JP2892706B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2892706B2
JP2892706B2 JP1256050A JP25605089A JP2892706B2 JP 2892706 B2 JP2892706 B2 JP 2892706B2 JP 1256050 A JP1256050 A JP 1256050A JP 25605089 A JP25605089 A JP 25605089A JP 2892706 B2 JP2892706 B2 JP 2892706B2
Authority
JP
Japan
Prior art keywords
semiconductor device
exposed
manufacturing
diffracted lights
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1256050A
Other languages
Japanese (ja)
Other versions
JPH03116921A (en
Inventor
章二 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu VLSI Ltd
Fujitsu Ltd
Original Assignee
Fujitsu VLSI Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu VLSI Ltd, Fujitsu Ltd filed Critical Fujitsu VLSI Ltd
Priority to JP1256050A priority Critical patent/JP2892706B2/en
Publication of JPH03116921A publication Critical patent/JPH03116921A/en
Application granted granted Critical
Publication of JP2892706B2 publication Critical patent/JP2892706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 [概要] 半導体装置の製造方法に係り、詳しくはシンクロトロ
ン放射光にて形成される複数の回折光にて複数の被露光
物の露光を行なうようにした半導体装置の製造方法に関
し、 精度の高い半導体装置を短納期、低コストで製造でき
る半導体装置の製造方法を提供することを目的とし、 シンクロトロン放射光を、異なる向きの結晶格子面を
複数備えた回折体の一平面に照射して前記放射光からブ
ラッグ条件を満たす複数の回折光を分岐形成させ、これ
ら複数の回折光にて複数の被露光物の露光を行なうよう
にした。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for exposing a plurality of objects to be exposed with a plurality of diffracted lights formed by synchrotron radiation. With respect to the manufacturing method, an object of the present invention is to provide a method of manufacturing a semiconductor device capable of manufacturing a highly accurate semiconductor device in a short delivery time and at a low cost. A plurality of diffracted lights satisfying the Bragg condition are branched from the emitted light by irradiating one plane, and a plurality of objects to be exposed are exposed by the plurality of diffracted lights.

[産業上の利用分野] 本発明は半導体装置の製造方法に係り、詳しくはシン
クロトロン放射光にて形成される複数の回折光にて複数
の被露光物の露光を行なうようにした半導体装置の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for exposing a plurality of objects to be exposed using a plurality of diffracted lights formed by synchrotron radiation. It relates to a manufacturing method.

近年、半導体装置の高集積化に伴い、プロセス工程に
おいてはサブミクロンオーダーの精度が要求されてい
る。従って、このサブミクロンオーダーの半導体装置の
製造にはシンクロトロン放射光のようにシャープで指向
性が良い強い光を使用することが必要である。
In recent years, with the increase in the degree of integration of semiconductor devices, accuracy in the order of submicrons has been required in the process steps. Therefore, it is necessary to use strong light with good directivity, such as synchrotron radiation, for manufacturing a semiconductor device on the order of submicrons.

[従来の技術] 従来、一般に、LSI製造に使用されるレチクル,マス
ク等の作製には電子ビーム描画装置が使用されている。
この電子ビーム描画装置はプロセス工程においてミクロ
ンオーダーまでの半導体装置の製造には適しているが、
サブミクロンオーダーの半導体装置では電子ビームの回
折,干渉等が発生して正確なパターンを露光することが
できないという問題がある。
[Prior Art] Conventionally, an electron beam lithography apparatus has been generally used for manufacturing a reticle, a mask, and the like used in LSI manufacturing.
This electron beam lithography system is suitable for manufacturing semiconductor devices down to the micron order in the process steps,
In a submicron-order semiconductor device, there is a problem that an accurate pattern cannot be exposed due to diffraction, interference and the like of an electron beam.

そこで、サブミクロンオーダーの精度が要求される半
導体装置の製造において、シンクロトロン装置のストレ
ージリングから放射されたシンクロトロン放射光(X
線)のようなシャープで指向性が良い強い光を用いてレ
チクル,マスク等を露光することが考えられている。
Therefore, in the manufacture of semiconductor devices that require submicron-order accuracy, synchrotron radiation (X
Exposure of a reticle, a mask, or the like using sharp light having good directivity, such as a line, is considered.

