JPS6220849B2 - - Google Patents

Info

Publication number
JPS6220849B2
JPS6220849B2 JP56189070A JP18907081A JPS6220849B2 JP S6220849 B2 JPS6220849 B2 JP S6220849B2 JP 56189070 A JP56189070 A JP 56189070A JP 18907081 A JP18907081 A JP 18907081A JP S6220849 B2 JPS6220849 B2 JP S6220849B2
Authority
JP
Japan
Prior art keywords
backwashing
backwash
resin
collection mechanism
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56189070A
Other languages
Japanese (ja)
Other versions
JPS5892462A (en
Inventor
Kanroku Naganami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP56189070A priority Critical patent/JPS5892462A/en
Publication of JPS5892462A publication Critical patent/JPS5892462A/en
Publication of JPS6220849B2 publication Critical patent/JPS6220849B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、イオン交換塔の逆洗方法の改良に関
するものである。 最近イオン交換塔の逆洗方法については、従来
の順流式に代わつて再生効率の良い向流式が採用
されるようになつてきており、下向流通水上向流
通薬方式の向流式では、通常毎サイクルの逆洗は
中間集水装置より上部の樹脂層のみ行ない、全樹
脂層の逆洗は数サイクルから数十サイクルに1回
の割合で行なわれている。 一般にこの逆洗流速は樹脂に付着している懸濁
物を樹脂同士の衝突によつて剥離させるのに適し
た展開率に保ち、樹脂同士の衝突が最大になるよ
うに逆洗流速を決める必要がある。因みに一般の
過装置ではこの展開率は30%程度がよいといわ
れている。 イオン交換塔では、展開率を30%を基準にする
と逆洗流速がかなり小さくなり、逆洗効率を支配
しているもう一つの要因である剥離した懸濁物の
運搬速度が小さくなり、樹脂層の表層から処理液
排出口としての上部集水装置まで運搬し排出する
のにかなり時間を要してしまう。それ故現在逆洗
流速は、剥離した懸濁物の排出を早くするため
に、カチオン交換塔でLV15m/h、アニオン交
換塔でLV6m/h程度が採用されている。この場
合の展開率は水温20.2℃でそれぞれ42%、63%程
度である。展開率30%となる流速がそれぞれ
LV12m/h、LV3m/h程度であるから、かなり
早い流速を採用しているといえる。 しかしながら、このような流速を採用していて
も懸濁物の粒径、比重が大きい場合排出できにく
く、これが樹脂層上部にかなり残留すること、ま
た圧力損失の増大をもたらす微細化した樹脂が残
留することはよく経験されるところである。 向流式のイオン交換塔においては、樹脂層を
1800〜3000mmとし、従来の順流式よりもかなり高
くしているため、その分フリーボードの距離が長
くなり、逆洗時間も長くする必要がある。現在、
下部集水装置からの全逆洗を行なうのに1〜1.5
時間と長時間掛かつている例も多い。 本発明はこのような現状の問題点を改良し、効
率良く懸濁物の除去を行ない逆洗時間を短縮する
と共に、必要なフリーボードを従来より著しく小
さくできる、イオン交換塔の逆洗方法を提供する
ことを目的とするものである。 すなわち本発明は、イオン交換塔内にイオン交
換樹脂が充填され、中間集水機構および下部集水
機構を有するイオン交換装置の逆洗方法におい
て、前記中間集水機構から逆洗水を導入する第1
部分逆洗工程、前記下部集水機構から逆洗水を導
入する全逆洗工程、前記中間集水機構から逆洗水
を導入する第2部分逆洗工程の順に逆洗操作を行
うと共に、前記各部分逆洗工程における逆洗水流
速を前記全逆洗工程における逆洗水流速よりも大
きく設定し、前記第1部分逆洗工程において樹脂
表層の懸濁物皮膜を破壊したのち、前記全逆洗工
程において該破壊物を樹脂表層から剥離すると共
に微細径の樹脂を樹脂層上部に集中させ、次いで
前記第2部分逆洗工程においてこれら剥離物及び
微細径樹脂をイオン交換塔外へ排出することを特
徴とするものである。 本発明の実施態様を説明すると、原水中に懸濁
物が多く含まれる場合は樹脂表層に懸濁物の皮膜
が形成されるときがあり、このような状態で下部
集水機構から全逆洗を行なうと皮膜の破壊が弱く
マツドボール生成の一因となるので、これを避け
るため第1段階として中間集水機構から、従来よ
りも高流速(カチオン塔の場合、LV20〜30m/
h)で逆洗を行なつてこのような皮膜を破壊する
(これを逆洗工程()、部分逆洗という)。その
後、下部集水機構より剥離作用が最大になるよう
な流速(従来よりは低流速)で逆洗する(これを
逆洗工程()、全逆洗という)。そして更に、剥
離された懸濁物、微細樹脂が樹脂層上部に集中し
た時点で再度中間集水機構から逆洗して運搬を行
なう(これを逆洗工程()、部分逆洗という)。 このように本発明は3段階で逆洗を行なうこと
を基本とするが、懸濁物が多い場合はこれらの逆
洗を繰り返し行なうのである。このように、逆洗
の機能を剥離作用と運搬の二つに分けてそれぞれ
に好適なように逆洗を行なうことにより剥離作用
が最大となり、剥離操作のための時間が短縮さ
れ、また運搬のための流速も大きくしているの
で、従来方法よりも逆洗時間が短縮されるのであ
る。 一般に、イオン交換塔のフリーボードはカチオ
ン交換塔で樹脂層の75%、アニオン交換塔で100
%程度としているが、この値は剥離作用に好適の
流速により決めたものではなく運搬時間も考慮し
て大きめに設定されている。例えば、アニオン交
換塔において水温が低い場合、展開率が80%にな
つたときにも更に安全率20%を見込み100%とし
ている。これに対して本発明方法に従えば、従来
法よりも樹脂層の展開率が小さくとれ、全逆洗時
で30%〜40%に設定されるため、更に安全率を20
〜30%見込んでも従来よりフリーボードをかなり
小さくできるのである。 次に、本発明による逆洗工程の実施例を図面を
参照して説明する。 実施例 図においてC1,C2,C3はそれぞれ下部集水機
構、中間集水機構、上部集水機構であり、R1
R2はそれぞれ下部樹脂層、上部樹脂層である。
また、1,2及び3は弁を、Hは塔高を、hは逆
洗時の樹脂面を、l1は下部樹脂層の層高を、l2
上部樹脂層の層高をそれぞれ表わしている。 逆洗工程():採水終了後弁2、弁3を開とし
カチオン交換塔でLV20〜25m/hで5〜
15分間、アニオン交換塔でLV8〜14m/h
で5〜15分間逆洗を行なう。 逆洗工程():次いで弁2を閉、弁1を開と
し、カチオン交換塔でLV8〜12m/hで30
〜40分間、アニオン交換塔でLV3〜4m/
hで20〜40分間逆洗を行なう。 逆洗工程():次いで弁1を閉とし2〜3分間
の沈静処理後弁2を開とし逆洗工程()
と同様の操作を行なう。なお、逆洗時間は
樹脂の汚染状況によつて適宜決定する。 このような手順によつて、濁度0.5度の原水を
処理する向流式イオン交換塔において10〜20サイ
クルに1回の割合でカチオン交換塔を逆洗した
が、従来方法では60〜90分逆洗に要したのに対し
本発明方法では次の如く45分程度で充分であり、
逆洗状態は良好であつた。 逆洗工程()……LV25m/h、5分 〃 ()……LV12m/h、30分 〃 ()……LV25m/h、10分 合 計 45分 一方、イオン交換塔の必要高さについて検討し
た結果については、別表のとおりである。すなわ
ち、前記l1を1700mm、l2を700mmの一定値とし、本
発明方法では上記手順によつて部分逆洗と全逆洗
を、従来方法では全逆洗のみをそれぞれ別表の条
件に従つて行なつた結果ほぼ同程度の逆洗効果を
得ることができたが、別表のようにhの最大値
