JPS62207933A - Grain analyzer - Google Patents

Grain analyzer

Info

Publication number
JPS62207933A
JPS62207933A JP61050751A JP5075186A JPS62207933A JP S62207933 A JPS62207933 A JP S62207933A JP 61050751 A JP61050751 A JP 61050751A JP 5075186 A JP5075186 A JP 5075186A JP S62207933 A JPS62207933 A JP S62207933A
Authority
JP
Japan
Prior art keywords
sample
sheath
sample liquid
liquid
liquid container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61050751A
Other languages
Japanese (ja)
Inventor
Naoki Yuguchi
湯口 直樹
Akira Tago
晃 多胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61050751A priority Critical patent/JPS62207933A/en
Publication of JPS62207933A publication Critical patent/JPS62207933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To always keep a sample liquid diameter constant by selecting a sectional area ratio of a sheath liquid container and a sample liquid container, so as to become equal to a flow rate ratio of a sheath liquid and a sample liquid which are flowing in a flow cell. CONSTITUTION:An air the tube 2 which is connected to a compressor 1 is connected to a sample liquid container 4 and a sheath liquid container 6 through a sample pressure control valve 3 and a sheath pressure control valve 5. A sample tube 7 is led into a nozzle 9 and its tip part is directed into a flow cell 10, and a sheath tube 11 is connected to the inside of the nozzle 9. In such a case, when a sectional area ratio of the sample liquid container 4 and the sheath liquid container 6 is selected, so as to become equal to a flow rate ratio of a sample liquid Sa and a sheath liquid Se which are flowing in the flow cell 10, even if a sample liquid surface H1 and a sheath liquid surface H2 are decreased in the course of a measurement, a measurement under a constant pressure can be executed without being influenced by pressure thereby.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フローサイトメータ等のフローセル内をシー
ス液に包まれて流れるサンプル液中の検体粒子の存在を
検出し、その性状を測定する装置において、シース液及
びサンプル掖の圧力比を適切に選定し得る粒子解析装置
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention detects the presence of analyte particles in a sample liquid flowing in a sheath liquid inside a flow cell of a flow cytometer, etc., and measures the properties thereof. The present invention relates to a particle analysis device in which the pressure ratio of the sheath liquid and the sample chamber can be appropriately selected.

[従来の技術] フローサイトメータは粒子浮遊溶液、即ちサンプル液を
シース液で包みながら高速でフローセル内を通過させ、
フローセルの微小通過部を通過する際に例えばレーザー
光を照射して、検体粒子での散乱光及び蛍光による光電
信号を検出し、検体粒子の性質管構造等を解析する装置
である。フローサイトメータは解析精度を高め、検体粒
子による微小通過部での詰りを防止するために、流体力
学的集点合わせ法を採用し、検体粒子の浮遊したサンプ
ル液をシース液で包み込み、微小通過部を通過させてい
る。
[Prior art] A flow cytometer passes a particle suspension solution, that is, a sample solution, through a flow cell at high speed while being wrapped in a sheath solution.
This device analyzes the characteristic tube structure of sample particles by irradiating them with, for example, laser light as they pass through the minute passage section of a flow cell, and detecting photoelectric signals caused by scattered light and fluorescence from sample particles. In order to improve analysis accuracy and prevent sample particles from clogging the micropassage section, the flow cytometer uses a hydrodynamic focal point alignment method. It passes through the department.

シース液、サンプル液はそれぞれ容器に蓄えられ、窒素
ガスボンベ、又はコンプレッサ等により加圧され、測定
部であるフローセルに導かれる。
The sheath liquid and the sample liquid are each stored in a container, pressurized by a nitrogen gas cylinder or compressor, and guided to a flow cell, which is a measuring section.

測定の際には、先ずシース液をフローセルに導き、フロ
ーセルの流通部をシース液で満たし、次にサンプル液を
フローセルの流通部を流れるシース掖の中心に導入する
という方法が採られているが、フローセル内を流れるサ
ンプル液径は測定する粒子径及び測定速度によって調整
することが多い。そして、このサンプル液径の調整は、
シース液及びサンプル液に加えられる圧力を変えること
によって行われる。
When performing measurements, the method used is to first introduce the sheath liquid into the flow cell, fill the flow cell's flow section with the sheath liquid, and then introduce the sample liquid into the center of the sheath hole, which flows through the flow cell's flow section. The diameter of the sample liquid flowing in the flow cell is often adjusted depending on the particle diameter to be measured and the measurement speed. The adjustment of this sample liquid diameter is
This is done by varying the pressure applied to the sheath fluid and sample fluid.