[発明が解決しようとする課題] しかしながら、上記の方法では大型のシンクロトロン
装置より放射された1本のシンクロトロン放射光に対し
て1つのレチクル又はマスクしか露光できず、製造コス
トが非常に高くばかりでなく、短納期化を図ることもで
きないという問題がある。
[Problems to be Solved by the Invention] However, in the above method, only one reticle or mask can be exposed to one synchrotron radiation beam emitted from a large-sized synchrotron device, and the manufacturing cost is extremely high. In addition, there is a problem that it is not possible to shorten the delivery time.

本発明は上記問題点を解決するためになされたもので
あって、その目的は精度の高い半導体装置を短納期、低
コストで製造できる半導体装置の製造方法を提供するこ
とにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing a semiconductor device capable of manufacturing a highly accurate semiconductor device at a short delivery time and at low cost.

[課題を解決するための手段] シンクロトロン放射光を、異なる結晶格子面を複数備
えた回折体の一平面に照射して前記放射光からブラッグ
条件を満たす複数の回折光を分岐形成させる。そして、
これら複数の回折光にて複数の被露光物の露光を行なう
ようにした。
[Means for Solving the Problems] A synchrotron radiation light is applied to one plane of a diffractive body having a plurality of different crystal lattice planes to form a plurality of diffracted lights satisfying the Bragg condition from the radiation light. And
A plurality of objects to be exposed are exposed with the plurality of diffraction lights.

[作用] シンクロトロン放射光が異なる結晶格子面を複数備え
た回折体の一平面に照射されると、同放射光は極単波長
で指向性に優れているため、各結晶格子面に対してブラ
ッグ条件を満たして回折し、それぞれ向きの異なる回折
光が複数分岐形成される。この複数の回折光にて複数の
被露光物の露光を行なうと、サブミクロンオーダーの半
導体装置においても各回折光の回折,干渉等が起こらず
高精度のパターンを作成することができる。
[Function] When the synchrotron radiation is irradiated onto one plane of a diffractor having a plurality of different crystal lattice planes, the radiation has an extremely single wavelength and excellent directivity. Diffracted light satisfies the Bragg condition, and a plurality of diffracted light beams having different directions are formed. By exposing a plurality of objects to be exposed with the plurality of diffracted lights, a high-precision pattern can be formed even in a semiconductor device of a submicron order without causing diffraction, interference, etc. of each diffracted light.

[実施例] 以下、本発明を具体化した一実施例を図面に従って説
明する。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明を具体化した一実施例における露光方
法を説明するための概略構成図、第2図はガラスホルダ
の断面図である。
FIG. 1 is a schematic configuration diagram for explaining an exposure method in an embodiment embodying the present invention, and FIG. 2 is a sectional view of a glass holder.

第1図に示すように、第1真空室1内にはガラスホル
ダ2が図示しない固定部材にて立設固定されている。第
2図に示すように、このガラスホルダ2の中央部には正
方形状の透孔3が形成され、同透孔3内にはシリコン
(Si)の単結晶粉末を押し固めた回折体4が嵌合されて
いる。即ち、この回折体4を構成する各単結晶粉末の結
晶格子面はそれぞれ異なる向きを向いていることにな
る。前記ガラスホルダ2の透孔3の縦方向寸法a及び横
方向寸法bは本実施例ではそれぞれ2cmとしており、同
ホルダ2の厚さ方向寸法は厚いほどよい。
As shown in FIG. 1, a glass holder 2 is erected and fixed in a first vacuum chamber 1 by a fixing member (not shown). As shown in FIG. 2, a square through-hole 3 is formed in the center of the glass holder 2, and a diffractor 4 formed by compacting single crystal silicon (Si) powder in the through-hole 3 is provided. Mated. That is, the crystal lattice planes of the single crystal powders constituting the diffracting body 4 face different directions. In the present embodiment, the longitudinal dimension a and the lateral dimension b of the through hole 3 of the glass holder 2 are each 2 cm, and the thickness dimension of the holder 2 is preferably as large as possible.

