JPH01102398A - Collimating optical system - Google Patents

Collimating optical system

Info

Publication number
JPH01102398A
JPH01102398A JP62262048A JP26204887A JPH01102398A JP H01102398 A JPH01102398 A JP H01102398A JP 62262048 A JP62262048 A JP 62262048A JP 26204887 A JP26204887 A JP 26204887A JP H01102398 A JPH01102398 A JP H01102398A
Authority
JP
Japan
Prior art keywords
parallel light
mask
emitted
filter
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62262048A
Other languages
Japanese (ja)
Inventor
Nobuhiro Araki
信博 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62262048A priority Critical patent/JPH01102398A/en
Publication of JPH01102398A publication Critical patent/JPH01102398A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Abstract

PURPOSE:To lessen partial shadow gradation by making X-ray emitted from an X-ray source as parallel light by the use of a paraboloid mirror, using a monocrystal superconductor en route the parallel light and providing a film of excellent permeability of the parallel light of a single wave front. CONSTITUTION:X-rays 2 emitted from an X-ray source 1 are converted into parallel light by the use of a paraboloid mirror 3, only the parallel light having a vertical wave front in the direction of crystal by a filter which is a supercon ductor is emitted, irradiating a mask 5, and the image is transferred to a wafer 6. A monocrystal superconductor is used as a filter 4, permeability of only a plane wave having a vertical wave front in the crystal direction of monocrystal is approximately 100% by superconductive performance because the monocrystal direction is aligned with optical axial direction of the mirror 3, and the other have every small permeability. Since the coherence of the parallel light emitted through the filter 4 is high and the light emitted from the mask 5 is almost parallel transferred to the wafer 5 except the case where a lattice interval of the mask 5 is near to using wave length, partial shadow gradation is not produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、X線光源から発生する遠紫外線(X線)をマ
スクに照射し、マスクの像をウェハに転写して半導体な
どを露光するX線露光装置に用いるコリメート光学系に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is an X-ray method for exposing semiconductors, etc. by irradiating a mask with far ultraviolet rays (X-rays) generated from an X-ray light source and transferring the image of the mask onto a wafer. This invention relates to a collimating optical system used in an exposure apparatus.

従来の技術 従来1、X線を用い半導体を露光する装置としては、精
密工学会主催「X線光学における超精密技術の現状と将
来」シンポジウム配゛布資料に記載されている構成が知
られている。以下、上記従来のX線露先装置について第
3図を参照しながら説明する。
Conventional technology Conventional 1. As an apparatus for exposing semiconductors using X-rays, the configuration described in the materials distributed at the "Current status and future of ultra-precision technology in X-ray optics" symposium sponsored by the Japan Society for Precision Engineering is known. There is. The conventional X-ray exposure point apparatus will be described below with reference to FIG.

第3図に示すようにX線光源31から放射するX線32
を、マスク基板33上にマスクパターン34を有するマ
スク35に照射し、このマスクパターン34より透過す
る光によシ、ウェハ36にパターンを転写し、等倍の露
光を行っていた。
As shown in FIG. 3, X-rays 32 emitted from an X-ray light source 31
was irradiated onto a mask 35 having a mask pattern 34 on a mask substrate 33, and the pattern was transferred onto a wafer 36 by the light transmitted through the mask pattern 34, thereby performing exposure at the same magnification.

発明が解決しようとする問題点 しかし、上記従来の構成では、X線光源31の大きさが
有限であり、マスクパターン34に入射する光は、ある
単一の波面を持つ光と相違し、複合の波面を持つ光であ
るため、ウェハ86の表面に転写されたマスクパターン
34の像にはδなる半影ぼけが生ずる。
Problems to be Solved by the Invention However, in the conventional configuration described above, the size of the X-ray light source 31 is finite, and the light incident on the mask pattern 34 is different from light having a single wavefront and has a complex wavefront. Since the light has a wavefront of .delta., a penumbra blur of .delta. occurs in the image of the mask pattern 34 transferred to the surface of the wafer 86.

