度よく半導体ウェハーにやきつけるため
に必要不可欠である。また、本発明のモノクロメータ−
は単一結晶より2つの反射面を切り出すことにより、2
つの反射面でのブラッグ反射条件が同一となり、2つの
結晶を別々に用いる場合に比べて光学系の設置が容易だ
という効果がある。さらには、本発明の実施例のように
、偶数回のブラッグ反射を用いることにより、入射方向
と同一方向の出射光を得ることができる。このことは、
1回反射を用いる通常の系に比べて、光学系とその先の
マスクとの位置を設定することを容易にできるという効
果を有する。
Obtaining highly parallel, single-wavelength X-rays is essential for accurately burning fine mask patterns onto semiconductor wafers. Moreover, the monochromator of the present invention
is obtained by cutting out two reflective surfaces from a single crystal.
The Bragg reflection conditions on the two reflecting surfaces are the same, and the optical system can be installed more easily than when two crystals are used separately. Furthermore, as in the embodiments of the present invention, by using an even number of Bragg reflections, it is possible to obtain outgoing light in the same direction as the incident direction. This means that
Compared to a normal system that uses one-time reflection, this has the effect of making it easier to set the position of the optical system and the mask beyond it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略図である。 1−1・・・反射表面が(hkQ)の平行平板型モノク
ロメータ−1−2・・・入射X線 1−3・・モノクロメータ−からの出射xa1−4・・
・(hkQ)方位の反射面
FIG. 1 is a schematic diagram showing an embodiment of the present invention. 1-1...Parallel plate monochromator with reflective surface (hkQ)-1-2...Incoming X-ray 1-3...Output xa1-4 from the monochromator...
・Reflection surface of (hkQ) direction

Claims (1)

【特許請求の範囲】[Claims] (1)ステッパーの光学系に、単一結晶より切り出され
、かつX線を反射する面が互いに平行になって向き合っ
ている平行平板型2結晶モノクロメーターを有すること
を特徴とする半導体製造装置。
(1) A semiconductor manufacturing apparatus characterized in that the optical system of the stepper includes a parallel plate type two-crystal monochromator cut from a single crystal and whose X-ray reflecting surfaces are parallel to each other and face each other.
JP63093082A 1988-04-15 1988-04-15 Manufacture of semiconductor Pending JPH01263599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63093082A JPH01263599A (en) 1988-04-15 1988-04-15 Manufacture of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63093082A JPH01263599A (en) 1988-04-15 1988-04-15 Manufacture of semiconductor

Publications (1)

Publication Number Publication Date
JPH01263599A true JPH01263599A (en) 1989-10-20

Family

ID=14072603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63093082A Pending JPH01263599A (en) 1988-04-15 1988-04-15 Manufacture of semiconductor

Country Status (1)

Country Link
JP (1) JPH01263599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298322A (en) * 2006-04-28 2007-11-15 Japan Electronic Materials Corp Probe card
CZ301342B6 (en) * 1998-02-19 2010-01-20 Osmic, Inc. X-ray directing system
CZ301383B6 (en) * 1998-02-19 2010-02-10 Osmic, Inc. X-ray directing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ301342B6 (en) * 1998-02-19 2010-01-20 Osmic, Inc. X-ray directing system
CZ301383B6 (en) * 1998-02-19 2010-02-10 Osmic, Inc. X-ray directing system
JP2007298322A (en) * 2006-04-28 2007-11-15 Japan Electronic Materials Corp Probe card

Similar Documents

Publication Publication Date Title
CN100388026C (en) Patterned grid element polarizer
US9103527B2 (en) Light source unit and projection display device with the same
US7411656B2 (en) Optically polarizing retardation arrangement, and a microlithography projection exposure machine
US7548370B2 (en) Layered structure for a tile wave plate assembly
US20080130109A1 (en) Apparatus For Providing A Pattern Of Polarization
EP2483720B1 (en) Illumination optical unit for microlithography
JP2003035822A (en) Polariscope and microlithography projection system provided with the same
KR101560617B1 (en) Light Generating Apparatus and Method For Controlling the Same
CN108885289B (en) Wire grid polarizer manufacturing method
EP0176812B1 (en) Optical device
JP2979667B2 (en) Reflective X-ray exposure mask
US6733165B2 (en) Optical integrator for an illumination device
JPH01263599A (en) Manufacture of semiconductor
JP2008520084A (en) Polarization delay mechanism and microlithography projection exposure machine
KR20040020411A (en) Polarization conversion system
JPH04351998A (en) X-ray beam splitter
US3446961A (en) X-ray interferometer using three spaced parallel crystals
SU1718278A1 (en) Method of splitting slightly divergent x-ray beam
JPH04144224A (en) X-ray aligner
JPS58222522A (en) Projection aligner
JP2688958B2 (en) Exposure apparatus and exposure method thereof
JPS63170918A (en) X-ray exposure method
US3588251A (en) Spectrometer input or output devices
KR830001721B1 (en) How to cast the correct shading of a mask with periodically distributed slits on a support
JPS62230074A (en) Frequency stabilized light source