従って、第1図に示すようにこの回折体4に対してシ
ンクロトロン装置のストレージリング(図示略)から放
射されたシンクロトロン放射光、即ち、X線L0を角度θ
にた照射すると、同X線L0の径は各単結晶粉末の結晶粒
よりも大きいため複数の結晶粒に対して照射されること
となり、各結晶粒に対してブラッグ条件を満たして回折
し、それぞれ向きの異なる複数(本実施例では3本)の
回折光L1〜L3が形成される。
Therefore, as shown in FIG. 1, synchrotron radiation light, that is, X-rays L0 radiated from the storage ring (not shown) of the synchrotron device to this diffractor 4 is converted to an angle θ
When irradiation is performed, the diameter of the same X-ray L0 is larger than the crystal grain of each single crystal powder, so that it is applied to a plurality of crystal grains. A plurality (three in this embodiment) of diffracted lights L1 to L3 having different directions are formed.

一方、第2真空室5内には前記各回折光L1〜L3の延長
線上に被露光物としてのレチクル6〜8が配置され、各
レチクル6〜8には第1及び第2真空室1,5の境界部B
に配設されたコリメータ9〜11により各回折光L1〜LCの
径が露光に必要な径に絞られて照射される。
On the other hand, in the second vacuum chamber 5, reticles 6 to 8 as an object to be exposed are arranged on an extension of the respective diffracted lights L1 to L3, and the first and second vacuum chambers 1, Boundary B of 5
The diameter of each of the diffracted lights L1 to LC is narrowed down to the diameter required for exposure by the collimators 9 to 11 provided for the irradiation.

従って、各レチクル6〜8をそれぞれx,y矢印方向に
移動させることにより、各レチクル6〜8に対してそれ
ぞれ所望(同一又は異なる)のパターンを露光すること
ができる。
Therefore, by moving each of the reticles 6 to 8 in the x and y arrow directions, a desired (identical or different) pattern can be exposed to each of the reticles 6 to 8.

このように、本実施例ではブラッグ条件を満たす極単
波長で指向性に優れたX線L0を、結晶格子面がそれぞれ
異なる向きを向いているシリコンの単結晶粉末よりなる
回折体4に照射し、同X線L0を各結晶粒にて回折させ、
それぞれ向きの異なる複数の回折光L1〜L3を形成した。
そして、各回折光L1〜L3にて複数のレチクル6〜8の露
光を行なうようにしたので、サブミクロンオーダーの半
導体装置においても各回折光の回折,干渉等が起こらず
高精度のパターンを作成することができ精度の高い半導
体装置を製造することができる。
As described above, in the present embodiment, the X-ray L0 having an extremely single wavelength satisfying the Bragg condition and having excellent directivity is irradiated to the diffractor 4 made of silicon single crystal powder whose crystal lattice planes are oriented in different directions. The X-ray L0 is diffracted at each crystal grain,
A plurality of diffracted lights L1 to L3 having different directions were formed.
Since the plurality of reticles 6 to 8 are exposed with the diffracted lights L1 to L3, a high-precision pattern can be created without causing diffraction, interference, etc. of each diffracted light even in a submicron-order semiconductor device. And a highly accurate semiconductor device can be manufactured.

又、X線L0から回折光L1〜L3を形成し、各回折光L1〜
L3にて複数のレチクル6〜8の露光を行なうようにした
ので、低コスト化を図ることができるとともに、短納期
化を図ることができる。
Further, diffracted lights L1 to L3 are formed from the X-ray L0, and the diffracted lights L1 to L3 are formed.
Since the plurality of reticles 6 to 8 are exposed at L3, the cost can be reduced and the delivery time can be shortened.

さらに、本実施例では第1真空室1内にシリコンの単
結晶粉末を押し固めた回折体4を配置し、レチクル6〜
8を第2真空下5内に配置したので、X線L0の照射に伴
う単結晶粉末の飛散によるレチクル6〜8の汚染を防止
することができるとともに、汚染及び空気による回折線
L1〜L3の散乱を防止することができる。
Further, in this embodiment, a diffractor 4 formed by compacting single crystal silicon powder in the first vacuum chamber 1 is disposed, and
8 is disposed in the second vacuum 5 so that contamination of the reticles 6 to 8 due to scattering of the single crystal powder due to the irradiation of the X-ray L0 can be prevented, and at the same time, contamination and diffraction lines due to air.
The scattering of L1 to L3 can be prevented.

なお、本実施例では回折体4をシリコン(Si)の単結
晶粉末を押し固めて構成したが、これ以外に例えばゲル
マニウム(Ge)等の単結晶粉末を押し固めて形成しても
よい。
In the present embodiment, the diffracting element 4 is formed by pressing a single crystal powder of silicon (Si), but may be formed by pressing a single crystal powder of, for example, germanium (Ge).

