JP2000131212A - Surface tension measuring device - Google Patents

Surface tension measuring device

Info

Publication number
JP2000131212A
JP2000131212A JP10300731A JP30073198A JP2000131212A JP 2000131212 A JP2000131212 A JP 2000131212A JP 10300731 A JP10300731 A JP 10300731A JP 30073198 A JP30073198 A JP 30073198A JP 2000131212 A JP2000131212 A JP 2000131212A
Authority
JP
Japan
Prior art keywords
surface tension
nozzle
nozzles
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10300731A
Other languages
Japanese (ja)
Inventor
Shigeo Iwahashi
茂雄 岩橋
Yutaka Tanaka
豊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10300731A priority Critical patent/JP2000131212A/en
Publication of JP2000131212A publication Critical patent/JP2000131212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device usuful industrially too, capable of accurately and reliably measuring surface tension in a liquid mixed with a solid material such as a polymer particle and a suspended matter using a maximum bubble pressure method. SOLUTION: In this surface tension measuring device, at least two hollow nozzles of different apertures are provided in a measuring liquid, bubbles are formed in the liquid by passing gas through the nozzles, and surface tension is measured by a maximum bubble pressure method for measuring a pressure difference between the nozzles at that time. A function for purging the gas at the time of measurement is provided in the nozzle, and a function to regulate variably an opening area of an opening part in an opening cover provided inside the nozzle is provided, in the surface tension measuring device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶液の表面張力の
測定に適用される表面張力測定装置に関するものであ
る。詳しくは、本発明は、最大泡圧法による表面張力測
定装置の改良に関し、特に重合体粒子、浮遊物等が含ま
れる溶液の表面張力測定に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface tension measuring device used for measuring the surface tension of a solution. More specifically, the present invention relates to an improvement of a surface tension measuring device by a maximum bubble pressure method, and more particularly, to a surface tension measurement of a solution containing polymer particles, suspended matter, and the like.

【0002】[0002]

【従来の技術】表面張力測定は、塗料、コーティング
剤、紙、粘着剤、繊維、ビール、インク、化学品等を製
造している分野では原料、製品の研究、品質管理に欠く
事の出来ない測定技術である。従来より、単一の液体の
表面張力を測定する方法には下記の方法が知られてい
る。 (1)ウイルヘルミィー・プレート法 (2)デュノイ・リング法 (3)静滴法 (4)垂滴法 (5)毛細管上昇法 (6)液重法 (7)最大泡圧法 上記方法のうち(1)〜(6)は、実験室レベルでは使
用されているが、工業用プロセスでは用いられていな
い。最近、工業用プロセスにおいて、反応器、容器、配
管中の溶液の表面張力測定の要求が非常に求められてお
り、上記測定法の中でプロセス用としての可能性がある
測定方法は、(7)最大泡圧法だけである。最大泡圧法
とは、図5に測定原理の模式図を示すように、測定液体
中23に口径の異なる中空の少なくとも2個のノズル2
4を設け、該ノズルに気体を通して液中で泡を形成さ
せ、その時の該ノズル間の圧力差圧を測定することによ
って表面張力を測定する方法である。この最大泡圧法に
よる表面張力測定装置については、米国センサザイン社
より米国特許第4,416,148号及び国際公開特許
WO97/13138号公報等が提案されている。
2. Description of the Related Art Surface tension measurement is indispensable for research and quality control of raw materials and products in the fields of manufacturing paints, coatings, papers, adhesives, fibers, beer, inks, chemicals, and the like. Measurement technology. Conventionally, the following methods are known as methods for measuring the surface tension of a single liquid. (1) Wilhelmy plate method (2) Dunois ring method (3) Static drop method (4) Dripping method (5) Capillary rise method (6) Liquid weight method (7) Maximum bubble pressure method Among the above methods (1)-(6) are used at the laboratory level, but not used in industrial processes. Recently, in industrial processes, there has been a great demand for measuring the surface tension of a solution in a reactor, a vessel, and a pipe. Among the above-mentioned measuring methods, a measuring method that has a potential for a process is described in (7). ) Only the maximum bubble pressure method. As shown in FIG. 5, the maximum bubble pressure method is a method of measuring at least two hollow nozzles 2 having different diameters in a measurement liquid 23, as shown in a schematic diagram of the measurement principle.
4 is a method for measuring the surface tension by passing a gas through the nozzle to form bubbles in the liquid and measuring the pressure difference between the nozzles at that time. US Patent No. 4,416,148 and International Publication WO97 / 13138 have proposed a sensor for measuring surface tension by the maximum bubble pressure method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記提
案に係る表面張力測定装置は、溶液中に重合物粒子及び
浮遊物等の固形物が存在するとプローブ先端ノズルに粒
子、浮遊物が入り込み閉塞を起こし、正確な最大泡圧が
測定できない問題点を有している。また、かかる表面張
力装置は、液の撹拌等による流動の影響を受け、ノズル
先端の気泡が最大になる前に外れてしまい、この場合に
も正確な最大泡圧が測定できないという問題点もある。
However, in the surface tension measuring device according to the above proposal, if solids such as polymer particles and suspended matter are present in the solution, the particles and suspended matter enter the nozzle at the tip of the probe and cause blockage. However, there is a problem that an accurate maximum bubble pressure cannot be measured. In addition, such a surface tension device is affected by the flow due to the stirring of the liquid or the like, and the bubble at the tip of the nozzle comes off before it reaches the maximum, and in this case, there is also a problem that the accurate maximum bubble pressure cannot be measured. .