従来の装置では、測定の始めに直流部内で適正なサンプ
ル液径となるように、それぞれの圧力を調整するのであ
るが、サンプル掖の測定が進むにつれて、サンプル液が
減少しサンプル液面が下がってくると、それに応じてサ
ンプル掖の水頭値も低下し、測定中においてサンプル液
径が一定に保持されないという欠点がある。
In conventional devices, each pressure is adjusted at the beginning of a measurement so that the sample liquid diameter is appropriate in the DC section, but as the measurement progresses in the sample well, the sample liquid decreases and the sample liquid level drops. When this happens, the water head value of the sample well decreases accordingly, and there is a drawback that the sample liquid diameter cannot be kept constant during measurement.

[発明の目的] 本発明の目的は、上述の欠点を除去し、検体粒子の測定
中においてシース液及びサンプル液が減少しても、フロ
ーセル内を流れるサンプル液径を常時一定に保持し得る
粒子解析装置を提供することにある。
[Object of the Invention] The object of the present invention is to eliminate the above-mentioned drawbacks and to provide particles that can maintain the diameter of the sample liquid flowing inside the flow cell constant even if the sheath liquid and sample liquid decrease during measurement of sample particles. The objective is to provide an analysis device.

[発明の概要コ 上述の目的を達成するための本発明の要旨は、フローセ
ル内の流通部を高速で流れる検体粒子を含むサンプル液
に光ビームを照射し、検体粒子による散乱光及び蛍光を
測定するフローサイトメータにおいて、フローセル内を
流れるシース液及びサンプル掖の流量比に等しくなるよ
うに、シース液容器及びサンプル液容器の断面積比を選
定したことを特徴とする粒子解析装置である。
[Summary of the Invention] The gist of the present invention to achieve the above-mentioned object is to irradiate a sample liquid containing analyte particles flowing at high speed through a flow section in a flow cell with a light beam, and measure the scattered light and fluorescence caused by the analyte particles. In a flow cytometer, the particle analysis apparatus is characterized in that the cross-sectional area ratio of the sheath liquid container and the sample liquid container is selected so as to be equal to the flow rate ratio of the sheath liquid and the sample liquid flowing in the flow cell.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図において、lは圧縮空気発生源であるコンプレッ
サであり、このコンプレッサ1に接続されたエアチュー
ブ2は二岐に分岐され、一端はサンプル圧力調節弁3を
介してサンプル液Saを気密に蓄えるサンプル液容器4
の上部に接続されている。また、エアチューブ2の他端
はシース圧力調節弁5を介してシース液Seを気密に蓄
えるシース液容器6の上部に接続されている。サンプル
液容器4のサンプル液Sa中に浸漬されたサンプルチュ
ーブ7は、サンプル液流入制御弁8に介してノズル9内
に導かれ、その先端部はノズル9の下端に接続されたフ
ローセル10に向けられている。また、シース液容器6
中のシース液Se内に浸漬されたシースチューブ11は
、シース液流入制御弁12を介してノズル9内に接続さ
れている。
In FIG. 1, l is a compressor that is a source of compressed air, and an air tube 2 connected to this compressor 1 is branched into two branches, and one end is connected to a sample pressure control valve 3 to airtightly control the sample liquid Sa. Sample liquid container 4
connected to the top of the Further, the other end of the air tube 2 is connected via a sheath pressure regulating valve 5 to the upper part of a sheath liquid container 6 that stores sheath liquid Se in an airtight manner. The sample tube 7 immersed in the sample liquid Sa in the sample liquid container 4 is guided into the nozzle 9 via the sample liquid inflow control valve 8, and its tip is directed toward the flow cell 10 connected to the lower end of the nozzle 9. It is being In addition, the sheath liquid container 6
The sheath tube 11 immersed in the sheath liquid Se inside is connected to the inside of the nozzle 9 via a sheath liquid inflow control valve 12 .

そして、フローセルlOの下端には、廃液チューブ13
が接続され、その他端は廃液容器14に接続されている
。なお、ここで重要なことは、サンプル液容器4とシー
ス液容器6の断面積S1、S2が所定の面績比とされて
いることである。
A waste liquid tube 13 is located at the lower end of the flow cell IO.
is connected, and the other end is connected to a waste liquid container 14. Note that what is important here is that the cross-sectional areas S1 and S2 of the sample liquid container 4 and the sheath liquid container 6 have a predetermined surface area ratio.

サンプル液Sa及びシース液Seに加わる圧力を一定に
保持したとき、フローセル10内を流れるサンプル液S
a及びシース液Seの流量をそれぞれQl、Q2.また
その圧力下で一定時間すンプル液Sa、シース液Seを
流したときにサンプル液容器4及びシース液容器6内の
サンプル液Sa、シース液Seが減少する水頭値をそれ
ぞれHl、H2、サンプル液容器4及びシース液容器6
の断面積をそれぞれSl。
When the pressure applied to the sample liquid Sa and the sheath liquid Se is held constant, the sample liquid S flowing in the flow cell 10
a and the flow rates of the sheath liquid Se are Ql, Q2. In addition, when the sample liquid Sa and sheath liquid Se are allowed to flow for a certain period of time under that pressure, the water head values at which the sample liquid Sa and sheath liquid Se in the sample liquid container 4 and sheath liquid container 6 decrease are calculated as Hl, H2, and sample, respectively. Liquid container 4 and sheath liquid container 6
The cross-sectional area of each is Sl.

S2とすれば、Q1=旧・Sl、Q2=H2・S2とい
う関係が得られる。
If S2, then the relationships Q1=old/Sl and Q2=H2/S2 are obtained.

ここで、検体粒子の測定が始ってから一定時間経過して
も、フローセル10内を流れるサンプル液Sa及びシー
ス液Seの流量比が一定に保持されるためには、サンプ
ル液Sa及びシース液Seの比重量がほぼ等しいとすれ
ば、サンプル液面H1とシース液面H2の高さの差が一
定速度で減少しなければならない、つまり、旧=H2と
いう関係が成り立つ必要があり、このとき先の式から、
Ql : Q2= St : S2が得られる。
Here, in order to keep the flow rate ratio of the sample liquid Sa and the sheath liquid Se flowing in the flow cell 10 constant even after a certain period of time has passed since the measurement of sample particles started, it is necessary to If the specific weights of Se are approximately equal, the difference in height between the sample liquid level H1 and the sheath liquid level H2 must decrease at a constant rate, that is, the relationship old = H2 must hold, and in this case From the previous formula,
Ql:Q2=St:S2 is obtained.

即ち、フローセル10内を流れるサンプル液Saとシー
ス液Seの流量比に等しくなるように、サンプル液容器
4及びシース液容器6の断面積比S1:S2を選定すれ
ば、測定中においてサンプル液面旧及びシース液面H2
が減少しても、それによる圧力の影響を受けずに、一定
した圧力下での測定が可能になる。
That is, if the cross-sectional area ratio S1:S2 of the sample liquid container 4 and the sheath liquid container 6 is selected so as to be equal to the flow rate ratio of the sample liquid Sa and the sheath liquid Se flowing in the flow cell 10, the sample liquid level will be maintained during the measurement. Old and sheath liquid level H2
Even if the pressure decreases, measurements can be made under a constant pressure without being affected by the pressure.