この半影ぼけの量は、X線光源81の大きさをり、X線
光源31からマスク35までの距離をL1マスク35よ
シウエハ36までの距離をgとすると、次式に示す関係
になる。
The amount of penumbra blur has the relationship shown in the following equation, where the size of the X-ray light source 81 is equal to the distance from the X-ray light source 31 to the mask 35, and the distance from the L1 mask 35 to the wafer 36 is g.

δ=g−D/L すなわち、半影ぼけの量δは、X線光源31の大きさD
とウェハ36からマスク35までの距離(ギャップM)
gに比例し、X線光源31からマスク35の位置までの
距離りに反比例する。
δ=g−D/L In other words, the amount of penumbra blur δ is the size D of the X-ray light source 31
and the distance from the wafer 36 to the mask 35 (gap M)
g, and inversely proportional to the distance from the X-ray light source 31 to the position of the mask 35.

このことから、半影ぼけの量δを小さくするためには、
X線光源31の大きさDとウェハ36からマスク35ま
でのギャップ量gを小さくすればよいが、ウェハ36の
突起などにより、このギャグ量gを小さくするには限界
がある。
From this, in order to reduce the amount of penumbra blur δ,
Although it is possible to reduce the size D of the X-ray light source 31 and the gap amount g from the wafer 36 to the mask 35, there is a limit to reducing the gag amount g due to the protrusion of the wafer 36 and the like.

また、X線光源31からマスク35の位置までの距離り
を長くすると、半影ぼけの量δは小さくなるが、光量が
低下し、スループットが悪くなるという問題点があった
Further, if the distance from the X-ray light source 31 to the position of the mask 35 is increased, the amount of penumbra blur δ becomes smaller, but there is a problem in that the amount of light decreases and the throughput deteriorates.

また、光源として、放射光のコヒーレンシーが非常によ
いシンクロトロン放射光源があるが、この光源は大きさ
が非常に大きく、露光装置自体が非常に大きくなるとい
う問題点があった。
Further, as a light source, there is a synchrotron radiation light source with very good synchrotron radiation coherency, but this light source is very large and has the problem that the exposure apparatus itself becomes very large.

そこで、本発明は、従来技術の以上のような問題点を解
決するためになされたもので、従来のX線光源を用いて
も、マスクに照射するX線のコヒーレンシーを良くする
ことができ、また、ウェハに転写する半影はけを非常に
小さくすることができるようにしたコリメート光学系を
提供しようとするものである。
Therefore, the present invention has been made to solve the above-mentioned problems of the prior art, and it is possible to improve the coherency of X-rays irradiated to a mask even if a conventional X-ray light source is used. Another object of the present invention is to provide a collimating optical system that can make the penumbra that is transferred to the wafer extremely small.

問題点を解決するための手段 そして、上記問題点を解決するための本発明の技術的な
手段は、X線光源と、このX線光源から放射されるX線
を平行光にする放物面ミラーと、この放物面ミラーの光
軸上に配置され、単結晶構造の超電導体が用いられ、単
結晶の方向が放物面ミラーの光軸方向が一致されたフィ
ルターとを備えたものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is an X-ray light source and a paraboloid that converts the X-rays emitted from the X-ray light source into parallel light. It is equipped with a mirror, and a filter that is placed on the optical axis of the parabolic mirror, is made of a superconductor with a single crystal structure, and the direction of the single crystal is aligned with the optical axis direction of the parabolic mirror. be.

作用 上記技術的手段による作用は次のようになる。action The effects of the above technical means are as follows.