【0004】[0004]

【課題を解決する為の手段】本発明はこの様な実情を鑑
み、前記最大泡圧法を用いて重合物粒子及び浮遊物等の
固形物が混在する液中の表面張力を正確に、且つ信頼性
良く測定できる工業的にも有用な装置を提供することを
目的とする。すなわち本発明の要旨は、測定液中に口径
の異なる中空の少なくとも2個のノズルを設け、ノズル
に気体を通して液中で泡を形成させ、その時のノズル間
の圧力差圧を測定する最大泡圧法によって表面張力を測
定する表面張力測定装置において、測定時に該ノズルに
ガスをパージできる機能を設け、かつ該ノズルの先端に
外筒カバーを設け、かつ当該カバーの開口面積を可変調
整できる機能を有してなることを特徴とする表面張力測
定装置に存する。
SUMMARY OF THE INVENTION In view of such circumstances, the present invention uses the maximum bubble pressure method to accurately and reliably measure the surface tension in a liquid in which solids such as polymer particles and suspended matter are mixed. It is an object of the present invention to provide an industrially useful device capable of performing measurement with good quality. That is, the gist of the present invention is that a maximum bubble pressure method is provided in which at least two hollow nozzles having different diameters are provided in a measurement solution, gas is passed through the nozzles to form bubbles in the solution, and the pressure difference between the nozzles at that time is measured. In the surface tension measuring device for measuring the surface tension by means of a nozzle, a function of purging gas at the nozzle at the time of measurement, a function of providing an outer cylinder cover at the tip of the nozzle, and a function of variably adjusting the opening area of the cover are provided. A surface tension measuring device characterized by the following.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
図2は、本発明に使用されている最大泡圧法による表面
張力測定装置の全体構成図を示す。すなわち本発明の表
面張力測定装置は、(1)プローブ部、(2)ガスパー
ジ部(3)流量切替部および(4)データ処理部の4つ
の部位より構成されている。各部の詳細について、以下
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
FIG. 2 shows an overall configuration diagram of a surface tension measuring device using a maximum bubble pressure method used in the present invention. That is, the surface tension measuring device of the present invention is composed of four parts: (1) a probe unit, (2) a gas purge unit, (3) a flow rate switching unit, and (4) a data processing unit. Details of each part will be described below.

