JP2000131213A - Surface tension measuring device - Google Patents

Surface tension measuring device

Info

Publication number
JP2000131213A
JP2000131213A JP10321390A JP32139098A JP2000131213A JP 2000131213 A JP2000131213 A JP 2000131213A JP 10321390 A JP10321390 A JP 10321390A JP 32139098 A JP32139098 A JP 32139098A JP 2000131213 A JP2000131213 A JP 2000131213A
Authority
JP
Japan
Prior art keywords
pressure
piping
nozzle
surface tension
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10321390A
Other languages
Japanese (ja)
Inventor
Shigeo Iwahashi
茂雄 岩橋
Yutaka Tanaka
豊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10321390A priority Critical patent/JP2000131213A/en
Publication of JP2000131213A publication Critical patent/JP2000131213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure a maximum bubble pressure with high reliability by measuring a differential pressure between a buffer part in midstream of piping of a large nozzle and a pressure pickup part near a tip part of a small nozzle. SOLUTION: One end of pressure pickup piping 19 is connected to a position within 30 cm from a tip part of a small nozzle 13, while the other end is connected to a differential pressure gauge 5 through a two-way solenoid valve 18. Thereby, though a piping pressure loss caused by a gas flow occurs within the small nozzle 13, a gas flow does not occur within the piping 19 so that no piping pressure loss occurs within the piping 19. A large nozzle 12 used for measuring a mean value of maximum pressures of bubbles has a larger diameter than the small nozzle 13 so that its piping pressure loss is remarkably small. Accordingly, by providing a buffer part 8 in midstream of piping connected to the large nozzle 12, an averaged pressure of the piping is introduced into the differential pressure gauge 5 so that a differential pressure between the averaged pressure and a pressure of the piping 19 is measured by the differential pressure gauge 5. A data processing part 16 takes in an output signal of this differential pressure, converts it into a surface tension, and displays the surface tension.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体の表面張力の
測定に適用される表面張力測定装置に関するものであ
る。詳しくは、本発明は、最大泡圧法による表面張力測
定装置の改良に関し、特に重合体粒子、浮遊物等が含ま
れる液体の表面張力測定に適した測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface tension measuring device used for measuring the surface tension of a liquid. More specifically, the present invention relates to an improvement of a surface tension measuring device using a maximum bubble pressure method, and more particularly to a measuring device suitable for measuring the surface tension of a liquid containing polymer particles, suspended matter, and the like.

【0002】[0002]

【従来の技術】表面張力測定は、塗料、コーティング
剤、紙、粘着剤、繊維、ビール、インク、化学品等を製
造している分野では原料、製品の研究、品質管理に欠く
事の出来ない測定技術である。従来より、単一の液体の
表面張力を測定する方法には下記の方法が知られてい
る。
2. Description of the Related Art Surface tension measurement is indispensable for research and quality control of raw materials and products in the fields of manufacturing paints, coatings, papers, adhesives, fibers, beer, inks, chemicals, and the like. Measurement technology. Conventionally, the following methods are known as methods for measuring the surface tension of a single liquid.

【0003】1)ウィルヘルミィー・プレート法 2)デュノイ・リング法 3)静滴法 4)垂滴法 5)毛細管上昇法 6)液重法 7)最大泡圧法 上記方法のうち1)〜6)は、実験室では使用されてい
るが、工業用プロセスでは用いられていない。
1) Wilhelmy plate method 2) Dunois ring method 3) Static drop method 4) Dripping method 5) Capillary rise method 6) Liquid weight method 7) Maximum bubble pressure method 1) to 6 of the above methods ) Are used in laboratories but not in industrial processes.

