JPH01118747A - Particle analyzer - Google Patents

Particle analyzer

Info

Publication number
JPH01118747A
JPH01118747A JP62276345A JP27634587A JPH01118747A JP H01118747 A JPH01118747 A JP H01118747A JP 62276345 A JP62276345 A JP 62276345A JP 27634587 A JP27634587 A JP 27634587A JP H01118747 A JPH01118747 A JP H01118747A
Authority
JP
Japan
Prior art keywords
flow
sample
diameter
particle
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62276345A
Other languages
Japanese (ja)
Inventor
Shinichi Oe
大江 愼一
Yoshiyuki Azumaya
良行 東家
Naoki Yuguchi
湯口 直樹
Yoshito Yoneyama
米山 好人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62276345A priority Critical patent/JPH01118747A/en
Publication of JPH01118747A publication Critical patent/JPH01118747A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To set a flow diameter matching with fluid particles automatically by providing a particle diameter information detecting means which detects particle diameter information on the sample particles and a means which sets the flow diameter corresponding to the detect particle diameter. CONSTITUTION:A control arithmetic circuit 17 controls a regulator 3 for sheath liquid and a regulator 4 for sample liquid at the start of measurement to set the flow diameter of a flow of sample fluid in a flow cell 12 to a certain specific value. The sample particles which flow at this time are irradiated with laser light from a laser 19. There is a correlation between the quantity of forward scattered light and the particle diameter, so a photodetector 22 detects the quantity of the forward scattered light at this time and compares it with a light quantity-particle size conversion table in the memory of a circuit 17 to calculate the particle size. Then the circuit 17 controls the regulators 3 and 4 so as to obtain a flow diameter nearly equal to the found particle size. Here, the pressure values of sheath liquid Sh and sample liquid Sa for obtaining the specific flow diameter are predetermined and stored in the memory of the circuit 7. Thus, the flow diameter matching with the particle size is set automatically.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は粒子解析装置、特に検体粒子を含むサンプル液
をシース液で包みながら流して粒子解析を行ういわゆる
フローサイトメータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a particle analysis device, and particularly to a so-called flow cytometer that performs particle analysis by flowing a sample liquid containing specimen particles while being wrapped in a sheath liquid.

[従来の技術] フローサイトメータは、細胞浮遊溶液であるサンプル液
と、その外側のシース液(例えば生理食塩水)とに所定
の圧力差を与えて高速で流し、流体力学的に流れを収束
させ該収束位置に1個づつ流れてくる検体粒子にレーザ
光を照射して検体粒子からの散乱光、蛍光を光検出器で
検出し、検体粒子の性質、構造等を解析する装置であり
、細胞学、血液学、腫瘍学、遺伝学等の分野で使用され
る。
[Conventional technology] A flow cytometer applies a predetermined pressure difference between a sample liquid, which is a cell suspension solution, and a sheath liquid (e.g., physiological saline) on the outside, causes the sample liquid to flow at high speed, and converges the flow hydrodynamically. This device analyzes the properties, structure, etc. of the sample particles by irradiating the sample particles flowing one by one to the convergence position with a laser beam, detecting the scattered light and fluorescence from the sample particles with a photodetector, Used in fields such as cytology, hematology, oncology, and genetics.

サンプル液、シース液は各々容器に蓄えられコンプレッ
サ又は窒素ガスボンベ等の加圧系により容器内の空気が
加圧されて各々の液が測定部であるフローセル部に流体
力学的に収束する。なお本件出願人の先願である特願昭
62−185841では圧力制御系が開示され、シース
液容器とフローセルの間には圧力センサが設けられてお
り、圧力センサの出力を常にフィードバック制御してフ
ィルタの目詰りやシース液の低下による圧力変動の影響
を受けないようにして、サンプル液の流径を安定化させ
ている。
The sample liquid and the sheath liquid are each stored in a container, and the air in the container is pressurized by a pressurizing system such as a compressor or a nitrogen gas cylinder, so that each liquid fluidly converges on the flow cell section, which is the measuring section. Note that the applicant's earlier application, Japanese Patent Application No. 62-185841, discloses a pressure control system, in which a pressure sensor is provided between the sheath liquid container and the flow cell, and the output of the pressure sensor is constantly feedback-controlled. The flow diameter of the sample liquid is stabilized by avoiding the influence of pressure fluctuations due to filter clogging or drop in sheath liquid.