すなわち、X線光源よシ放射されたX線は、放物面ミラ
ーにより平行光となる。この放物面ミラーよシ射出する
平行光は、X線光源の大きさが有限であるため、種々の
角度成分を持つ平行光が入り混じっているが、この平行
光が射出する途中に設置した単結晶構造の超電導体から
なるフィルターは結晶方向にしか超電導性能を有しない
ので、このフィルターにより、結晶方向に垂直な波面を
持つ光だけが透過率が非常に高くなるため、フィルター
より射出する光は、コヒーレンシーが高い平面波となる
That is, the X-rays emitted from the X-ray light source are turned into parallel light by the parabolic mirror. Since the size of the X-ray light source is finite, the parallel light emitted from this parabolic mirror is a mixture of parallel light with various angular components. A filter made of a superconductor with a single-crystal structure has superconducting performance only in the crystal direction, so this filter has a very high transmittance only for light with a wavefront perpendicular to the crystal direction, so the light emitted from the filter is becomes a plane wave with high coherency.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。第1図は本発明の一実施例におけるコリメート光
学系を示す断面図である。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a collimating optical system in an embodiment of the present invention.

第1図において、1はX線光源、2はX線光源1より射
出するX線、3はX線2を平行光に変換する放物面ミラ
ー、4は単結晶構造の超電導体からなり、単結晶方向4
a (第2図参照)が放物面ミラー3の光軸方向と一致
されたフィルター、5はマスク、6はウェハである。
In FIG. 1, 1 is an X-ray light source, 2 is an X-ray emitted from the X-ray light source 1, 3 is a parabolic mirror that converts the X-rays 2 into parallel light, and 4 is a superconductor with a single crystal structure. Single crystal direction 4
a (see FIG. 2) is a filter aligned with the optical axis direction of the parabolic mirror 3, 5 is a mask, and 6 is a wafer.

次に上記実施例の動作について説明する。Next, the operation of the above embodiment will be explained.

X線光源1より射出したX線2は、放物面ミラー3によ
シ平行光に変換される。この平行光は超電導体であるフ
ィルター4によシ、結晶方向4aに垂直な波面を持つ平
行光のみが射出されてマスク5に照射され、この像がウ
エノ・6に転写される。
X-rays 2 emitted from an X-ray light source 1 are converted into parallel light by a parabolic mirror 3. This parallel light is passed through a filter 4 which is a superconductor, and only the parallel light having a wavefront perpendicular to the crystal direction 4a is emitted and irradiated onto a mask 5, and this image is transferred onto a mask 6.

そして、フィルター’4として、上記のように単結晶の
超電導体を用い、第2図に示すようにその単結晶の方向
4aを放物面ミラー3の光軸方向と一致させているため
その超電導性能によシ単結晶の結晶方向4aに垂直な波
面を持つ平面波だけ、透過率がほぼ100%となシ、他
のものは透過率が非常に小さくなる。そのため、フィル
ター4を射出した平行光のコヒーレンシーは非常に高く
なシ、マスク5よυ射出する光は、マスク5の格子間隔
が使用波長に近い場合を除いては、はぼ平行にウェハ6
に転写されるので、半影ぼけが起こらない。また、マス
ク5とウェハ6の間隔も大きくできる。
As filter '4, a single-crystal superconductor is used as described above, and as shown in FIG. In terms of performance, only plane waves having a wavefront perpendicular to the crystal direction 4a of the single crystal have a transmittance of almost 100%, while transmittances of other plane waves are extremely small. Therefore, the coherency of the parallel light emitted from the filter 4 is very high, and the light emitted from the mask 5 is almost parallel to the wafer 6, unless the grating spacing of the mask 5 is close to the wavelength used.
, so no penumbra blurring occurs. Furthermore, the distance between the mask 5 and the wafer 6 can also be increased.