【0004】最近、工業用プロセスにおいて、反応器、
容器、配管中の溶液の表面張力測定の必要性が増してい
る。上記測定法の中でプロセス用として使用される可能
性がある測定方法は7)の最大泡圧法だけである。最大
泡圧法とは、図2に測定原理の模式図を示す様に被測定
液体中に口径の異なる中空の少なくとも2個のノズルを
設け、該ノズルに気体を通して液体中で泡を形成させ、
その時の該ノズル間の圧力差圧を測定することによって
表面張力を測定する方法である。この最大泡圧法による
表面張力測定装置については、米国センサダイン社より
米国特許第4,416,148及び国際公開特許WO9
7/13138等が提案されている。
Recently, in industrial processes, reactors,
The necessity of measuring the surface tension of a solution in a container or a pipe is increasing. Among the above measurement methods, the only measurement method that may be used for a process is the maximum bubble pressure method of 7). With the maximum bubble pressure method, at least two hollow nozzles having different diameters are provided in the liquid to be measured as shown in a schematic diagram of the measurement principle in FIG. 2, a gas is passed through the nozzle to form bubbles in the liquid,
This is a method for measuring the surface tension by measuring the pressure differential pressure between the nozzles at that time. The surface tension measuring apparatus using the maximum bubble pressure method is disclosed in US Pat. No. 4,416,148 and International Patent Publication WO 9
7/13138 and the like have been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記提
案に係わる表面張力測定装置は、反応容器または容器の
液体中に挿入するプローブのノズル先端部と差圧計との
間の配管距離が長くなり、下記に示すようにノズル先端
部の正確な最大泡圧が測定できない問題点を有してい
る。 i)配管圧力損失が非常に大きくなり正確な最大泡圧が
測定できない。 ii)配管圧力損失により差圧計のゼロ点がシフトして正
確な測定ができない。 本発明はこの様な実状に鑑み、前記最大泡圧法を用い
て、ノズル先端部と差圧計との間の距離が長くなって
も、その影響を受けないで最大泡圧を正確に、且つ信頼
性良く測定できる工業的にも有用な装置を提供すること
を目的とする。
However, in the surface tension measuring device according to the above proposal, the piping distance between the tip of the nozzle of the probe inserted into the reaction vessel or the liquid in the vessel and the differential pressure gauge becomes long, and As shown in (1), there is a problem that an accurate maximum bubble pressure at the nozzle tip cannot be measured. i) The piping pressure loss becomes so large that an accurate maximum bubble pressure cannot be measured. ii) The zero point of the differential pressure gauge shifts due to the pipe pressure loss, and accurate measurement cannot be performed. In view of such a situation, the present invention uses the maximum bubble pressure method to accurately and reliably determine the maximum bubble pressure without being affected even if the distance between the nozzle tip and the differential pressure gauge becomes long. It is an object of the present invention to provide an industrially useful device capable of performing measurement with good quality.

【0006】[0006]

【課題を解決するための手段】即ち、本発明の要旨は、
被測定液体中に口径の異なる複数個のノズルを設け、該
ノズルに気体を通して液中で泡を形成させ、その時の該
ノズル間の圧力差圧を測定する最大泡圧法によって表面
張力を測定する表面張力測定装置において、口径の大き
いノズル配管の途中に設けたバッファー部、口径の小さ
いノズルの先端部付近に設けた圧力取り出し部及びこの
バッファー部と圧力取り出し部との圧力差圧を測定する
差圧計を有してなることを特徴とする表面張力測定装
置、に存する。
That is, the gist of the present invention is as follows.
A surface on which a plurality of nozzles having different diameters are provided in a liquid to be measured, bubbles are formed in the liquid by passing gas through the nozzles, and the surface tension is measured by a maximum bubble pressure method for measuring a pressure differential pressure between the nozzles at that time. In a tension measuring device, a buffer section provided in the middle of a large-diameter nozzle pipe, a pressure extraction section provided near a tip of a small-diameter nozzle, and a differential pressure gauge for measuring a pressure differential pressure between the buffer section and the pressure extraction section Surface tension measuring device, characterized by having:

【0007】以下、本発明を添付図面に基づいて詳細に
説明する。図3は、本発明に使用されている最大泡圧法
による表面張力測定装置の全体構成図を示す。即ち、本
発明の表面張力測定装置は、(1)プローブ、(2)流
量切替装置、(3)データ処理部より構成されており、
各部の詳細につき、以下に説明する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 3 shows an overall configuration diagram of a surface tension measuring device using a maximum bubble pressure method used in the present invention. That is, the surface tension measuring device of the present invention comprises (1) a probe, (2) a flow rate switching device, and (3) a data processing unit.
Details of each part will be described below.