フローセル内を流れるサンプル液の流径は検体粒子の種
類、測定速度を考慮して予め決められるが、この流径の
設定はシース液、サンプル液の各々入った容器に加圧さ
れる空気の圧力を予め所定値に設定することにより行わ
れる。
The flow diameter of the sample liquid flowing inside the flow cell is determined in advance by considering the type of sample particles and the measurement speed, but the setting of this flow diameter is determined by the pressure of the air pressurized into the containers containing the sheath liquid and sample liquid. This is done by setting in advance a predetermined value.

[発明が解決しようとする問題点] しかしながら上記従来例では、検体粒子の種類が分から
ない場合、或いは種類が分がっていても粒子の大きさが
分からない場合、最適な流径が判断できず、検体粒子が
流れ方向と交差する方向にドリフトすることにより精確
な測定が困難であった。
[Problems to be Solved by the Invention] However, in the conventional example described above, when the type of sample particles is unknown, or when the size of the particles is unknown even if the type is known, the optimal flow diameter cannot be determined. First, accurate measurements were difficult because the sample particles drifted in a direction intersecting the flow direction.

し問題点を解決するための手段] 上述した問題点を解決する一手段として例えば本実施例
では、測定開始時にある所定の流径で検体粒子にレーザ
光を照射して前方散乱光の出力から粒子径を求め、次に
求めた粒子径に応じた流径に設定し直して本測定を行な
っている。
[Means for Solving the Problems] As a means for solving the above-mentioned problems, for example, in this embodiment, sample particles are irradiated with a laser beam at a predetermined flow diameter at the start of measurement, and the output of the forward scattered light is calculated. The particle diameter is determined, and then the flow diameter is reset to correspond to the determined particle diameter, and the main measurement is performed.

[実施例コ 以下、本発明の実施例を図面を用いて詳細に説明する。[Example code] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図において、1は圧縮空気発生源であるコンプレッ
サであり、このコンプレッサに接続されたエアチューブ
2は二岐に分岐される。そして分岐されたエアチューブ
2はそれぞれシース液容器、サンプル液用に設けられる
圧力調整のための電気式レギュレータ3.4を介して、
シース液sh及びサンプル液Saを気密に蓄えるシース
液熔液5及びサンプル液容器6に接続されている。シー
ス液容器5の中のシース液sh中に浸漬されたシースチ
ューブ7は不純物除去用のフィルタ8、圧力センサ9、
シース液流入制御弁10を介してノズル11内に導かれ
ている。又サンプル液容器6の中のサンプル液りa内に
浸漬されたサンプルチューブ13はサンプル液流入制御
弁14を介してノズル11内へ導かれ、その先端部はノ
ズル11の上端に接続されたフローセル12に向けられ
ている。フローセル12において期せずして発生する気
泡が流体とともに流れ、すみやかに除去されるようにサ
ンプル液及びシース液は重力に逆らって下側から上側へ
向けて流される。フローセル12の上端には廃液チュー
ブ15が接続され、その他端は廃液容器16に接続され
ている。制御演算回路17には圧力センサ9の出力が人
力されさらに散乱光検出器の出力が入力されている。こ
こからの出力がサンプル液用レギュレータ4及びシース
液用レギュレータ3へ入力されている。
In FIG. 1, 1 is a compressor which is a source of compressed air, and an air tube 2 connected to this compressor is branched into two branches. The branched air tubes 2 are connected to a sheath liquid container and an electric regulator 3.4 for pressure adjustment provided for the sample liquid, respectively.
It is connected to a sheath liquid solution 5 and a sample liquid container 6 that airtightly store the sheath liquid sh and sample liquid Sa. The sheath tube 7 immersed in the sheath liquid sh in the sheath liquid container 5 includes a filter 8 for removing impurities, a pressure sensor 9,
The sheath liquid is guided into the nozzle 11 via the sheath liquid inflow control valve 10. Further, the sample tube 13 immersed in the sample liquid a in the sample liquid container 6 is guided into the nozzle 11 via the sample liquid inflow control valve 14, and its tip is connected to the flow cell connected to the upper end of the nozzle 11. It is aimed at 12. The sample liquid and sheath liquid are caused to flow from the bottom to the top against gravity so that air bubbles that are unexpectedly generated in the flow cell 12 flow with the fluid and are quickly removed. A waste liquid tube 15 is connected to the upper end of the flow cell 12, and the other end is connected to a waste liquid container 16. The control calculation circuit 17 receives the output of the pressure sensor 9 manually and also receives the output of the scattered light detector. The output from this is input to the sample liquid regulator 4 and the sheath liquid regulator 3.