又、本実施例では被露光物をレチクル6〜8とした
が、これ以外に例えばマスクや、ウェハ上に設けられた
フォトレジストを露光るようにしてもよい。
In this embodiment, the objects to be exposed are the reticles 6 to 8. However, for example, a mask or a photoresist provided on a wafer may be exposed.

[発明の効果] 以上詳述したように、本発明によれば精度の高い半導
体装置を短納期、低コストで製造できる優れた効果があ
る。
[Effects of the Invention] As described in detail above, according to the present invention, there is an excellent effect that a highly accurate semiconductor device can be manufactured at a short delivery time and at low cost.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を具体化した一実施例における露光方法
を説明するための概略構成図、 第2図はガラスホルダを示す断面図である。 図において、 2はガラスホルダ、 4は回折体、 6〜8はレチクル、 9〜11はコリメータ、 L0はシンクロトロン放射光としてのX線、 L1〜L3は回折光である。
FIG. 1 is a schematic configuration diagram for explaining an exposure method in an embodiment embodying the present invention, and FIG. 2 is a sectional view showing a glass holder. In the figure, 2 is a glass holder, 4 is a diffractor, 6 to 8 are reticles, 9 to 11 are collimators, L0 is X-rays as synchrotron radiation, and L1 to L3 are diffracted lights.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/027 G03F 7/20 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 21/027 G03F 7/20

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シンクロトロン放射光を、異なる向きの結
晶格子面を複数備えた回折体の一平面に照射して前記放
射光からブラッグ条件を満たす複数の回折光を分岐形成
させ、これら複数の回折光にて複数の被露光物の露光を
行なうようにしたことを特徴とする半導体装置の製造方
法。
1. A synchrotron radiation light is irradiated on one plane of a diffractive body having a plurality of crystal lattice planes of different directions to form a plurality of diffracted lights satisfying the Bragg condition from the radiation light. A method for manufacturing a semiconductor device, wherein a plurality of objects to be exposed are exposed by diffracted light.
JP1256050A 1989-09-29 1989-09-29 Method for manufacturing semiconductor device Expired - Fee Related JP2892706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256050A JP2892706B2 (en) 1989-09-29 1989-09-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256050A JP2892706B2 (en) 1989-09-29 1989-09-29 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH03116921A JPH03116921A (en) 1991-05-17
JP2892706B2 true JP2892706B2 (en) 1999-05-17

Family

ID=17287209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256050A Expired - Fee Related JP2892706B2 (en) 1989-09-29 1989-09-29 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2892706B2 (en)

Also Published As

Publication number Publication date
JPH03116921A (en) 1991-05-17

Similar Documents

Publication Publication Date Title
US4028547A (en) X-ray photolithography
US5415835A (en) Method for fine-line interferometric lithography
US20020172901A1 (en) Method of exposing a lattice pattern onto a photo-resist film
JP2001126983A (en) Lithography method and apparatus thereof
CA1192673A (en) X-ray lithographic system
US5124561A (en) Process for X-ray mask warpage reduction
JPH06124872A (en) Image forming method and manufacture of semiconductor device using the method
JP3188879B2 (en) Improved X-ray mask structure
JP2892706B2 (en) Method for manufacturing semiconductor device
JP2645347B2 (en) Exposure mask for parallel X-ray
US4604345A (en) Exposure method
JPH0689839A (en) Fine pattern formation and fine pattern aligner
JPS60173551A (en) Pattern transferring method by reflecting projection of light such as x rays or the like
US5509041A (en) X-ray lithography method for irradiating an object to form a pattern thereon
JPH0359569B2 (en)
Fay et al. Advanced X-ray alignment system
Smith et al. Why bother with x-ray lithography?
JPS5915380B2 (en) Fine pattern transfer device
JPS59184526A (en) Formation of pattern
JPH0368531B2 (en)
JPS61141135A (en) X-ray lithographic device
Knyazev et al. Development of Field Alignment Methods for Electron-Вeam Lithography in the Case of X-ray Bragg–Fresnel Lenses
JPH0715869B2 (en) Soft X-ray exposure system
Vartanian et al. Development of a polycapillary collimator for point-source x-ray lithography
JPH0943851A (en) Projection aligner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees