JPS6220844A - Manufacture of nb-ti alloy - Google Patents

Manufacture of nb-ti alloy

Info

Publication number
JPS6220844A
JPS6220844A JP15972685A JP15972685A JPS6220844A JP S6220844 A JPS6220844 A JP S6220844A JP 15972685 A JP15972685 A JP 15972685A JP 15972685 A JP15972685 A JP 15972685A JP S6220844 A JPS6220844 A JP S6220844A
Authority
JP
Japan
Prior art keywords
alloy
melting
melted
tubular body
energy beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15972685A
Other languages
Japanese (ja)
Inventor
Ryoji Baba
良治 馬場
Hiroyuki Ichihashi
市橋 弘行
Akihiro Yamanaka
章裕 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15972685A priority Critical patent/JPS6220844A/en
Publication of JPS6220844A publication Critical patent/JPS6220844A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a homogenous Nb-Ti alloy free of impurity contamination stably at a low cost by subjecting a composite material composed by successive lining by use of Ti tubular body, Nb tubular body and Ti stick material to heating by an energy beam to undergo drip melting. CONSTITUTION:The Ti tubular body 1 is lined inside with the Nb tubular body 2 and further the Nb tubular body 2 is lined inside with the Ti stick material 3 to form a three-layer composite body, which is disposed as melting material in a vacuum chamber 4. Subsequently, the above melting material is allowed to move downward with turning and simultaneously its end is melted by heating by means of an energy beam 6 emitted from an energy beam gun 5 or arc. The resulting Nb-Ti alloy melt drips are allowed to drop to form a metal pool 8 in a water-cooled copper mold 7 and solidified, which is subjected to continuous drawing via a dummy 10 in the form of an Nb-Ti alloy ingot 9. In this way, the homogenous Nb-Ti alloy having neither Nb phase as unmelted residue nor segregation and free from impurity contamination can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、溶は残りのNb相が存在せず、かつ溶製準
備作業等に起因する不純物の汚染もない均一組成のNb
−Ti合金をコスト安く製造する方法に関するものであ
る。
Detailed Description of the Invention <Industrial Application Field> The present invention is characterized in that the melt is made of Nb having a uniform composition in which there is no remaining Nb phase and there is no contamination by impurities resulting from melt preparation work, etc.
The present invention relates to a method of manufacturing -Ti alloy at low cost.

近年、超電導電磁石や超電導ケーブル等に代表される超
電導応用技術の開発・実用化が脚光を浴びてきたが、最
近では、製造や加工性の面で有利とされる合金系の超電
導材料も当初のNb−Zr合金に代ってNb−Ti合金
が主流を占めるようになり、各種線径のNb−Ti合金
線材が市販されるまでになったことから、これらを用い
て比較的容易に安定な超電導磁石等を表作できるように
なっている。
In recent years, the development and practical application of superconducting applied technologies, typified by superconducting electromagnets and superconducting cables, have been in the spotlight.Recently, alloy-based superconducting materials, which are advantageous in terms of manufacturing and processability, have also been developed from the original stage. Nb-Ti alloys have replaced Nb-Zr alloys as the mainstream, and Nb-Ti alloy wires of various wire diameters are now commercially available. It is now possible to display superconducting magnets, etc.

〈従来技術並びにその問題点〉 ところで、 Nb−Ti合金の製造には、 NbもTi
も高融点金属であるため、エネルギービーム(電子ビー
ム、プラズマビーム等)やアークを加熱源として溶解素
材(例えば消耗電極等)を溶解し、その液滴を下方に配
置した水冷銅モールド内へ連続的に滴下・融合して積層
凝固させる“ ドリップ溶解法”が一般に採用されてお
り、より均質な合金製品が得られるように、これまで特
にその溶解素材を中心に様々な工夫が凝らされてきた。
<Prior art and its problems> By the way, in the production of Nb-Ti alloy, both Nb and Ti are used.
Since it is a high-melting point metal, an energy beam (electron beam, plasma beam, etc.) or arc is used as a heating source to melt the molten material (for example, a consumable electrode), and the droplets are continuously poured into a water-cooled copper mold placed below. The "drip melting method" in which melted materials are layered and solidified by dripping and fusion is generally used, and in order to obtain more homogeneous alloy products, various innovations have been made in the past, especially focusing on the melted materials. .

しかし、これらの手段の中で実用されてきたものを大別
すると、結局は、 ■ Nb粉末とTi粉末とを混合・圧縮して成形された
消耗電極を使用し、これを真空アーク溶解する方法。
However, if we roughly divide the methods that have been put into practical use into practice, they are: (1) A method that uses a consumable electrode formed by mixing and compressing Nb powder and Ti powder and melting it in a vacuum arc. .

■ 第5図に示されるように、 Nb板11とTl板1
2とを交互に張り合わせて形成された複合消耗電橋を使
用し、これを真空アーク溶解する方法(特公昭55−6
089号)。
■ As shown in Figure 5, Nb plate 11 and Tl plate 1
A method of vacuum arc melting using a composite consumable bridge formed by alternately pasting 2 and 2 together (Japanese Patent Publication No.
No. 089).

02つに集約されるのが現状であった。The current situation was that it was concentrated into two.

ところが、上記従来のNb−Ti合金製造方法には次の
ような問題点が指摘されていたのである。即ち。
However, the following problems have been pointed out in the conventional Nb-Ti alloy manufacturing method. That is.

前記■の手段 1)低価格かつ高純度のNb粉末やTi粉末が存在せず
、高品質製品をコスト安く得ることが困難である。
Means of (1) above: 1) There is no low-cost, high-purity Nb powder or Ti powder, and it is difficult to obtain high-quality products at low cost.

11)粉末の圧縮成形作業や溶解素材(消耗電極)に組
立てる溶接組立て作業は汚染の危険性が高く、作業も煩
雑である。
11) Powder compression molding work and welding assembly work for assembling melted materials (consumable electrodes) have a high risk of contamination and are complicated.

l11)粉末の圧縮成形による溶解素材(消耗電極)は
、溶解時に欠落したり曲ったシしやすく、溶解作業中の
トラブル源になりやすい。
l11) Materials (consumable electrodes) melted by compression molding of powder are easily chipped or bent during melting, which can easily become a source of trouble during melting work.

iv)  溶解時に、圧縮成形溶解素材(消耗電極)の
脆い部分が欠は落ちて“溶は残り″となる危険性が高い
iv) During melting, there is a high risk that the fragile parts of the compression-molded melting material (consumable electrode) will fall off and leave "molten residue".

前記■の手段 1)溶解素材(消耗電極)の形状を円柱状とするために
素材板を異なった幅に切り揃えなければならず、工数や
歩留等の面で極めて不利である。
Means 1) In order to form the melted material (consumable electrode) into a cylindrical shape, the material plates must be cut to different widths, which is extremely disadvantageous in terms of man-hours and yield.

11)切り揃えた素材板を重ね合わせて溶接で固定する
ため、作業が煩雑で、溶接による汚染の可能性が太きい
11) Since the cut material plates are overlapped and fixed by welding, the work is complicated and there is a high possibility of contamination due to welding.

1ii) NbとTiの融点差が約′150℃と大きい
ため。
1ii) This is because the melting point difference between Nb and Ti is as large as approximately 150°C.

溶解作業時に低融点のTl板部分が選択的に溶解してし
まってNb板部分が下端から規則正しく溶解せず、従っ
てNbが小片状でメタルプールに供給されて溶は残シを
生じゃすい。
During the melting process, the Tl plate part with a low melting point is selectively melted, and the Nb plate part is not melted regularly from the bottom end, so that Nb is supplied to the metal pool in the form of small pieces and the melt leaves behind. .

iv)  真空アーク溶解のようなアークの制御が困難
な溶解法では、アークはどうしても消耗電極の溶解しや
すい部分に集中する傾向となるが、このため、 Nb板
とTi板とを交互に張り合わせた複合消耗電極(溶解素
材)を使用するとTi板部分の方が使先的に溶解してし
まうこととなり5合金鋳塊内の成分不均一を生じやすい
iv) In melting methods such as vacuum arc melting where it is difficult to control the arc, the arc tends to concentrate on the easily melted part of the consumable electrode, so Nb plates and Ti plates were laminated alternately. If a composite consumable electrode (melting material) is used, the Ti plate portion will be melted as it is being used, which tends to cause non-uniformity of components within the 5 alloy ingot.

そこで、本発明者等は、従来のNb−Ti合金製造方法
にみもれる上記問題点の解消を月相して、先に、「溶解
素材としてNbパイプにTi丸棒を内装したものを用い
、これをエネルギービームによりドリップ溶解する」こ
とから成るNb−Ti合金の製造方法を提案した。
Therefore, the present inventors aimed to solve the above-mentioned problems found in the conventional Nb-Ti alloy manufacturing method, and first developed a method using a Nb pipe with a Ti round rod as the melting material. We proposed a manufacturing method for Nb-Ti alloy, which consists of drip melting the Nb-Ti alloy using an energy beam.

上記光に提案した方法では、溶解素材を得るのにTi丸
棒をNbパイプに挿嵌して片端面を溶接で固定すると言
う極めて簡単な手段を採用できるため。
In the method proposed above, the extremely simple method of inserting a Ti round rod into a Nb pipe and fixing one end surface by welding can be used to obtain the melted material.

原材料歩留の低下や多箇所溶接による溶解素材の不純物
汚染を生じることがなく、シかも、溶解に際して高融点
のNb部分に加熱源(エネルギビーム)を確実に照射す
ることが可能でNbを完全な液滴にでき、均質な合金を
安定して製造し得るなど、従来のNb−Ti合金製造法
に指摘された問題点の殆んどが解消されるものであった
There is no reduction in raw material yield or impurity contamination of the melted material due to multi-point welding, and the heating source (energy beam) can be reliably irradiated to the Nb part with a high melting point during melting, making it possible to completely remove Nb. Most of the problems pointed out in the conventional Nb-Ti alloy production method were solved, such as the ability to form droplets and the stable production of a homogeneous alloy.

しかしながら、その後も続けられた本発明者等の実験・
検討は、 NbパイプにTi丸棒を内装した溶解素材が
使用される1先に提案した方法″にも。
However, the inventors' experiments and
We are also considering the method proposed earlier, in which a melted material with a Ti round rod inside a Nb pipe is used.

次のような改善すべき問題点があることを明らかにした
のである。
It has become clear that there are problems that need to be improved, such as:

即ち、第6図で示されるように、溶解作業の際、Nbと
Tiの融点差から溶解素材13のうちのTi丸棒14が
先行溶解し、 Nb/’!イブ15もTiとの合金化で
内側から溶融するようになって、結局、溶解素材13の
溶解は凹状に進行する傾向を示してメタルプール8への
ビーム照射を妨げてし1う(第6図中の符号16で示す
ものは溶解素材による影である)と言う不都合を生じが
ちであり、そのため。
That is, as shown in FIG. 6, during the melting operation, the Ti round rod 14 of the melting material 13 melts first due to the difference in melting point between Nb and Ti, resulting in Nb/'! Eve 15 also melts from the inside due to alloying with Ti, and eventually the melting of the melted material 13 tends to progress in a concave shape, which obstructs the beam irradiation to the metal pool 8 (6th 16 in the figure is a shadow caused by the dissolved material).

メタルプールの加熱不足を来たして操業が円滑に進行せ
ず、鋳塊表面の悪化を招くばかシか、成分偏析をも引き
起しやすくなって、時には真空アーク溶解による多数回
の再溶解を必要とする事態にまでなる恐れがあった。
This can lead to insufficient heating of the metal pool, which prevents smooth operation, which can lead to deterioration of the ingot surface, and can also cause component segregation, which sometimes requires remelting multiple times using vacuum arc melting. There was a fear that this could lead to a situation where

一方、これとは別に、第7図で示されるような薄板多層
巻き体を溶接止め(17) して構成した溶解素材を用
い、これをドリップ溶解することから成るNb−Ti合
金の製造方法も考えられるが1この場合、エネルギービ
ーム又はアークを加熱源とする溶解では薄板としたTi
の溶解が素早く、シかも蒸発しやすいため、この手段に
よって得られる合金製品もやはり成分偏析の著しいもの
となる傾向があった。
On the other hand, apart from this, there is also a method for manufacturing Nb-Ti alloy which consists of drip melting a melted material made by welding (17) a thin multilayer roll as shown in Fig. 7. 1 In this case, in melting using an energy beam or an arc as a heating source, Ti in the form of a thin plate is
Because it melts quickly and evaporates easily, alloy products obtained by this method also tend to have significant component segregation.

本発明者等は、上述のような観点から、溶は残りのNb
相や偏析が存在せず、かつ溶製準備作業等に起因する不
純物の汚染もない均一組成のNb −Ti合金を、円滑
な作業性の下でコスト安く製造する方法を見出すべく、
更に研究を続けた結果、以下に示される如き知見を得る
に至ったのである。即ち。
From the above-mentioned viewpoint, the present inventors believe that the remaining Nb
In order to find a method for manufacturing Nb-Ti alloys with a uniform composition without phases or segregation and without contamination by impurities caused by melting preparation work, etc., at low cost and with smooth workability,
As a result of further research, they came to the knowledge shown below. That is.

(a)Nb(融点:約2400℃)のような高融点金属
を溶解する場合、より融点の低い材料と合金化してその
融点を下げるのが有利であることは知られているが、エ
ネルギービームやアークを加熱源とするドリップ溶解法
でNb−Ti合金を溶製する際の溶解素材を「NbをT
iで包んだ複合材」とすると、溶解作業に当り、まず外
装材たるTiが先行溶解し、続いてこれがNbと合金化
することとなって内装材たるNbの溶解が円滑に進行す
るようになること。
(a) When melting a high melting point metal such as Nb (melting point: about 2400°C), it is known that it is advantageous to lower the melting point by alloying it with a material with a lower melting point, but energy beams When melting Nb-Ti alloy by the drip melting method using a heating source or an arc, the melted material is
In the case of a composite material wrapped in i, during the melting process, Ti, which is the exterior material, is first melted, and then it is alloyed with Nb, so that the dissolution of the Nb, which is the interior material, progresses smoothly. To become a.

(b)  この場合、内装材たるNbの形状をパイプ等
の如き中空体にするとその溶解が一層円滑になる上、該
Nb中空体内に更にTi棒材を内装させておくと、溶解
作業の際に外装のTi中空体と最内装のTi棒材とが先
行溶解することとなり、その後に溶解するNb中空体と
の合金化が内外1からなされるようになる結果、 Nb
の溶解がより一層円滑に進行し、溶解素材はNbの溶は
残りを生じることなく、液滴段階で既に均質なNb−T
i合金となってメタルプールに供給されること。
(b) In this case, if the Nb interior material is made into a hollow body such as a pipe, the melting will be smoother, and if a Ti rod is further placed inside the Nb hollow body, it will be possible to melt the Nb material during the melting process. As a result, the outer Ti hollow body and the innermost Ti rod are first melted, and then alloyed with the Nb hollow body that is melted from the inside and outside.
The dissolution of Nb proceeds more smoothly, and the dissolved material is already homogeneous Nb-T at the droplet stage, without leaving any residue.
i) Become an alloy and be supplied to the metal pool.

つまり、電子ビームやプラズマビーム炉等によるドリッ
プ溶解法では、形成されるメタルプールが非常に浅いの
で溶解素材をメタルプールに供給するときの組成が既に
目的とする鋳塊組成と等しくなっていることが望ましい
が、上記手段によると落下する液滴段階で既に合金化が
なされていることとなるので、溶は残りのない均質な鋳
塊が得られる。
In other words, in the drip melting method using an electron beam or plasma beam furnace, the metal pool formed is very shallow, so the composition when the melted material is supplied to the metal pool is already equal to the target ingot composition. However, according to the above method, since alloying has already occurred at the stage of falling droplets, a homogeneous ingot with no remaining melt can be obtained.

(C)シかも、上記手段によると溶解素材は溶けやすい
外側から順に深ンシル状に溶解することとなる(第2図
参照)ので1メタルプールへのビーム照射等が溶解素材
によって妨げられる如き事態が生じず1円滑な操業が確
保され、従って、得られる合金鋳塊の表面性状や偏析状
況も極めて良好なものとなること。
(C) However, according to the above method, the melted material melts in a deep sill shape starting from the outer side where it is easy to melt (see Figure 2), so there may be a situation where beam irradiation to one metal pool is obstructed by the melted material. 1. Smooth operation is ensured without causing any problems, and therefore, the surface quality and segregation status of the obtained alloy ingot are also extremely good.

(d)  中空体形状のNbをTiを包み、更に前記N
b中空体内にTi棒材を内装した3層複合溶解素材は。
(d) Nb in a hollow body shape is wrapped around Ti, and the Nb is further wrapped around Ti.
b A three-layer composite melting material with a Ti rod inside the hollow body.

例えばTi−ξイブ内にNbパイプを挿嵌するとともに
該Nbパイプ内にもTi丸棒を挿嵌し1次いでその片端
を溶接固定する等の手段により簡単かつ低コストで製造
できるが、この場合、Tiパイプ、 Nbパイプ及びT
i丸棒のいずれもビレットからの加工により高純度のも
のが得られる上、溶接箇所は組立てた3層複合材の片端
のみで良いので溶接による汚染もなく、従って、不純物
の観点からみても高品質の溶解素材を安定して用意する
ことが可能なものであること。
For example, it can be manufactured easily and at low cost by inserting a Nb pipe into a Ti-ξ tube and also inserting a Ti round rod into the Nb pipe, and then fixing one end by welding. , Ti pipe, Nb pipe and T
All i-round bars can be obtained with high purity by processing from billets, and since only one end of the assembled three-layer composite material is welded, there is no contamination due to welding, and therefore, from the perspective of impurities, they are also highly pure. It must be possible to stably prepare high-quality dissolved materials.

この発明は、上記知見に基づいてなされたものであり、 エネルギービーム又はアークを加熱源とするドリップ溶
解法によって合金を溶製するに当り1例えば第1図で示
されるようなTi中空体1内にNb中空体2を内装し、
更に該Nb中空体2内にTi棒材3を内装して成る3層
複合材を溶解素材として使用し溶解作業を実施するか、
或いはこのようにして得られた鋳塊を溶解素材とした再
溶解を更に実施することにより、均質なNb−Ti合金
を安定かつコスト安く製造する点 を特徴とするものである。
This invention has been made based on the above knowledge, and when melting an alloy by the drip melting method using an energy beam or an arc as a heating source, for example, the inside of a Ti hollow body 1 as shown in FIG. Nb hollow body 2 is installed inside,
Furthermore, a three-layer composite material comprising a Ti rod 3 inside the Nb hollow body 2 is used as a melting material to carry out melting work, or
Alternatively, by further performing remelting using the ingot thus obtained as a melting material, a homogeneous Nb-Ti alloy can be produced stably and at low cost.

さて、第2図は、この発明の方法に従ったNb−Ti合
金製造作業例を模式的に示した概略図である。
Now, FIG. 2 is a schematic view schematically showing an example of a Nb-Ti alloy manufacturing operation according to the method of the present invention.

Nb−Ti合金の製造に当っては、まず、Ti中空体1
内にNb中空体2を内装し、更にNb中空体2内にTi
棒材を内装して成る3層複合溶解素材を真空室4内に配
置し、これをゆっくり回転させるとともに徐々に下降さ
せながら、エネルギービームガン(例えば電子銃)5か
らのエネルギービーム6を照射する。これによって、3
層複合溶解素材のTi部分がまず溶解し、これが内外面
からNbと合金化してその融点を下げるので1融点が高
いNb中空体部の溶解も円滑に進行して、結果的には、
3層複合溶解材はNb −Ti合金液滴をしたたらせな
がら。
In manufacturing the Nb-Ti alloy, first, a Ti hollow body 1
A Nb hollow body 2 is installed inside the Nb hollow body 2, and a Ti
A three-layer composite molten material having a bar inside is placed in a vacuum chamber 4, and is irradiated with an energy beam 6 from an energy beam gun (for example, an electron gun) 5 while slowly rotating and gradually lowering the material. With this, 3
The Ti part of the layer composite melting material melts first, and this alloys with Nb from the inner and outer surfaces to lower its melting point, so that the melting of the Nb hollow body part, which has a higher melting point, proceeds smoothly, and as a result,
The three-layer composite melting material drips Nb-Ti alloy droplets.

溶は残りを生じることなく、エネルギービーム6を遮る
ことのないRンシル状に溶解することとなる。
The melting does not leave any residue, and the energy beam 6 is melted in a circular shape that does not block the energy beam 6.

滴下するNb−Ti合金液滴は、水冷銅鋳型7内に形成
されたメタルプール8に受は止められた後凝固し、Nb
−Ti合金鋳塊9として連続的に引き抜かれる。なお、
第2図において、符号10で示されるものはダミーであ
る。
The dropping Nb-Ti alloy droplets are stopped by a metal pool 8 formed in a water-cooled copper mold 7 and then solidified, forming Nb-Ti alloy droplets.
- It is continuously drawn out as a Ti alloy ingot 9. In addition,
In FIG. 2, what is indicated by the reference numeral 10 is a dummy.

更に、以上の如くに得られたNb−Ti合金鋳塊9を溶
解素材とし、同様手段によってこれを再溶解することは
、より一層均質な合金を得る上で好ましいことである。
Furthermore, it is preferable to use the Nb-Ti alloy ingot 9 obtained as described above as a melting material and re-melt it by the same means in order to obtain a more homogeneous alloy.

次いで、この発明を実施例によって説明する。Next, the invention will be explained by way of examples.

〈実施例〉 まず、60KWの電子ビーム炉を用い、前記第2図で示
したような垂直ドリップ溶解法にてNb−Ti合金を溶
製した。
<Example> First, a Nb-Ti alloy was melted using a 60 KW electron beam furnace by the vertical drip melting method as shown in FIG. 2 above.

なお、溶解素材には、外径:63.5Mで肉厚二11.
5mIILのTl管に、外径40.0−で肉厚:12.
5顛のNb管を内装し、更に14.5mφのTi丸棒を
内装するとともに1片端をプラズマアークで溶接したと
ころの、断面でNbとTiの重量比が1対lとなる3層
複合材を用いた。そして、溶製作業は、上記溶解素材を
2.Orpmで回転させながら垂直に供給し、これを電
子ビームで溶解して、内径二60聰の水冷銅モールド内
に積層させる手順で実施した。
The melted material has an outer diameter of 63.5M and a wall thickness of 211.
A 5mIIL Tl tube with an outer diameter of 40.0- and a wall thickness of 12.
A three-layer composite material with a weight ratio of Nb and Ti of 1:1 in the cross section, with a 5-frame Nb tube inside, a 14.5 mφ Ti round rod, and one end welded by plasma arc. was used. Then, in the melting work, the above melted material is mixed into 2. The procedure was carried out by supplying the material vertically while rotating it with an Orpm, melting it with an electron beam, and laminating it in a water-cooled copper mold with an inner diameter of 260 mm.

このときの溶解状況を観察したところ、溶解素材は順調
にはンシル状に溶解し、Nb−Ti合金液滴となってメ
タルプールに供給されることが確認され、得られた鋳塊
(直径:59Mφ、長さ:350■)の鋳肌も極めて良
好なものであった。
When we observed the melting situation at this time, it was confirmed that the melted material smoothly melted into a silage shape and was supplied to the metal pool as Nb-Ti alloy droplets, and the obtained ingot (diameter: The casting surface of 59Mφ, length: 350mm) was also extremely good.

このNb−Ti合金鋳塊の縦断面について成分調査を実
施したところ、 Nbの溶は残りや不純物の偏析は一切
検出されず、鋳塊各部のTi分布も第3図及び第4図に
示す如く極めて均一なものであった。
When we conducted a composition investigation on the longitudinal section of this Nb-Ti alloy ingot, we found that no residual Nb dissolution or segregation of impurities was detected, and the Ti distribution in each part of the ingot was as shown in Figures 3 and 4. It was extremely uniform.

なお、第3図は、鋳塊の長さ方向におけるTi分布を、
第4図は鋳塊の表皮から中心部にかけてのTi分布をそ
れぞれ示すものである。
In addition, Fig. 3 shows the Ti distribution in the longitudinal direction of the ingot.
FIG. 4 shows the Ti distribution from the skin to the center of the ingot.

また、断面でのTiの割合が46.5重量%となる溶解
素材を使用したほかは前記と同様な方法でNb−Ti合
金の溶製を行ったが、得られたNb−Ti合金鋳塊の鋳
肌や縦断面性状は先のものと同様に良好であり、鋳塊各
部のTi分布も、第4図及び第5図に示されたと同様に
極めて均一であった。
In addition, an Nb-Ti alloy was melted in the same manner as described above except that a melted material with a Ti content of 46.5% by weight in the cross section was used, but the resulting Nb-Ti alloy ingot was The casting surface and longitudinal cross-sectional properties of the ingot were as good as the previous ones, and the Ti distribution in each part of the ingot was also extremely uniform as shown in FIGS. 4 and 5.

次に、今度は、得られた上記Nb−50Ti合金の電子
ビーム溶製鋳塊2本を洛接し消耗電極とじて使用し、モ
ールl−゛内径:100−の真空アーク炉でこれを再溶
解することによって、直径:98聞φ、長さ:245m
xの鋳塊を製造した。
Next, two electron beam melted ingots of the Nb-50Ti alloy obtained above were brought together and used as consumable electrodes, and then remelted in a vacuum arc furnace with a mold l-゛inner diameter: 100-. By doing so, diameter: 98mmφ, length: 245m
An ingot of x was manufactured.

第1表は、このNb−Ti合金鋳塊各部の成分値を示す
ものであるが、第1表からも明らかなように1得られた
鋳塊は成分が均質で、不純物が極めて少ないものである
ことがわかる。
Table 1 shows the composition values of each part of this Nb-Ti alloy ingot, and as is clear from Table 1, the obtained ingot has homogeneous composition and extremely few impurities. I understand that there is something.

第    1   表 一方、比較のため、5朋厚のTl板とNb板を断面での
重量比がl対lとなるよう第5図の如くに重ね合わせ、
外周部をフープ(たが)状にプラズマアーク溶接して作
成した56フφの消耗電極を真空アーク炉(モールド径
:100wφ)で溶解し。
Table 1 On the other hand, for comparison, a Tl plate and a Nb plate with a thickness of 5 mm were stacked together as shown in Figure 5 so that the weight ratio in the cross section was 1:1.
A consumable electrode with a diameter of 56 mm, whose outer circumference was plasma arc welded into a hoop shape, was melted in a vacuum arc furnace (mold diameter: 100 wφ).

直径:98FJφ、長さ:150+nmのNb−Ti合
金鋳塊を得た。
A Nb-Ti alloy ingot having a diameter of 98FJφ and a length of 150+nm was obtained.

この鋳塊についてNbの溶は残り調査を行ったが。However, we investigated the remaining Nb dissolution in this ingot.

5朋中を最大とする多数の溶は残りが検出された上、鋳
塊各部のTi分布も第3図及び第4図で示されるように
偏析していることが確認された。また。
A large number of melts were detected, with the largest number remaining in the ingot, and it was also confirmed that the Ti distribution in each part of the ingot was segregated as shown in FIGS. 3 and 4. Also.

電極材にもTi部分の先行溶解痕跡が明らかで、 Nb
板部分も“つらら状″に溶解していて欠は落ちの形跡が
あり、これらが溶は残りの原因となったものと考えられ
る。
Traces of prior dissolution of the Ti portion are also evident in the electrode material, and Nb
The board part was also melted in an ``icicle-like'' manner, and there was evidence of chips falling off, and it is thought that these were the cause of the remaining melt.

更に、この比較法によって得られた鋳塊を消耗電極とし
た二次真空アーク溶解後の鋳塊についても上記調査を行
ったところ、 Nb溶は残りの残存が認められた。
Furthermore, when the above investigation was conducted on the ingot obtained by this comparative method after secondary vacuum arc melting using the ingot as a consumable electrode, residual Nb melt was found to remain.

〈総括的な効果〉 上述のように、この発明によれば、溶は残りのNb相や
偏析が存在せず、不純物汚染もない均質なNb−Ti合
金を1円滑な作業性の下で1安定かつ低コストで製造す
ることが可能となるなど、産業上極めて有用な効果がも
たらされるのである。
<Overall Effects> As described above, according to the present invention, a homogeneous Nb-Ti alloy with no residual Nb phase or segregation and no impurity contamination can be melted into one layer under smooth workability. This brings about extremely useful effects industrially, such as making it possible to manufacture stably and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の方法で使用する複合溶解素材の1例
を示す概略模式図、 第2図は、本発明のNb−Ti合金製造方法の1例を示
す概略模式図。 第3図は、実施例において得られたNb−Ti合金鋳塊
の長さ方向におけるTi分布状況を比較した線図。 第4図は、実施例において得られたNb−Ti合金鋳塊
の表皮から中心部にかけてのTi分布状況を比較した線
図。 第5図は、従来のNb−Ti合金溶製に使用された溶解
素材の1例を示す概略模式図1 第6図は、先に提案したNb−Ti合金製造方法を示し
た概略模式図、 第7図は、薄板を多層巻き・:cした溶解素材の例を示
す概略模式図である。 図面において、 1・・・Ti中空体、   2・・・Nb中空体、3・
・・Ti棒材、    4・・・真空室。 5・・・エネルギービームガン。 6・・・エネルギービーム。 7・・・水冷銅鋳型、  8・・・メタルプール。 9・・・Nb−Ti合金鋳塊、 10・・・ダミー、1
1・・・Nb板、        12・・・Ti板。 13・・・溶解素材1  14・・・Ti丸棒。 15・・・Nbパイプ、 16・・・溶解素材によるエネルギービームの影。 17・・・溶接部。 出願人  住友金属工業株式会社 代理人  富  1) 和  夫 ほか2名第1図 ヘ   O Ti含含量量重量%) Ti舊有量(重量%)
FIG. 1 is a schematic diagram showing an example of a composite melting material used in the method of the present invention. FIG. 2 is a schematic diagram showing an example of the Nb-Ti alloy manufacturing method of the present invention. FIG. 3 is a diagram comparing Ti distribution conditions in the length direction of Nb-Ti alloy ingots obtained in Examples. FIG. 4 is a diagram comparing the Ti distribution from the skin to the center of the Nb-Ti alloy ingots obtained in Examples. FIG. 5 is a schematic diagram showing an example of a melted material used for conventional Nb-Ti alloy melting. FIG. 6 is a schematic diagram showing the previously proposed Nb-Ti alloy manufacturing method. FIG. 7 is a schematic diagram showing an example of a melted material formed by winding thin plates in multiple layers. In the drawings, 1...Ti hollow body, 2...Nb hollow body, 3...
...Ti bar material, 4...vacuum chamber. 5...Energy beam gun. 6...Energy beam. 7...Water-cooled copper mold, 8...Metal pool. 9...Nb-Ti alloy ingot, 10...Dummy, 1
1...Nb plate, 12...Ti plate. 13...Dissolved material 1 14...Ti round bar. 15...Nb pipe, 16...Shadow of energy beam caused by melted material. 17...Welding part. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo and two others Figure 1 O Ti content (wt%) Ti content (wt%)

Claims (2)

【特許請求の範囲】[Claims] (1)エネルギービーム又はアークを加熱源とするドリ
ップ溶解法によつて合金を溶製するに当り、Ti中空体
内にNb中空体を内装し、更に該Nb中空体内にTi棒
材を内装して成る3層複合材を溶解素材として使用する
ことを特徴とする、Nb−Ti合金の製造方法。
(1) When melting an alloy by the drip melting method using an energy beam or an arc as a heating source, a Nb hollow body is placed inside a Ti hollow body, and a Ti rod is further placed inside the Nb hollow body. A method for producing an Nb-Ti alloy, characterized in that a three-layer composite material consisting of the following is used as a melting material.
(2)エネルギービーム又はアークを加熱源とするドリ
ップ溶解法によつて合金を溶製するに当り、まずTi中
空体内にNb中空体を内装し、更に該Nb中空体内にT
i棒材を内装して成る3層複合材を溶解素材として鋳塊
を得た後、更に、今度は得られた前記鋳塊を溶解素材と
して再溶解することを特徴とする、Nb−Ti合金の製
造方法。
(2) When melting an alloy by the drip melting method using an energy beam or an arc as a heating source, first a Nb hollow body is placed inside a Ti hollow body, and then a T
An Nb-Ti alloy characterized in that after obtaining an ingot using a three-layer composite material having an i-bar inside as a melting material, the obtained ingot is further melted again as a melting material. manufacturing method.
JP15972685A 1985-07-19 1985-07-19 Manufacture of nb-ti alloy Pending JPS6220844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15972685A JPS6220844A (en) 1985-07-19 1985-07-19 Manufacture of nb-ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15972685A JPS6220844A (en) 1985-07-19 1985-07-19 Manufacture of nb-ti alloy

Publications (1)

Publication Number Publication Date
JPS6220844A true JPS6220844A (en) 1987-01-29

Family

ID=15699934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15972685A Pending JPS6220844A (en) 1985-07-19 1985-07-19 Manufacture of nb-ti alloy

Country Status (1)

Country Link
JP (1) JPS6220844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099919A (en) * 2017-11-28 2019-06-24 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG MANUFACTURING METHOD OF INTERMETALLIC COMPOUND Nb3Sn BY MELTING METALLURGY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099919A (en) * 2017-11-28 2019-06-24 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG MANUFACTURING METHOD OF INTERMETALLIC COMPOUND Nb3Sn BY MELTING METALLURGY

Similar Documents

Publication Publication Date Title
US4627148A (en) Method of producing high-purity metal member
CN105063367B (en) A kind of preparation method of melting electrode
JP5064974B2 (en) Ingot manufacturing method for TiAl-based alloy
US5127468A (en) Method and assembly for consumable electrode vacuum arc melting
US4681627A (en) Process for preparing an ingot from metal scrap
JPS6220844A (en) Manufacture of nb-ti alloy
CN115948658A (en) Vacuum consumable arc melting and continuous casting equipment and method
JPS61253353A (en) Manufacture of nb-ti alloy
US3727300A (en) Method of joining consumable electrode in electroslag melting
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
JPH0499832A (en) Manufacture of refractory active metal alloy
JPS624842A (en) Production of magnesium-lithium alloy for acoustic apparatus
JPH0931558A (en) Vacuum arc remelting method
US4764209A (en) Method for manufacturing alloy
RU2559803C2 (en) METHOD FOR MANUFACTURING OF COMPOSITE SUPERCONDUCTING WIRE BASED ON Nb3Sn COMPOSITION AND PRODUCTION LINE FOR MANUFACTURING OF COMPOSITE SUPERCONDUCTING WIRE BASED ON Nb3Sn COMPOSITION
JPH0154417B2 (en)
US6385230B1 (en) Homogeneous electrode of a reactive metal alloy for vacuum arc remelting and a method for making the same from a plurality of induction melted charges
JPS6167562A (en) Arc dissolving electrode
JPS60149738A (en) Melting method of nb-ti alloy
RU2191836C2 (en) Method of ingots production
JPS63177955A (en) Method for producing titanium alloy cast block
JPS62238339A (en) Melting method for alloy
JPS60174838A (en) Melting method of nb-ti alloy
JPS6223942A (en) Vacuum arc remelting method
RU2217515C1 (en) Method for making ingots of alloys on base of refractory metals