シース液shの液位が下がったとき、若しくはフィルタ
8が目づまりして圧力センサ9の出力が基準値より低下
した場合には、レギュレータ3により容器5の内部気圧
を高め、圧力センサ9の出力を基準値に合致させること
により圧力制御を行なう。また19は粒子解析の光めの
測定用レーザ、20は集光レンズ、21は受光レンズ、
22は光検出器であり、受光レンズ、光検出器の組はレ
ーザの照射方向及び側方に設定されている。
When the liquid level of the sheath liquid sh falls, or when the filter 8 is clogged and the output of the pressure sensor 9 falls below the reference value, the internal pressure of the container 5 is increased by the regulator 3, and the output of the pressure sensor 9 is increased. Pressure control is performed by matching the reference value. In addition, 19 is a measurement laser for particle analysis, 20 is a condensing lens, 21 is a light receiving lens,
22 is a photodetector, and a combination of a light receiving lens and a photodetector is set in the laser irradiation direction and on the side.

次に検体粒子の粒子径に応じた流径を設定する方法につ
いて説明する。
Next, a method for setting the flow diameter according to the particle diameter of the sample particles will be explained.

測定開始時に制御演算回路17でシース液用レギュレー
タ3、及びサンプル液用レギュレータ4を制御して、フ
ローセル12部でのサンプル液の流れの流径をある所定
値にする。そのとき流れてくる検体粒子にレーザ光を照
射する。前方散乱光の光量と粒子径には相関関係がある
ので、この時の前方散乱光の光量を光検出器22で検出
して、制御演算回路17のメモリ内の光量−粒子径換算
表と比較することにより粒子径を算出する。そして求め
た粒子径に略一致する流径どなるように制御演算回路1
7で前記シース液用及びサンプル液用レギュレータを制
御する。ここで所定流径にするためのシース液、サンプ
ル液の加圧値は予め定められており制御回路17のメモ
リ内に収められている。なお流径はシース液の加圧値と
サンプル液の加圧値の圧力比により決められ、圧力比が
大きいほど即ちサンプル液の加圧値に比ベシース液の加
圧値が大きくなるほど流径は小さくなる。また両者の圧
力値を高めると流速が速くなる。以上の調整が済んだ後
に粒子解析のための測定を開始する。
At the start of measurement, the control calculation circuit 17 controls the sheath liquid regulator 3 and the sample liquid regulator 4 to set the flow diameter of the sample liquid in the flow cell 12 to a certain predetermined value. At that time, the flowing sample particles are irradiated with laser light. Since there is a correlation between the amount of forward scattered light and the particle diameter, the amount of forward scattered light at this time is detected by the photodetector 22 and compared with the light amount-particle diameter conversion table in the memory of the control calculation circuit 17. By doing so, the particle size is calculated. The control calculation circuit 1 determines the flow diameter that approximately matches the determined particle diameter.
7 controls the sheath liquid and sample liquid regulators. Here, the pressurization values of the sheath liquid and sample liquid to obtain a predetermined flow diameter are determined in advance and stored in the memory of the control circuit 17. Note that the flow diameter is determined by the pressure ratio of the sheath liquid pressure value and the sample liquid pressure value, and the larger the pressure ratio is, the greater the sheath liquid pressure value relative to the sample liquid pressure value, the greater the flow diameter. becomes smaller. In addition, when the pressure values of both are increased, the flow rate becomes faster. After the above adjustments are completed, measurements for particle analysis are started.