(※印)は本発明方法による方が従来方法よりも
著しく小さく、その差はカチオン交換塔では380
mm、アニオン交換塔では720mmとなつた。 これを更に具体的に説明すると、従来方法では
逆洗時の樹脂流失の危険がないように〔H−h〕
を300mm程度にとり、最も展開率の大きいとき
(水温が低いとき、5℃)の値にこの300mmを加え
ると、カチオン交換塔ではH=3890+300≒4200
mm、アニオン交換塔ではH=4440+300≒4800mm
もの塔高が必要となる。すなわち充填層のそれぞ
れ75%、100%のフリーボードを必要とする。こ
れに比べて本発明方法によつた場合は、同様に
〔H−h〕を300mmとするとカチオン交換塔でH=
3510+300≒3900mm、アニオン交換塔でH=3720
+300≒4100mmとなり、更に安全を見込んで〔H
−h〕を400mmとしてもH=3720+400≒4200mmと
なり必要なフリーボードはそれぞれ60〜65%、70
〜80%で充分である。 このように本発明方法によれば、アニオン交換
塔においては従来方法に比べて塔高(H)が600
〜700mmも小さくでき、塔高が小さくできること
によつて、洗浄時の置換水量の減少、洗浄時間の
短縮、さらには排水量の減少など数々のメリツト
が生じる。
The present invention relates to an improvement in a method for backwashing an ion exchange column. Recently, as for the backwashing method of ion exchange towers, a countercurrent type with high regeneration efficiency has been adopted instead of the conventional downflow type. Normally, backwashing is performed every cycle only for the resin layer above the intermediate water collecting device, and backwashing of all the resin layers is performed once every several cycles to several tens of cycles. In general, this backwashing flow rate must be maintained at a development rate suitable for peeling off suspended matter adhering to the resin through collisions between the resins, and the backwashing flow rate must be determined to maximize collisions between the resins. There is. Incidentally, it is said that this deployment rate is about 30% for general overflow devices. In an ion exchange tower, when the development rate is set to 30%, the backwash flow rate becomes considerably small, and the transport speed of exfoliated suspended matter, which is another factor governing backwash efficiency, becomes small, and the resin layer It takes a considerable amount of time to transport and discharge the treated liquid from the surface layer to the upper water collection device that serves as the treated liquid outlet. Therefore, the current backwash flow rate is approximately LV15 m/h for cation exchange towers and LV6 m/h for anion exchange towers in order to speed up the discharge of separated suspended matter. In this case, the expansion rates are about 42% and 63%, respectively, at a water temperature of 20.2°C. The flow velocity at which the deployment rate is 30% is
LV12m/h and LV3m/h, so it can be said that a fairly high flow velocity is used. However, even if such a flow rate is adopted, if the particle size and specific gravity of the suspended matter are large, it will be difficult to discharge, and a considerable amount of this will remain in the upper part of the resin layer, and finer resin will remain, causing an increase in pressure loss. It is a common experience to do this. In a countercurrent ion exchange tower, the resin layer is
Since it is 1800 to 3000 mm, which is much higher than the conventional forward flow type, the freeboard distance is correspondingly longer, and the backwashing time must also be longer. the current,
1 to 1.5 for full backwashing from the lower water collection system.
There are many cases where it takes a long time. The present invention improves these current problems and provides a method for backwashing ion exchange towers that efficiently removes suspended matter, shortens backwash time, and significantly reduces the required free board compared to conventional methods. The purpose is to provide That is, the present invention provides a method for backwashing an ion exchange apparatus in which an ion exchange tower is filled with an ion exchange resin and has an intermediate water collection mechanism and a lower water collection mechanism, including a step in which backwash water is introduced from the intermediate water collection mechanism. 1