発明の効果 以上述べたように本発明によれば、X線光源から放射さ
れるX線を放物面ミラーにより平行光とし、この平行光
の途中に単結晶の超電導体を用い、ある単一波面の平行
光の透過率のみを良くしたフィルターを配置しているの
で、マスクを照射する平行光のコヒーレンシーが非常に
高いため、ウェハに投影される像の半影ぼけを非常に小
さくすることができる。
Effects of the Invention As described above, according to the present invention, X-rays emitted from an Since a filter is placed that improves the transmittance of only the parallel light on the wavefront, the coherency of the parallel light that irradiates the mask is extremely high, making it possible to minimize the penumbra blur of the image projected onto the wafer. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例におけるコリメ
ート光学系を示し、第1図は全体の断面図、第2図はフ
ィルターの光路図、第3図は従来のX線露光光学装置の
断面図である。 1・・・X線光源、2・・・X線、3・・・放物面ミラ
ー、4・・・フィルター、5・・・マスク、6・・・ウ
ェハ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名fj
il  図 第 2 図 第3図
1 and 2 show a collimating optical system in an embodiment of the present invention, FIG. 1 is an overall sectional view, FIG. 2 is an optical path diagram of a filter, and FIG. 3 is a conventional X-ray exposure optical system. FIG. DESCRIPTION OF SYMBOLS 1... X-ray light source, 2... X-ray, 3... Parabolic mirror, 4... Filter, 5... Mask, 6... Wafer. Name of agent: Patent attorney Toshio Nakao and one other personfj
il Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  X線光源と、このX線光源から放射されるX線を平行
光にする放物面ミラーと、この放物面ミラーの光軸上に
配置され、単結晶構造の超電導体が用いられ、単結晶の
方向が放物面ミラーの光軸方向が一致されたフィルター
とを備えたことを特徴とするコリメート光学系。
It consists of an X-ray light source, a parabolic mirror that converts the X-rays emitted from the X-ray source into parallel light, and a superconductor with a single crystal structure that is placed on the optical axis of the parabolic mirror. A collimating optical system characterized by comprising a filter whose crystal direction is matched with the optical axis direction of a parabolic mirror.
JP62262048A 1987-10-16 1987-10-16 Collimating optical system Pending JPH01102398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262048A JPH01102398A (en) 1987-10-16 1987-10-16 Collimating optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262048A JPH01102398A (en) 1987-10-16 1987-10-16 Collimating optical system

Publications (1)

Publication Number Publication Date
JPH01102398A true JPH01102398A (en) 1989-04-20

Family

ID=17370307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262048A Pending JPH01102398A (en) 1987-10-16 1987-10-16 Collimating optical system

Country Status (1)

Country Link
JP (1) JPH01102398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156700A (en) * 1987-12-15 1989-06-20 Nikon Corp Collimating device for short wavelength optical system
JPH0431799A (en) * 1990-05-28 1992-02-03 Sumitomo Heavy Ind Ltd Convergence and deflection device of synchrotron orbital radiation beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156700A (en) * 1987-12-15 1989-06-20 Nikon Corp Collimating device for short wavelength optical system
JPH0431799A (en) * 1990-05-28 1992-02-03 Sumitomo Heavy Ind Ltd Convergence and deflection device of synchrotron orbital radiation beam

Similar Documents

Publication Publication Date Title
JP3078163B2 (en) Lithographic reflective mask and reduction projection exposure apparatus
US4360586A (en) Spatial period division exposing
US20050286038A1 (en) Layered structure for mosaic tile wave plate
JPS58200238A (en) Photomask
US4231657A (en) Light-reflection type pattern forming system
US4514857A (en) X-Ray lithographic system
JPH07307268A (en) Optical device for illumination
Chu et al. Replication of 50‐nm‐linewidth device patterns using proximity x‐ray lithography at large gaps
JPH01102398A (en) Collimating optical system
JPH01102399A (en) Reducing projection optical system
JPH0219850A (en) Pattern forming method
JPS60226122A (en) Light reflector and exposing apparatus
JPH0359569B2 (en)
JPS61141135A (en) X-ray lithographic device
JPH0385719A (en) Exposure method
JPH0527080B2 (en)
JPH0246717A (en) X-ray exposure
JPH02153520A (en) Exposure device
JPH01263599A (en) Manufacture of semiconductor
JPH023000A (en) X-ray exposure device
KR100272656B1 (en) Reticle structure of semiconductor
JP2892706B2 (en) Method for manufacturing semiconductor device
JPH04297014A (en) Synchrotron-orbit emitted-light lithographic device
JPS61204935A (en) Exposure equipment for reflection-reduction projection
KR950021037A (en) Semiconductor exposure equipment