【0008】(1)プローブ部 図4にプローブの詳細構造を示す。プローブ部はプロー
ブ取付フランジ11、金属外筒17、大ノズル12及び
小ノズル13、バケット14から構成されている。大ノ
ズル12及び小ノズル13は、それぞれ口径の異なる中
空の金属管又はガラス管からなり、ノズル先端は被測定
液体中で同じ深さの位置になるように設定されている。
また、大ノズル12及び小ノズル13の先端部の外側
は、被測定液体の回転の影響を少なくするためにバケッ
ト14が設けられている。バケット14には大ノズル1
2、小ノズル13の先端部以外は、被測定液体の流通を
容易にするために流通穴が設けられている。大ノズル1
2及び小ノズル13の口径についてはそれぞれの口径が
異なっていれば、特に限定されるものではないが、例え
ば大ノズルが内径2〜5mmφ、小ノズルが0.5〜2
mmφの範囲内で用いられ、その一例として、大ノズル
12が4mmφ、小ノズル13が1mmφが挙げられ
る。
(1) Probe section FIG. 4 shows a detailed structure of the probe. The probe section includes a probe mounting flange 11, a metal outer cylinder 17, a large nozzle 12, a small nozzle 13, and a bucket 14. The large nozzle 12 and the small nozzle 13 are each formed of a hollow metal tube or a glass tube having a different diameter, and the nozzle tips are set to have the same depth in the liquid to be measured.
A bucket 14 is provided outside the distal ends of the large nozzle 12 and the small nozzle 13 in order to reduce the influence of the rotation of the liquid to be measured. Large nozzle 1 in bucket 14
2. Except for the tip of the small nozzle 13, a flow hole is provided to facilitate the flow of the liquid to be measured. Large nozzle 1
The diameters of the small nozzle 2 and the small nozzle 13 are not particularly limited as long as the respective diameters are different. For example, the large nozzle has an inner diameter of 2 to 5 mmφ, and the small nozzle has a diameter of 0.5 to 2 mm.
For example, the large nozzle 12 has a diameter of 4 mmφ and the small nozzle 13 has a diameter of 1 mmφ.

【0009】この大ノズル12及び小ノズル13にガス
を通し、液体中で泡を形成させ、この時の大ノズル12
と小ノズル13相互間の差圧を測定し、その測定値は下
記(I)式に示すように、表面張力の関数値として表さ
れる。即ち、小ノズル13において、泡がノズル先端よ
り脱離する時の圧力を大ノズル12の圧力と比較して、
その差圧を測定する。また、気泡周期を変化させること
により、動的表面張力を測定することができる。 P=P1−P2=2γ(1/r1−1/r2) (I) P1、P2:気泡にかかる圧力 r1、r2:気泡の半径 γ:表面張力
A gas is passed through the large nozzle 12 and the small nozzle 13 to form bubbles in the liquid.
And the small nozzle 13 is measured, and the measured value is expressed as a function value of the surface tension as shown in the following equation (I). That is, in the small nozzle 13, the pressure at the time when the bubbles are detached from the nozzle tip is compared with the pressure of the large nozzle 12,
The differential pressure is measured. Also, the dynamic surface tension can be measured by changing the bubble cycle. P = P1-P2 = 2γ (1 / r1-1 / r2) (I) P1, P2: pressure applied to bubble r1, r2: radius of bubble γ: surface tension

【0010】(2)流量切替装置 減圧弁2 ガス圧力源1、例えば、窒素ガスからの圧力を使用圧力
に減圧する。 電子式質量流量計3、4 電子式質量流量計3、4は、ノズル12、13に流すガ
ス、例えば、窒素の質量流量を自動調節する。ガスの質
量流量の設定はデータ処理部16からの測定条件に応じ
た流量を設定出来る。
(2) Flow switching device Pressure reducing valve 2 The pressure from a gas pressure source 1, for example, nitrogen gas, is reduced to the working pressure. Electronic Mass Flow Meters 3 and 4 The electronic mass flow meters 3 and 4 automatically adjust the mass flow rate of the gas flowing through the nozzles 12 and 13, for example, nitrogen. For setting the gas mass flow rate, a flow rate according to the measurement conditions from the data processing unit 16 can be set.