The backwash operation is performed in the order of a partial backwash step, a full backwash step in which backwash water is introduced from the lower water collection mechanism, and a second partial backwash step in which backwash water is introduced from the intermediate water collection mechanism, and the The backwash water flow rate in each partial backwash process is set higher than the backwash water flow rate in the total backwash process, and after destroying the suspended matter film on the resin surface layer in the first partial backwash process, In the washing process, the destructive substances are peeled off from the resin surface layer and the fine-diameter resin is concentrated on the upper part of the resin layer, and then in the second partial backwashing process, these peeled substances and the fine-diameter resin are discharged to the outside of the ion exchange column. It is characterized by: To explain the embodiment of the present invention, when raw water contains a large amount of suspended matter, a film of suspended matter may be formed on the resin surface layer, and in such a state, all backwashing is performed from the lower water collection mechanism. If this is done, the film will be weakly destroyed and become a factor in the formation of mud balls, so in order to avoid this, the first step is to increase the flow rate from the intermediate water collection mechanism to a higher flow rate than before (in the case of a cation tower, LV 20 to 30 m/min).
In h), backwashing is performed to destroy such a film (this is called backwashing step (), partial backwashing). After that, backwashing is performed from the lower water collecting mechanism at a flow rate (lower flow rate than before) that maximizes the stripping effect (this is called the backwashing process (2013), total backwashing). Further, when the separated suspended matter and fine resin are concentrated on the upper part of the resin layer, they are backwashed and transported again from the intermediate water collection mechanism (this is called a backwashing step () or partial backwashing). As described above, the present invention is based on performing backwashing in three stages, but if there are many suspended substances, these backwashing steps are repeated. In this way, by dividing the backwashing function into two parts, stripping action and transportation, and performing backwashing optimally for each, the stripping action can be maximized, the time for stripping operations can be shortened, and transportation can be improved. Since the flow rate is also increased, the backwashing time is shorter than in conventional methods. Generally, the freeboard of an ion exchange tower is 75% of the resin layer in a cation exchange tower and 100% in an anion exchange tower.
%, but this value is not determined based on the flow rate suitable for the peeling action, but is set rather large taking into account the transportation time. For example, when the water temperature in an anion exchange tower is low, even when the expansion rate reaches 80%, an additional safety factor of 20% is assumed to be 100%. On the other hand, according to the method of the present invention, the development rate of the resin layer can be kept smaller than the conventional method, and is set at 30% to 40% during full backwashing, which further increases the safety factor by 20%.
Even if we estimate ~30%, the free board can be made much smaller than before. Next, an embodiment of the backwashing process according to the present invention will be described with reference to the drawings. Example In the figure, C 1 , C 2 , and C 3 are a lower water collection mechanism, an intermediate water collection mechanism, and an upper water collection mechanism, respectively, and R 1 ,