【0006】(1)プローブ部 図3にプローブ部の詳細構造を示す。プローブ部はプロ
ーブ取付フランジ13、金属外筒21、大ノズル14及
び小ノズル15、外筒カバー16から構成されている。
大ノズル14及び小ノズル15は、それぞれ口径の異な
る中空の金属管又はガラス管からなり、ノズル先端は測
定液中で同じ深さの位置になるように設定されている。
(1) Probe Section FIG. 3 shows a detailed structure of the probe section. The probe section includes a probe mounting flange 13, a metal outer cylinder 21, a large nozzle 14 and a small nozzle 15, and an outer cylinder cover 16.
The large nozzle 14 and the small nozzle 15 are each formed of a hollow metal tube or a glass tube having a different diameter, and the nozzle tips are set to be at the same depth position in the measurement solution.

【0007】また、大ノズル14及び小ノズル15の先
端部の外側は、測定液中の回転の影響を少なくするため
に外筒カバー16が設けられている。この外筒カバー1
6の構造図を図4に示す。この外筒カバー16の側面に
は、測定液の流通を容易にするために貫通孔22の開口
部が設けられている。この開口部の開口面積はあまり大
きすぎるとノズル先端部で形成される気泡が最大径にな
る前に外れてしまい正確な最大泡圧の測定ができないの
で、開口面積の調整が必要である。この開口面積の調整
は測定液の流動状態などによって変化するので、安定な
波形となるように開口面積の調整を行うことが必要であ
る。この開口面積の調整は、貫通穴径と穴数との組み合
わせで調整する方法、貫通穴をネジ等で塞いで調整する
方法、外筒を二重にして中と外をスライドさせて調整さ
せる方法等が挙げられ、いずれの方法で調整しても良
い。
An outer cylinder cover 16 is provided outside the distal ends of the large nozzle 14 and the small nozzle 15 in order to reduce the influence of rotation in the measurement liquid. This outer cylinder cover 1
6 is shown in FIG. An opening of a through hole 22 is provided on a side surface of the outer cylinder cover 16 to facilitate the flow of the measurement liquid. If the opening area of this opening is too large, the bubble formed at the tip of the nozzle comes off before reaching the maximum diameter, and accurate measurement of the maximum bubble pressure cannot be performed. Therefore, it is necessary to adjust the opening area. Since the adjustment of the opening area changes depending on the flow state of the measurement liquid, it is necessary to adjust the opening area so that a stable waveform is obtained. This opening area is adjusted by a combination of the diameter of the through hole and the number of holes, a method of adjusting the through hole with a screw or the like, a method of adjusting the outer cylinder by sliding the inside and outside with a double cylinder. The adjustment may be made by any method.

【0008】また、大ノズル14及び小ノズル15の口
径についてはそれぞれの口径が異なっていれば、特に限
定されるものではないが、例えば大ノズルが内径(以下
同様)2〜5mm、小ノズルが0、5〜2mmの範囲内
で用いられ、その一例として、大ノズル14が4mm、
小ノズル15が1mmが挙げられる。
The diameters of the large nozzle 14 and the small nozzle 15 are not particularly limited as long as the diameters of the large nozzle 14 and the small nozzle 15 are different from each other. It is used in the range of 0, 5 to 2 mm, and as an example, the large nozzle 14 is 4 mm,
The small nozzle 15 is 1 mm.

【0009】この大ノズル14及び小ノズル15にガス
を通し、液中で泡を形成させ、この時の大ノズル14と
小ノズル15相互間の差圧を測定し、その測定値Pは下
記式に示されるように、表面張力の関数値として表さ
れる。
A gas is passed through the large nozzle 14 and the small nozzle 15 to form a bubble in the liquid, and the pressure difference between the large nozzle 14 and the small nozzle 15 at this time is measured. , As a function of surface tension.

【0010】[0010]

【数1】 P=P1−P2=2γ(1/r1−1/r2) ・・・・
(ただしP1、P2は気泡にかかる圧力、r1、r2は気泡
の半径、γは表面張力)
P = P 1 −P 2 = 2γ (1 / r 1 −1 / r 2 )
(However, P 1 and P 2 are the pressure applied to the bubble, r 1 and r 2 are the radius of the bubble, and γ is the surface tension)

【0011】即ち、小ノズル15において、泡がノズル
先端より脱離する時の圧力を大ノズル14の圧力と比較
して、その差圧を測定する。また、気泡周期を変化させ
ることにより、動的表面張力を測定することができる。
That is, in the small nozzle 15, the pressure at the time when bubbles are released from the tip of the nozzle is compared with the pressure of the large nozzle 14, and the differential pressure is measured. Also, the dynamic surface tension can be measured by changing the bubble cycle.