上述の説明では前方散乱光の出力のみから粒子径を算出
したが、前方散乱光及び側方散乱光の出力から粒子の種
類をW定して、粒子の性質に応じた補正を施して粒子径
を算出することにより、さらに正確な粒子径を求めるこ
とができる。また粒子によっては側方散乱光の出力のみ
から粒子径を算出することも可能である。
In the above explanation, the particle diameter was calculated only from the output of forward scattered light, but the type of particle was determined from the output of forward scattered light and side scattered light, and the particle diameter was calculated by making corrections according to the properties of the particle. By calculating , a more accurate particle size can be obtained. Furthermore, depending on the particle, it is also possible to calculate the particle diameter from only the output of side scattered light.

なお本発明はいわゆるジェット・イン・エアタイプのフ
ローサイトメータ、つまり空中で流れを収束させ、そこ
にレーザ光を当てて粒子解析をする装置に対しても適用
可能である。
Note that the present invention is also applicable to a so-called jet-in-air type flow cytometer, that is, a device that converges a flow in the air and irradiates a laser beam thereon to perform particle analysis.

[効果コ 以上、本発明によれば未知の検体粒子であっても、或い
は検体粒子の粒子径が分からなくても、自動的に検体粒
子に適した流径を設定することができ、扱いやすく測定
精度の高い粒子解析装置を提供している。
[Effects] According to the present invention, even if the sample particles are unknown or the particle size of the sample particles is unknown, the flow diameter suitable for the sample particles can be automatically set, making it easy to handle. We provide particle analysis equipment with high measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の図、 図中1はコンプレッサ、2はエアチューブ、3はシース
用電気式レギュレータ、4はサンプル用電気式レギュレ
ータ、5はシース液容器、6はサンプルチューブ、7は
シースチューブ、8はフィルり、9は圧力センサ、10
はシース液流入制御弁、11はノズル、12はフローセ
ル、13はサンプルチューブ、14はサンプル液流入制
御弁、15は廃液チューブ、16は廃液容器、17は制
御演算回路、19はレーザ、20は集光レンズ、21は
受光レンズ、22は光検出器である。
FIG. 1 is a diagram of an embodiment of the present invention. In the figure, 1 is a compressor, 2 is an air tube, 3 is an electric regulator for the sheath, 4 is an electric regulator for the sample, 5 is a sheath liquid container, 6 is a sample tube, 7 is a sheath tube, 8 is a filler, 9 is a pressure sensor, 10
1 is a sheath liquid inflow control valve, 11 is a nozzle, 12 is a flow cell, 13 is a sample tube, 14 is a sample liquid inflow control valve, 15 is a waste liquid tube, 16 is a waste liquid container, 17 is a control calculation circuit, 19 is a laser, and 20 is a 21 is a light-receiving lens, and 22 is a photodetector.

Claims (1)

【特許請求の範囲】 1、検体粒子を含むサンプル液の周りをシース液で包み
、サンプル液とシース液に所定圧力差を与えて流体力学
的に収束させてサンプル液の流れを所定流径にし、該収
束位置に測定光を照射して検体粒子によって散乱される
散乱光若しくは蛍光を測定して粒子解析する粒子解析装
置において、 検体粒子の粒子径情報を検出する粒子径情報検出手段と
、検出された粒子径に応じた流径に設定する手段を有す
ることを特徴とする粒子解析装置。 2、前記粒子径情報検出手段は前記散乱光の内、前記照
射光方向に対して前方方向の散乱光の出力を基に粒子径
を検出する特許請求の範囲第1項記載の粒子解析装置。
[Claims] 1. A sheath liquid is wrapped around a sample liquid containing analyte particles, and a predetermined pressure difference is applied between the sample liquid and the sheath liquid to fluidically converge the sample liquid to a predetermined flow diameter. , a particle analysis device that performs particle analysis by irradiating the measurement light onto the convergence position and measuring scattered light or fluorescence scattered by the sample particles, comprising a particle size information detection means for detecting particle size information of the sample particles; 1. A particle analysis device comprising means for setting a flow diameter according to a particle diameter determined. 2. The particle analysis device according to claim 1, wherein the particle size information detecting means detects the particle size based on the output of scattered light in a forward direction with respect to the irradiation light direction among the scattered lights.
JP62276345A 1987-10-31 1987-10-31 Particle analyzer Pending JPH01118747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276345A JPH01118747A (en) 1987-10-31 1987-10-31 Particle analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276345A JPH01118747A (en) 1987-10-31 1987-10-31 Particle analyzer