【0011】 差圧計5 差圧計5は、ノズル12、13間の差圧を測定し、その
出力はインターフェイス15に接続されて、その差圧に
比例した電圧信号に変換される。 二方電磁弁6、7 二方電磁弁6、7は、ノズル12、13のラインに流れ
るガス、例えば窒素ガスを開/閉するためのバルブであ
る。 バッファータンク8 バッファータンク8は、ノズル12側の圧力変化を平均
化するためのタンクである。
The differential pressure gauge 5 measures the differential pressure between the nozzles 12 and 13, and its output is connected to the interface 15 and converted into a voltage signal proportional to the differential pressure. Two-way solenoid valves 6, 7 The two-way solenoid valves 6, 7 are valves for opening / closing gas, for example, nitrogen gas, flowing in the lines of the nozzles 12, 13. Buffer Tank 8 The buffer tank 8 is a tank for averaging pressure changes on the nozzle 12 side.

【0012】(3)データ処理部16、インターフェイ
ス15 データ処理部16には下記の機能がある。 データ取込 差圧計5よりの差圧信号を読みとり、表面張力に変換し
て、表示を行う。 質量流量計の設定値の変更及びその出力 シーケンスの制御 装置には下記のモードがある。 ・停止モード ・校正モード ・測定モード 自動測定及び手動測定
(3) Data processing unit 16 and interface 15 The data processing unit 16 has the following functions. Data capture The differential pressure signal from the differential pressure gauge 5 is read, converted to surface tension, and displayed. The following modes are available in the control device for changing the set value of the mass flow meter and controlling its output sequence.・ Stop mode ・ Calibration mode ・ Measurement mode Automatic measurement and manual measurement

【0013】それぞれのモードの動作に従ってデータ処
理部16からの制御でバルブ切替操作を自動的に行う為
に動作させる。インターフェイス15は、差圧計5の信
号を電圧信号に変換する目的の電気回路である。上記し
た大ノズル12と小ノズル13との間の差圧測定法で
は、上記したように問題点を有する。
According to the operation of each mode, the operation is performed to automatically perform the valve switching operation under the control of the data processing unit 16. The interface 15 is an electric circuit for converting a signal of the differential pressure gauge 5 into a voltage signal. The above-described method for measuring the pressure difference between the large nozzle 12 and the small nozzle 13 has a problem as described above.

【0014】[0014]

【発明の実施の形態】本発明においては、図1に示すよ
うな装置を用いて差圧測定を行う。すなわち、小ノズル
13の先端部から30cm以内に圧力取り出し配管19
の一部を取り付け、その他端は二方電磁弁18を介して
差圧計5に取り付けられている。この配管19の内径と
しては、通常1mm以上あればよく、望ましくは2〜5
mmの範囲である。こうすることにより、小ノズル13
内にはガス、例えば窒素ガスが流れているため配管圧力
損失が生じるのに対して、配管19内にはガス流れがな
いので配管圧力損失は生じない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a differential pressure measurement is performed using an apparatus as shown in FIG. That is, the pressure extraction pipe 19 is set within 30 cm from the tip of the small nozzle 13.
And the other end is attached to the differential pressure gauge 5 via the two-way solenoid valve 18. The inner diameter of the pipe 19 may be generally 1 mm or more, preferably 2 to 5 mm.
mm. By doing so, the small nozzle 13
Gas, for example, nitrogen gas flows inside the pipe, causing a pipe pressure loss, whereas there is no gas flow in the pipe 19, so that no pipe pressure loss occurs.