【0012】(2)ガスパージ部 ガスパージ部は、大ノズル14及び小ノズル15内にガ
スを導入できる機能を設けたものである。ここで用いら
れるガスは、固形物の侵入を防止できれば特に制限はな
いが、経済面や安全面から窒素ガスが望ましい。図1に
ついて説明すると、電磁弁6と大ノズル14との間及び
電磁弁7と小ノズル15との間にそれぞれ3方電磁弁
8、9を設け、この3方電磁弁8、9に手動流量調節弁
19、20の一方を取り付け、この手動流量調節弁1
9、20の他方に窒素ガス源1及び減圧弁2を経て窒素
ガスラインから分岐したバイパスライン26にそれぞれ
接続することにより実施される。このバイパスライン2
6を使用してノズル14、15内に窒素ガスパージを行
う。当該パージにより、プローブ先端ノズルへの重合物
粒子及び浮遊物等の固形物の侵入を防止し、それによる
閉塞も起こることはない。
(2) Gas Purge Unit The gas purge unit has a function of introducing gas into the large nozzle 14 and the small nozzle 15. The gas used here is not particularly limited as long as the intrusion of solids can be prevented, but nitrogen gas is preferable from the viewpoint of economy and safety. Referring to FIG. 1, three-way solenoid valves 8 and 9 are provided between the solenoid valve 6 and the large nozzle 14 and between the solenoid valve 7 and the small nozzle 15, respectively. One of the control valves 19 and 20 is attached, and the manual flow control valve 1
This is implemented by connecting the other of the components 9 and 20 to the bypass line 26 branched from the nitrogen gas line via the nitrogen gas source 1 and the pressure reducing valve 2. This bypass line 2
6, the nitrogen gas purge is performed in the nozzles 14 and 15. The purging prevents solid matter such as polymer particles and suspended matter from entering the probe tip nozzle, and does not cause blockage.

【0013】このノズル14、15内を窒素ガスパージ
するパージ機能には下記の2種類があり、このパー
ジ機能の動作は、測定する溶液の状態により切り替えが
可能であり、またデータ処理部18に条件を入力してお
けば自動的にパージ動作が行われる。このパージ中は、
表面張力測定は一次中断される。
There are two types of purging functions for purging the interior of the nozzles 14 and 15 with nitrogen gas. The operation of the purging function can be switched according to the state of the solution to be measured. Is input, a purge operation is automatically performed. During this purge,
The surface tension measurement is temporarily interrupted.

【0014】連続動作 パージ時間中、一定のガス流量で窒素ガスをノズル1
4、15の先端から連続的にパージする。なお、パージ
流量は手動調節弁19、20で調節可能である。 間欠動作 パージ時間中、一定のガス流量で窒素ガスをノズル1
4、15の先端から間欠的にパージする。なお、パージ
流量は手動調節弁19、20で調節可能である。
Continuous operation During the purge time, nitrogen gas is supplied to the nozzle 1 at a constant gas flow rate.
Purge continuously from the tips of 4,15. The purge flow rate can be adjusted by the manual control valves 19 and 20. Intermittent operation During the purge time, nitrogen gas is supplied to nozzle 1 at a constant gas flow rate.
Purge intermittently from the tips of 4 and 15. The purge flow rate can be adjusted by the manual control valves 19 and 20.

【0015】(3)質量流量切替部 流量切替装置は減圧弁2、電子式質量流量計3、4、差
圧計5、2方電磁弁6、7、バッファータンク10から
なる。 減圧弁2 減圧弁2は、ガス圧力源1、例えば窒素ガスからの圧力
を使用圧力に減圧する機能を持つ。 電子式質量流量計3、4 電子式質量流量計3、4は、ノズル14、15に流すガ
ス、例えば窒素の質量流量を自動調節する。ガスの質量
流量の設定はデータ処理部18から測定条件応じた流量
を設定出来る。 差圧計5 差圧計5は、ノズル14、15間の差圧を測定し、その
出力はインターフェイス17に接続されて、その差圧に
比例した電圧信号に変換する。 2方電磁弁6、7 2方電磁弁6、7は、ノズル14、15のラインに流す
窒素ガスを開/閉するためのバルブである。 バッファータンク10 バッファータンク10は、ノズル14側の圧力変化を平
均化するためのタンクである。
(3) Mass flow rate switching section The flow rate switching device comprises a pressure reducing valve 2, electronic mass flow meters 3, 4, differential pressure gauge 5, two-way solenoid valves 6, 7, and a buffer tank 10. Pressure reducing valve 2 The pressure reducing valve 2 has a function of reducing the pressure from the gas pressure source 1, for example, nitrogen gas to the working pressure. Electronic Mass Flow Meters 3 and 4 The electronic mass flow meters 3 and 4 automatically adjust the mass flow rate of the gas flowing through the nozzles 14 and 15, for example, nitrogen. The mass flow rate of the gas can be set from the data processing unit 18 according to the measurement conditions. Differential pressure gauge 5 The differential pressure gauge 5 measures a differential pressure between the nozzles 14 and 15, and its output is connected to the interface 17 and converts the output into a voltage signal proportional to the differential pressure. Two-way solenoid valves 6, 7 The two-way solenoid valves 6, 7 are valves for opening / closing nitrogen gas flowing through the lines of the nozzles 14, 15. Buffer Tank 10 The buffer tank 10 is a tank for averaging pressure changes on the nozzle 14 side.

【0016】(4)データ処理部18 データ処理部18には下記の機能がある。 電子式質量流量計3、4の設定値の変更及びその出力
を行う。 差圧計5よりの差圧信号を、インターフェイス17を
通じて読みとり、表面張力に変換して、表示を行う。ま
たインターフェイス17は、差圧計5の信号を電圧信号
に変換する目的の電気回路である。装置には「停止モー
ド」「校正モード」及び「測定モード」があり、それぞ
れのモードの動作に従ってデータ処理部18からの制御
でバルブ切替操作を自動的に行う為を動作させる。ま
た、「測定モード」は自動測定及び手動測定が任意に選
択可能である。
(4) Data processing unit 18 The data processing unit 18 has the following functions. The set values of the electronic mass flow meters 3 and 4 are changed and output. The differential pressure signal from the differential pressure gauge 5 is read through the interface 17, converted into surface tension, and displayed. The interface 17 is an electric circuit for converting a signal of the differential pressure gauge 5 into a voltage signal. The apparatus has a “stop mode”, a “calibration mode”, and a “measurement mode”, and operates to automatically perform a valve switching operation under the control of the data processing unit 18 according to the operation of each mode. In the “measurement mode”, automatic measurement and manual measurement can be arbitrarily selected.

【0017】選択例として、測定モード自動測定の動作
説明をする。窒素圧力源1の窒素ガスは減圧弁2で所定
圧力に設定され、さらに質量流量計3、4で調整された
窒素ガスは2方電磁弁6、7を経由して大ノズル14、
小ノズル15より測定液中に吹き込まれ、ノズル先端に
気泡を形成させる。一方、ノズル先端の気泡が最大にな
ったと時の圧力を差圧計5で測定し、この時の出力信号
をデータ処理部18に取り込み、表面張力に変換させ、
表示させる。その一例を図4に出力電圧測定例として示
す。
As a selection example, the operation of the measurement mode automatic measurement will be described. The nitrogen gas of the nitrogen pressure source 1 is set to a predetermined pressure by the pressure reducing valve 2, and the nitrogen gas adjusted by the mass flow meters 3 and 4 is passed through the two-way solenoid valves 6 and 7 to the large nozzle 14.
It is blown into the measurement liquid from the small nozzle 15 to form a bubble at the nozzle tip. On the other hand, the pressure at the time when the bubble at the tip of the nozzle becomes maximum is measured by the differential pressure gauge 5, and the output signal at this time is taken into the data processing unit 18 and converted into surface tension.
Display. One example is shown in FIG. 4 as an output voltage measurement example.