R 2 is a lower resin layer and an upper resin layer, respectively.
In addition, 1, 2, and 3 represent the valves, H represents the tower height, h represents the resin surface during backwashing, l 1 represents the layer height of the lower resin layer, and l 2 represents the layer height of the upper resin layer. ing. Backwash process (): After water sampling is completed, valves 2 and 3 are opened and the cation exchange tower is run at LV20-25m/h for 5~
LV8~14m/h in anion exchange tower for 15 minutes
Backwash for 5 to 15 minutes. Backwashing process (): Next, close valve 2, open valve 1, and wash the cation exchange tower at LV8~12m/h for 30 minutes.
~40 minutes, LV3~4m/in anion exchange tower
Backwash at h for 20 to 40 minutes. Backwash process (): Next, valve 1 is closed, and after 2 to 3 minutes of settling, valve 2 is opened and backwash process ()
Perform the same operation as . Note that the backwashing time is appropriately determined depending on the contamination status of the resin. Using this procedure, the cation exchange tower was backwashed once every 10 to 20 cycles in a countercurrent ion exchange tower that processes raw water with a turbidity of 0.5 degrees, whereas conventional methods require 60 to 90 minutes. In contrast to the time required for backwashing, in the method of the present invention, about 45 minutes is sufficient as follows,
The backwash condition was good. Backwash process ()...LV25m/h, 5 minutes 〃 ()...LV12m/h, 30 minutes 〃 ()... LV25m/h, 10 minutes Total 45 minutes Meanwhile, consider the required height of the ion exchange tower The results are shown in the attached table. That is, the above l 1 is set to a constant value of 1700 mm and l 2 is set to a constant value of 700 mm, and in the method of the present invention, partial backwashing and full backwashing are performed according to the above procedure, and in the conventional method, only full backwashing is performed according to the conditions in the attached table. As a result, almost the same level of backwashing effect could be obtained, but as shown in the attached table, the maximum value of h (marked with *) is significantly smaller with the method of the present invention than with the conventional method, and the difference is due to cation exchange. 380 in the tower
mm, and in the anion exchange tower it was 720 mm. To explain this more specifically, in the conventional method, there is no risk of resin flowing out during backwashing [H-h]
If we take 300 mm and add this 300 mm to the value when the expansion rate is highest (low water temperature, 5℃), in the cation exchange tower, H = 3890 + 300 ≒ 4200
mm, in anion exchange tower H=4440+300≒4800mm
A tower height is required. i.e. requires 75% and 100% freeboard of the filled layer respectively. In contrast, in the case of the method of the present invention, if [H-h] is similarly set to 300 mm, H =
3510+300≒3900mm, H=3720 in anion exchange tower
+300≒4100mm, and considering further safety [H
−h] is 400mm, H=3720+400≒4200mm, and the required free board is 60-65% and 70%, respectively.
~80% is sufficient. As described above, according to the method of the present invention, the column height (H) in the anion exchange column is 600 mm compared to the conventional method.
It can be made as small as ~700 mm, and by making the column height smaller, there are many benefits such as a reduction in the amount of water replaced during washing, a reduction in washing time, and furthermore, a reduction in the amount of water discharged.

【表】 本発明では、前記全逆洗中に中間集水機構から
も水を導入し上部の樹脂は高流速で逆洗すること
によつて、より効率的な逆洗を行うことができ
る。また、このとき中間集水機構からの水の導入
を間欠的に行なうのも好ましい方法である。 以上述べたように本発明によれば、簡便な操作
で従来方法に比べてより短時間で効率良く逆洗を
行うことができ、樹脂表層に付着形成された懸濁
物皮膜の破壊・除去と、微細径樹脂の除去が的確
に行われ、通水時の差圧が大であつたり、差圧が
短時間内に急上昇する等の問題点は解決され、長
時間安定して良質な処理水が得られるうえ、イオ
ン交換塔の塔高も低くてすみ、装置のコンパクト
化が可能となるなどの利点が得られると共に、本
発明方法は向流式であると混床式であるとを問わ
ず中間集水機構を備えた塔に対し広く適用できる
ものである。
[Table] In the present invention, more efficient backwashing can be performed by introducing water from the intermediate water collecting mechanism during the entire backwashing and backwashing the upper resin at a high flow rate. Further, at this time, it is also a preferable method to introduce water intermittently from the intermediate water collection mechanism. As described above, according to the present invention, backwashing can be performed more efficiently in a shorter time than with conventional methods with simple operations, and the suspended matter film that has formed on the resin surface layer can be destroyed and removed. , fine-diameter resin is removed accurately, and problems such as a large pressure difference during water flow or a sudden rise in pressure difference within a short period of time are resolved, resulting in stable, high-quality treated water for a long period of time. In addition, the height of the ion exchange column can be reduced, making it possible to make the apparatus more compact. It can be widely applied to towers equipped with an intermediate water collection mechanism.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示す系統説明図であ
る。 H…塔高、h…逆洗時の樹脂面、l1…下部樹脂
層の層高、l2…上部樹脂層の層高、C1…下部集水
機構、C2…中間集水機構、C3…上部集水機構。
The drawings are system explanatory diagrams showing embodiments of the present invention. H...tower height, h...resin surface during backwashing, l1 ...layer height of lower resin layer, l2 ...layer height of upper resin layer, C1 ...lower water collection mechanism, C2 ...intermediate water collection mechanism, C 3 ...Upper water collection mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 イオン交換塔内にイオン交換樹脂が充填さ
れ、中間集水機構および下部集水機構を有するイ
オン交換装置の逆洗方法において、前記中間集水
機構から逆洗水を導入する第1部分逆洗工程、前
記下部集水機構から逆洗水を導入する全逆洗工
程、前記中間集水機構から逆洗水を導入する第2
部分逆洗工程の順に逆洗操作を行うと共に、前記
各部分逆洗工程における逆洗水流速を前記全逆洗
工程における逆洗水流速よりも大きく設定し、前
記第1部分逆洗工程において樹脂表層の懸濁物皮
膜を破壊したのち、前記全逆洗工程において該破
壊物を樹脂表層から剥離すると共に微細径の樹脂
を樹脂層上部に集中させ、次いで前記第2部分逆
洗工程においてこれら剥離物及び微細径樹脂をイ
オン交換塔外へ排出することを特徴とするイオン
交換塔の逆洗方法。
1. In a backwashing method for an ion exchange device in which an ion exchange tower is filled with an ion exchange resin and has an intermediate water collection mechanism and a lower water collection mechanism, a first partial backwashing that introduces backwash water from the intermediate water collection mechanism. a full backwashing step of introducing backwash water from the lower water collection mechanism; a second step of introducing backwash water from the intermediate water collection mechanism;
The backwashing operation is performed in the order of the partial backwashing process, and the backwash water flow rate in each partial backwash process is set higher than the backwash water flow rate in the total backwash process, and the resin is washed in the first partial backwash process. After destroying the suspended matter film on the surface layer, the destroyed matter is peeled off from the resin surface layer in the full backwashing process, and fine-diameter resin is concentrated on the upper part of the resin layer, and then these are peeled off in the second partial backwashing process. A method for backwashing an ion exchange tower, characterized by discharging particles and fine-diameter resin to the outside of the ion exchange tower.
JP56189070A 1981-11-27 1981-11-27 Method of backwashing ion-exchange column Granted JPS5892462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56189070A JPS5892462A (en) 1981-11-27 1981-11-27 Method of backwashing ion-exchange column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56189070A JPS5892462A (en) 1981-11-27 1981-11-27 Method of backwashing ion-exchange column

Publications (2)

Publication Number Publication Date
JPS5892462A JPS5892462A (en) 1983-06-01
JPS6220849B2 true JPS6220849B2 (en) 1987-05-09

Family

ID=16234793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56189070A Granted JPS5892462A (en) 1981-11-27 1981-11-27 Method of backwashing ion-exchange column

Country Status (1)

Country Link
JP (1) JPS5892462A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568434B2 (en) * 2010-10-18 2014-08-06 オルガノ株式会社 Separation method of mixed resin in mixed bed type resin packed tower

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372786A (en) * 1976-12-10 1978-06-28 Kubota Ltd Back washing method for ion exchange resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372786A (en) * 1976-12-10 1978-06-28 Kubota Ltd Back washing method for ion exchange resin

Also Published As

Publication number Publication date
JPS5892462A (en) 1983-06-01

Similar Documents

Publication Publication Date Title
JP2904564B2 (en) Method of scrubbing filtration tower using hollow fiber membrane
US3674685A (en) Process of and apparatus for the ion-exchange treatment of liquids
US3862032A (en) Ion exchange waste water treatment process
JPS6220849B2 (en)
US2466662A (en) Operation of ion exchange beds
EP0775524B1 (en) Ion exchange resin particle separation system
JPH0659412B2 (en) Separation and transfer method of ion exchange resin
US4388417A (en) Regeneration of deep bed condensate polishers
JP4396835B2 (en) Ion exchanger
JPH06320169A (en) Method and apparatus for recovering silica in aqueous solution
US3585127A (en) Method for treating water by ion exchange
JP3963025B2 (en) Ion exchange resin separation and regeneration method
JPH053040Y2 (en)
JPH0767533B2 (en) Ion exchange resin cleaning device
GB1562147A (en) Method of regenerating of ion exchange material
JPS5940063B2 (en) Ion exchange resin cleaning method and device
JPS6125645A (en) Method and apparatus for regenerating ion exchange resin using in mixed bed type desalting apparatus
JPS63190631A (en) Method for removing suspension of packed layer
JP3671454B2 (en) Performance recovery method for anion exchange resin in condensate demineralizer
JP3852487B2 (en) Regeneration method of ion exchange resin
JPS60193548A (en) Total backwash method of ion exchange resin
JPS59309A (en) Method and apparatus for washing filter apparatus
JPH0871552A (en) Ion exchange equipment
JP2001079424A (en) Equipment and method for regenerating ion exchange resin
JPS6058241A (en) Backwashing separation of resin mixture