【0015】また、大ノズル12はその径が小ノズル1
3の径より大きいため配管圧力損失は著しく小さく、そ
の役目としては、気泡の最大泡圧の平均を測定するのが
目的である。従って、大ノズル12に接続されている配
管の途中にバッファー部8を設けることにより、その圧
力が平均化されて差圧計5に導入され、差圧計5によっ
て配管19内との圧力差圧が測定される。
The large nozzle 12 has a small nozzle 1
Since the diameter is larger than 3, the pipe pressure loss is extremely small, and its purpose is to measure the average of the maximum bubble pressure of the bubbles. Therefore, by providing the buffer section 8 in the middle of the pipe connected to the large nozzle 12, the pressure is averaged and introduced into the differential pressure gauge 5, and the differential pressure gauge 5 measures the pressure differential pressure with the pipe 19. Is done.

【0016】各測定モードの中での測定モード自動測定
の動作説明をする。ガス圧力源1のガス、例えば窒素ガ
スは減圧弁2で所定圧力に設定され、さらに質量流量計
3、4で調整されたガスは二方電磁弁6、7を経由して
大ノズル12、小ノズル13より被測定溶液中に吹き込
まれ、ノズル先端に気泡を形成させる。一方、ノズル先
端の気泡が最大になった時の圧力を差圧計5で測定し、
この時の出力信号をデータ処理部16に取り込み、表面
張力に変換させ、表示させる。
The operation of the measurement mode automatic measurement in each measurement mode will be described. The gas of the gas pressure source 1, for example, nitrogen gas is set to a predetermined pressure by the pressure reducing valve 2, and the gas adjusted by the mass flowmeters 3 and 4 passes through the two-way solenoid valves 6 and 7 to the large nozzle 12 and the small The solution is blown into the solution to be measured from the nozzle 13 to form a bubble at the nozzle tip. On the other hand, the pressure at the time when the bubble at the tip of the nozzle becomes maximum is measured by the differential pressure gauge 5,
The output signal at this time is taken into the data processing unit 16, converted into surface tension, and displayed.

【0017】[0017]

【発明の効果】本発明装置は、最大泡圧法を測定する
際、ノズル先端部と差圧計との間の距離が長くなって
も、その影響を受けないで最大泡圧を正確に、且つ信頼
性良く測定できる工業的にも有用な表面張力測定装置で
ある。
According to the present invention, when measuring the maximum bubble pressure method, even if the distance between the nozzle tip and the differential pressure gauge becomes long, the maximum bubble pressure can be accurately and reliably measured without being affected by the distance. It is an industrially useful surface tension measurement device that can measure well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の表面張力測定装置の一実施態様を示す
説明図。
FIG. 1 is an explanatory view showing one embodiment of a surface tension measuring device of the present invention.

【図2】最大泡圧法による表面張力測定の原理を示す模
式図。
FIG. 2 is a schematic diagram showing the principle of surface tension measurement by the maximum bubble pressure method.

【図3】最大泡圧法による表面張力測定装置の説明図。FIG. 3 is an explanatory diagram of a surface tension measuring device using a maximum bubble pressure method.

【図4】プローブの構造を示す説明図。FIG. 4 is an explanatory view showing the structure of a probe.

【符号の説明】[Explanation of symbols]

1 ガス圧力源 2 減圧弁 3 電子式質量流量計 4 電子式質量流量計 5 差圧計 6 二方電磁弁 7 二方電磁弁 8 バッファータンク 9 金属配管 10 金属配管 11 プローブ取付フランジ 12 大ノズル 13 小ノズル 14 バケット 15 インターフェイス 16 データ処理装置 17 金属外筒 18 二方電磁弁 19 配管 DESCRIPTION OF SYMBOLS 1 Gas pressure source 2 Pressure reducing valve 3 Electronic mass flow meter 4 Electronic mass flow meter 5 Differential pressure gauge 6 Two-way solenoid valve 7 Two-way solenoid valve 8 Buffer tank 9 Metal piping 10 Metal piping 11 Probe mounting flange 12 Large nozzle 13 Small Nozzle 14 Bucket 15 Interface 16 Data processing device 17 Metal outer cylinder 18 Two-way solenoid valve 19 Piping