【0018】[0018]

【発明の効果】本発明により、重合物粒子及び浮遊物等
の固形物が混在する溶液の、正確かつ信頼性の高い表面
張力測定が可能となった。
According to the present invention, accurate and highly reliable surface tension measurement of a solution containing a mixture of solids such as polymer particles and suspended matter has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置の全体構成図を示す。FIG. 1 shows an overall configuration diagram of a device of the present invention.

【図2】プローブの詳細構成図を示す。FIG. 2 shows a detailed configuration diagram of a probe.

【図3】外筒カバーの詳細構成図を示す。FIG. 3 shows a detailed configuration diagram of an outer cylinder cover.

【図4】差圧計出力電圧測定例を示す。FIG. 4 shows an example of measuring a differential pressure gauge output voltage.

【図5】最大泡圧法の原理を示す図である。FIG. 5 is a diagram showing the principle of the maximum bubble pressure method.

【符号の説明】[Explanation of symbols]

1 窒素圧力源 2 減圧弁 3 電子式質量調節計 4 電子式質量調節計 5 微差圧計 6 2方電磁弁 7 2方電磁弁 8 3方電磁弁 9 3方電磁弁 10 バッファータンク 11 金属配管 12 金属配管 13 プローブ取付フランジ 14 大ノズル 15 小ノズル 16 外筒カバー 17 インターフェイス 18 データ処理装置 19 手動流量調節弁 20 手動流量調節弁 21 金属外筒 22 貫通穴 23 測定液体 24 ノズル 25 バッファタンク 26 バイパスライン DESCRIPTION OF SYMBOLS 1 Nitrogen pressure source 2 Pressure reducing valve 3 Electronic mass controller 4 Electronic mass controller 5 Micro differential pressure gauge 6 2-way solenoid valve 7 2-way solenoid valve 8 3-way solenoid valve 9 3-way solenoid valve 10 Buffer tank 11 Metal pipe 12 Metal pipe 13 Probe mounting flange 14 Large nozzle 15 Small nozzle 16 Outer cylinder cover 17 Interface 18 Data processing device 19 Manual flow control valve 20 Manual flow control valve 21 Metal outer cylinder 22 Through hole 23 Measurement liquid 24 Nozzle 25 Buffer tank 26 Bypass line

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 測定液体中に口径の異なる少なくとも2
個のノズルを設け、ノズルに気体を通して液中で泡を形
成させ、その時のノズル間の圧力差圧を測定する最大泡
圧法によって表面張力を測定する表面張力測定装置にお
いて、ノズルにガスをパージできる機能を設けたことを
特徴とする表面張力測定装置。
At least two liquids having different diameters in a liquid to be measured.
A gas can be purged to a nozzle in a surface tension measurement device that provides a number of nozzles, forms a bubble in the liquid by passing a gas through the nozzle, and measures a surface tension by a maximum bubble pressure method that measures a pressure differential pressure between the nozzles at that time. A surface tension measuring device having a function.
【請求項2】 該パージはガスを連続的又は間欠的にパ
ージできる機能を有し、且つその切り替えができること
を特徴とする請求項1に記載の表面張力測定装置。
2. The surface tension measuring apparatus according to claim 1, wherein said purging has a function of purging gas continuously or intermittently, and switching thereof can be performed.
【請求項3】 測定液体中に口径の異なる少なくとも2
個のノズルを設け、ノズルに気体を通して液中で泡を形
成させ、その時のノズル間の圧力差圧を測定する最大泡
圧法によって表面張力を測定する表面張力測定装置にお
いて、該ノズルは先端に外筒カバーが設けられているこ
とを特徴とする表面張力測定装置。
3. A liquid to be measured having at least two different diameters.
In a surface tension measuring device for measuring the surface tension by a maximum bubble pressure method in which bubbles are formed in a liquid by passing gas through the nozzles and measuring the pressure difference between the nozzles at the time, the nozzle is attached to the tip. A surface tension measuring device comprising a tubular cover.
【請求項4】 該外筒カバーは開口部を有し、且つ開口
面積を可変調整できる機能を有することを特徴とする請
求項3に記載の表面張力測定装置。
4. The surface tension measuring device according to claim 3, wherein the outer cylinder cover has an opening and has a function of variably adjusting an opening area.
JP10300731A 1998-10-22 1998-10-22 Surface tension measuring device Pending JP2000131212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10300731A JP2000131212A (en) 1998-10-22 1998-10-22 Surface tension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10300731A JP2000131212A (en) 1998-10-22 1998-10-22 Surface tension measuring device