Publications (1)

Publication Number Publication Date
JPH01118747A true JPH01118747A (en) 1989-05-11

Family

ID=17568140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276345A Pending JPH01118747A (en) 1987-10-31 1987-10-31 Particle analyzer

Country Status (1)

Country Link
JP (1) JPH01118747A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523402A (en) * 2004-12-13 2008-07-03 オーストラロ・リミテッド Detection, measurement and control of particles and electromagnetic radiation
JP2009145147A (en) * 2007-12-13 2009-07-02 Sony Corp Laminar flow width detecting method, laminar flow width control method, laminar flow control device, and flow cytometer
JPWO2017073737A1 (en) * 2015-10-28 2018-09-27 国立大学法人 東京大学 Analysis equipment
US11054363B2 (en) 2015-02-24 2021-07-06 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
US11788948B2 (en) 2018-06-13 2023-10-17 Thinkcyte, Inc. Cytometry system and method for processing one or more target cells from a plurality of label-free cells

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523402A (en) * 2004-12-13 2008-07-03 オーストラロ・リミテッド Detection, measurement and control of particles and electromagnetic radiation
US8247214B2 (en) 2004-12-13 2012-08-21 Izon Science Limited Detecting, measuring and controlling particles and electromagnetic radiation
JP2009145147A (en) * 2007-12-13 2009-07-02 Sony Corp Laminar flow width detecting method, laminar flow width control method, laminar flow control device, and flow cytometer
JP4556996B2 (en) * 2007-12-13 2010-10-06 ソニー株式会社 Optical detection method
US8351034B2 (en) 2007-12-13 2013-01-08 Sony Corporation Laminar flow width detecting method, laminar flow width control method, laminar flow control system, and flow cytometer
US11054363B2 (en) 2015-02-24 2021-07-06 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
US11579075B2 (en) 2015-02-24 2023-02-14 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
US11867610B2 (en) 2015-02-24 2024-01-09 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
JPWO2017073737A1 (en) * 2015-10-28 2018-09-27 国立大学法人 東京大学 Analysis equipment
US11098275B2 (en) 2015-10-28 2021-08-24 The University Of Tokyo Analysis device
US11542461B2 (en) 2015-10-28 2023-01-03 The University Of Tokyo Analysis device
US11861889B2 (en) 2015-10-28 2024-01-02 The University Of Tokyo Analysis device
US11788948B2 (en) 2018-06-13 2023-10-17 Thinkcyte, Inc. Cytometry system and method for processing one or more target cells from a plurality of label-free cells

Similar Documents

Publication Publication Date Title
FI70481C (en) FOER FARING PROCESSING OF CELLVOLYMEN
US5245318A (en) Particle analyzing apparatus having pressure control system
US5040890A (en) Sheathed particle flow controlled by differential pressure
JPH03206943A (en) Adjustment of nondispersive infrared gas analyzer
JPH0369532B2 (en)
JP4540506B2 (en) Method and apparatus for controlling position of sample liquid flow
US20030143117A1 (en) Particle analyzer and particle analysis method
JPS61159135A (en) Particle analyzing device
JPH07318555A (en) Total organic carbon meter
JPH0679143A (en) Method and device instrumented treatment of particle using filter
JPH09145591A (en) Measuring apparatus for particle-size-distribution
JP2023133540A (en) System and method for intensity stabilization for quantitative imaging
EP2843409B1 (en) Urine sample analyzing method and sample analyzer
JPH01118747A (en) Particle analyzer
JPH0213830A (en) Article measuring apparatus
JP2575149B2 (en) Particle analyzer
JP4594810B2 (en) Method for controlling position of particles in sample liquid and particle measuring apparatus
JPH0587779B2 (en)
US4299593A (en) Method and apparatus for detecting and measuring a gas
JP3409510B2 (en) Laser diffraction / scattering particle size distribution analyzer
JPH0478945B2 (en)
JP2004138561A (en) Erythrocyte accumulation load state measurement method and device
Yap et al. Binding of dye to albumin, as studied by ultrafiltration.
CN104266986A (en) Method for detecting sulphur content in iron and steel sample
Edwards et al. Indocyanine green densitometry in flowing blood compensated for background dye