[発明の効果] 以上説明したように本発明に係る粒子解析装置によれば
、測定開始時に適正なサンプル液径となるように設定し
たシース液及びサンプル液にかかる圧力を、測定中にシ
ース液面及びサンプル液面が減少してもサンプル液径を
一定に保持することができる。また、測定する検体粒子
によってサンプル液径を変える場合には、それに応じた
断面積を有するサンプル液容器を′$備すれば、同様の
効果が得られる。
[Effects of the Invention] As explained above, according to the particle analyzer according to the present invention, the pressure applied to the sheath liquid and the sample liquid, which is set to have an appropriate sample liquid diameter at the start of measurement, is adjusted to the sheath liquid during measurement. Even if the surface and sample liquid level decrease, the sample liquid diameter can be kept constant. Further, when changing the sample liquid diameter depending on the sample particles to be measured, the same effect can be obtained by providing a sample liquid container having a cross-sectional area corresponding to the diameter.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は本発明に係る粒子解析装置の一実施例の構
成図である。 符号1はコンプレッサ、3はサンプル圧力調節弁、4は
サンプル液容器、5はシース圧力yJf!5弁、6はシ
ース液容器、8はサンプル液流入制御弁、9はノズル、
10はフローセル、12はシース液流入制御弁である。 特許出願人   キャノン株式会社 第1図
FIG. 1 is a configuration diagram of an embodiment of a particle analysis apparatus according to the present invention. 1 is a compressor, 3 is a sample pressure regulating valve, 4 is a sample liquid container, and 5 is a sheath pressure yJf! 5 valves, 6 a sheath liquid container, 8 a sample liquid inflow control valve, 9 a nozzle,
10 is a flow cell, and 12 is a sheath liquid inflow control valve. Patent applicant Canon Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、フローセル内の流通部を高速で流れる検体粒子を含
むサンプル液に光ビームを照射し、検体粒子による散乱
光及び蛍光を測定するフローサイトメータにおいて、フ
ローセル内を流れるシース液及びサンプル掖の流量比に
等しくなるように、シース液容器及びサンプル液容器の
断面積比を選定したことを特徴とする粒子解析装置。
1. In a flow cytometer that measures the scattered light and fluorescence caused by the sample particles by irradiating a light beam onto the sample liquid containing sample particles flowing at high speed through the flow section within the flow cell, the flow rate of the sheath liquid and sample well flowing within the flow cell A particle analysis device characterized in that the cross-sectional area ratio of the sheath liquid container and the sample liquid container is selected so as to be equal to the ratio.
JP61050751A 1986-03-08 1986-03-08 Grain analyzer Pending JPS62207933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61050751A JPS62207933A (en) 1986-03-08 1986-03-08 Grain analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61050751A JPS62207933A (en) 1986-03-08 1986-03-08 Grain analyzer

Publications (1)

Publication Number Publication Date
JPS62207933A true JPS62207933A (en) 1987-09-12

Family

ID=12867539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61050751A Pending JPS62207933A (en) 1986-03-08 1986-03-08 Grain analyzer

Country Status (1)

Country Link
JP (1) JPS62207933A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347696A2 (en) * 1988-06-21 1989-12-27 BASF Aktiengesellschaft Apparatus for measuring the rate of dispersion in flowing suspensions
JP2013513109A (en) * 2009-12-04 2013-04-18 ライフ テクノロジーズ コーポレーション Apparatus, system, method and computer readable medium for acoustic flow cytometry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347696A2 (en) * 1988-06-21 1989-12-27 BASF Aktiengesellschaft Apparatus for measuring the rate of dispersion in flowing suspensions
JP2013513109A (en) * 2009-12-04 2013-04-18 ライフ テクノロジーズ コーポレーション Apparatus, system, method and computer readable medium for acoustic flow cytometry
JP2016128832A (en) * 2009-12-04 2016-07-14 ライフ テクノロジーズ コーポレーション Apparatus, system, method, and computer readable medium for acoustic flow cytometry

Similar Documents

Publication Publication Date Title
Graf et al. Suspension flows in open channels; experimental study
US4679421A (en) Automated gas-liquid relative permeameter
KR101401094B1 (en) Moisture detector assembly
JPH01287442A (en) Flow rate control method and apparatus
CA2244207C (en) Preanalysis chamber for a flow particle analyzer
US4286457A (en) Viscosity measurement
JPS62207933A (en) Grain analyzer
Mérienne et al. Unsteady pressure measurement instrumentation using anodized-aluminium PSP applied in a transonic wind tunnel
JPH02190743A (en) Gas density measuring apparatus
CA1062499A (en) Method and a device for forming a filtering fiber cake in an apparatus for measuring the beating degree of pulp flowing through a conduit
US4434398A (en) Porous passage means and method for particle analyzing systems
CN205330657U (en) Oil well goes out liquid quantitative analysis appearance
NO313218B1 (en) Method and apparatus for sampling in a material mixture
JPH0240534A (en) Dispersion level measuring apparatus for fluid suspension
JPH0587779B2 (en)
JPH01118747A (en) Particle analyzer
JP2575149B2 (en) Particle analyzer
US3433055A (en) Method of measuring metering accuracy of a spinneret
JPH0478945B2 (en)
JPS61187634A (en) Method and apparatus for limiting particle flow channel
JPS58205835A (en) Dissolved ozone measuring apparatus
CN219810799U (en) Solution concentration on-line measuring device
SU1368640A1 (en) Device for measuring small and microflows of gas
SU1022006A1 (en) Aerosol concentration jet converter
JP2000131212A (en) Surface tension measuring device