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定液体中に口径の異なる複数個のノ
ズルを設置し、該ノズルに気体を通して液中で泡を形成
させ、その時の該ノズル間の圧力差圧を測定する最大泡
圧法によって表面張力を測定する表面張力測定装置にお
いて、口径の大きいノズル配管の途中に設けたバッファ
ー部、口径の小さいノズルの先端部付近に設けた圧力取
り出し部及びこのバッファー部と圧力取り出し部との圧
力差圧を測定する差圧計を有してなることを特徴とする
表面張力測定装置。
1. A plurality of nozzles having different diameters are installed in a liquid to be measured, bubbles are formed in the liquid by passing a gas through the nozzles, and a maximum bubble pressure method is used to measure a pressure differential pressure between the nozzles at that time. In a surface tension measuring device for measuring surface tension, a buffer section provided in the middle of a large-diameter nozzle pipe, a pressure extraction section provided near the tip of a small-diameter nozzle, and a pressure difference between the buffer section and the pressure extraction section A surface tension measuring device comprising a differential pressure gauge for measuring pressure.
JP10321390A 1998-10-28 1998-10-28 Surface tension measuring device Pending JP2000131213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10321390A JP2000131213A (en) 1998-10-28 1998-10-28 Surface tension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10321390A JP2000131213A (en) 1998-10-28 1998-10-28 Surface tension measuring device

Publications (1)

Publication Number Publication Date
JP2000131213A true JP2000131213A (en) 2000-05-12

Family

ID=18132025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10321390A Pending JP2000131213A (en) 1998-10-28 1998-10-28 Surface tension measuring device

Country Status (1)

Country Link
JP (1) JP2000131213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007140270A (en) * 2005-11-21 2007-06-07 Mitsubishi Chemical Engineering Corp Method for producing surfactant-containing alkali developer solution and producing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007140270A (en) * 2005-11-21 2007-06-07 Mitsubishi Chemical Engineering Corp Method for producing surfactant-containing alkali developer solution and producing device

Similar Documents

Publication Publication Date Title
US11047721B2 (en) Ultrasonic measuring device having transducers housed in a clamping device
US5315863A (en) Continuous on-line measurement of fluid or slurry rheology
US6185989B1 (en) Device for dynamic measurement of the surface tension of a liquid
JP2000131213A (en) Surface tension measuring device
JP2000131214A (en) Surface tension measuring device
JP2000131212A (en) Surface tension measuring device
US6959610B1 (en) Manual purge system for instrumentation flow element tubing
JP2003287545A (en) Dispensing apparatus
CN208013008U (en) A kind of ammonium molybdate solution proportion automatic measurement system
CN201373834Y (en) Online electronic solution concentration meter
CN105606178A (en) Multifunctional flow velocity and flow rate measuring device and measuring method using device
CN209085709U (en) Material-level detecting device
CN100462707C (en) Double-pipe relative measurement method and device for microflow of liquid
CA2153286A1 (en) Apparatus for measuring surface tension
CN207585729U (en) A kind of heavy caliber fluid flowmeter on-line calibration device
CN207742210U (en) A kind of sampler and the sampling device using the device, detecting system
CN201122145Y (en) Integral fluid density measuring instrument
CN208013044U (en) A kind of experimental rig for measuring ground connection sample corrosion rate
CN219038139U (en) Sonic nozzle verification device and system thereof
CN105606177A (en) Flow velocity and flow rate measuring device with intelligent digital display instrument and flow velocity and flow rate measuring method using device
CN212111011U (en) Device for measuring density of slurry in tank tower
CN207502000U (en) Detachable screw-rod air compressor air inlet mass-flow measurement system
CN107727170A (en) A kind of high-precision spinner flowmeter
JPH0220673Y2 (en)
RU1793233C (en) Flow parameters transducer