Publications (1)

Publication Number Publication Date
JP2000131212A true JP2000131212A (en) 2000-05-12

Family

ID=17888432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10300731A Pending JP2000131212A (en) 1998-10-22 1998-10-22 Surface tension measuring device

Country Status (1)

Country Link
JP (1) JP2000131212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133857A (en) * 2007-11-24 2009-06-18 Kruess Gmbh Wissenschaftliche Laborgeraete Method and device for speedily forming fluid interface, and use of this device for determining nature of interface between liquid to liquid, and gas to liquid
JP2011158456A (en) * 2010-02-03 2011-08-18 Kohei Kosaka Device for surface tension measurement of capillary tube rising system
CN108393047A (en) * 2017-12-08 2018-08-14 江汉大学 A kind of reaction kettle and mercury capture structure for Trace Hg analysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133857A (en) * 2007-11-24 2009-06-18 Kruess Gmbh Wissenschaftliche Laborgeraete Method and device for speedily forming fluid interface, and use of this device for determining nature of interface between liquid to liquid, and gas to liquid
JP2011158456A (en) * 2010-02-03 2011-08-18 Kohei Kosaka Device for surface tension measurement of capillary tube rising system
CN108393047A (en) * 2017-12-08 2018-08-14 江汉大学 A kind of reaction kettle and mercury capture structure for Trace Hg analysis

Similar Documents

Publication Publication Date Title
US11047721B2 (en) Ultrasonic measuring device having transducers housed in a clamping device
US6176647B1 (en) Instrument for measuring mass flow rate of powder, and electrostatic powder coating apparatus utilizing the same
CA2472467A1 (en) Improved determination of gas solubility, entrained gas content, and true liquid density in manufacturing processes
US5503026A (en) Method and apparatus for determining a volume flow
CA2241919A1 (en) Signal processing apparati and methods for attenuating shifts in zero intercept attributable to a changing boundary condition in a coriolis mass flow meter
CA2077908C (en) Continuous on-line measurement of fluid or slurry viscosity
ATE237400T1 (en) METHOD FOR CORRECTING A LIQUID DISPENSING ERROR AND LIQUID DISPENSING DEVICE
KR101555567B1 (en) Differential pressure type flowmeter and flow rate controller
US7257985B2 (en) Apparatus and method for real time determination of density and related parameters in manufacturing processes
DE29609646U1 (en) Device for the dynamic measurement of the surface tension of a liquid
JP2000131212A (en) Surface tension measuring device
CN100510652C (en) Flow meter for use with high pressure process fluid
Becker et al. Ultrasonic velocity–a noninvasive method for the determination of density during beer fermentation
Miller et al. Hydrodynamic effects in measurements with the drop volume technique at small drop times 1. Surface tensions of pure liquids and mixtures
JP2008541079A (en) Method for measuring gas permeability by high-speed conditioning and apparatus for carrying out the method
JP2000131213A (en) Surface tension measuring device
DE4423720C1 (en) Surface tension measurement esp. in molten metal
JP2000131214A (en) Surface tension measuring device
EP0962769B1 (en) Method and apparatus for measuring the properties of a composition or a component thereof used in the processing of a paper or board web
US20040055402A1 (en) Probe holder
US20240060867A1 (en) Evaluating the foamability of a solution using a vibrational viscometer
SU1453249A1 (en) Method of measuring viscosity of gaseous and liquid media
JPS62207933A (en) Grain analyzer
GB2261513A (en) Membrane osmometer
CH692637A5 (en) Dynamic pressure generator to generate differential pressures from 0 to 1000 Pascal.