JP2004138561A - Erythrocyte accumulation load state measurement method and device - Google Patents

Erythrocyte accumulation load state measurement method and device Download PDF

Info

Publication number
JP2004138561A
JP2004138561A JP2002305085A JP2002305085A JP2004138561A JP 2004138561 A JP2004138561 A JP 2004138561A JP 2002305085 A JP2002305085 A JP 2002305085A JP 2002305085 A JP2002305085 A JP 2002305085A JP 2004138561 A JP2004138561 A JP 2004138561A
Authority
JP
Japan
Prior art keywords
blood sample
light
red blood
hemoglobin concentration
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2002305085A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fukui
福井 康裕
Setsuo Takatani
高谷 節雄
Akio Funakubo
舟久保 昭夫
Toshitaka Yasuda
安田 利貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002305085A priority Critical patent/JP2004138561A/en
Publication of JP2004138561A publication Critical patent/JP2004138561A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an erythrocyte damage state evaluation device which can immediately and easily measure the damage state of erythrocytes, from a prescribed blood sample collected. <P>SOLUTION: A scattered light scattered by the erythrocytes in a measurement tube 50 provided with prescribed stress is measured by a first light scattering detection part and a second light scattering detection part. A damage rate K or a deformation rate D of the erythrocytes is calculated on the basis of the variation in intensity of the scattered light. In a container downstream connected to the measurement tube 50, the hemolysis rate H in the blood sample B is calculated (determined), on the basis of the free hemoglobin concentration in the blood sample B measured by a free hemoglobin concentration measurement part 22 and the total hemoglobin concentration in the blood sample B after the hemolysis measured by a total hemoglobin concentration measurement part 26. A plurality of kinds of parameters related to the erythrocyte accumulation load state are simultaneously and immediately measured from the common blood sample B. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生体の循環器内を循環させられる血液に含まれる赤血球に蓄積される負荷状態を測定することができる赤血球蓄積負荷状態測定方法および装置に関するものである。
【0002】
【従来の技術】
人工心臓や人工血管などの循環器系人工臓器が設けられた生体の循環器では、それを循環させられる血液中において、赤血球の破壊による溶血が引き起こされるだけでなく、赤血球の形状や変形性が変化させられ、このような赤血球の損傷が末梢循環不良や溶血性貧血などを発生させるという問題が指摘されている。この赤血球の損傷は、赤血球の膜が破断しないものの膜構造が破壊されている状態や膜の破断状態の発生を意味するものであり、循環器系人工臓器内において赤血球が受ける力学的負荷の蓄積が起因すると考えられている。このため、上記循環器系人工臓器の臨床的研究や生体の診断のために、生体の循環器内を循環させられる血液に含まれる赤血球の損傷状態すなわち蓄積負荷状態を、溶血(膜破断)前に的確に測定してその評価を可能とする赤血球蓄積負荷(損傷)状態測定方法或いは装置が望まれている。
【0003】
従来、循環器系人工臓器による赤血球損傷状態の測定に関しては、(a) 赤血球の膜破壊によって血漿成分に混入する物質量たとえば遊離ヘモグロビンやLDH(Lactic DeHydrogenase)を分析してその濃度を定量的に測定する定量評価法、(b) 赤血球の膜表面の破壊によってそれに付着する蛍光性の抗体物質からの蛍光強度に基づいて赤血球の膜破壊を定量評価する方法、(c) 赤血球の形状を拡大して観察してその割合を計測する形状観察法、(d) 赤血球が通過できるフィルタを用いてそのフィルタの通過状態を観察したり、赤血球が及ぼす光散乱状態に基づいて赤血球の変形性を定量的に測定する方法などがある。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の赤血球の損傷状態の計測方法では、いずれもそれぞれの計測対象に応じた血液試料の前処理やそのための測定機器の使用を必要として時間がかかることから、循環器系人工臓器の使用中やその評価中において、採血された所定の血液試料からその場で赤血球の損傷状態を速やかに測定することは困難であった。
【0005】
本発明は以上の事情を背景として為されたものであり、その目的とするところは、採血された所定の血液試料から赤血球の損傷状態すなわち蓄積負荷状態を溶血(膜破断)前に速やかに且つ容易に測定できる赤血球蓄積負荷状態測定方法および装置を提供することにある。
【0006】
本発明者は、以上の事情を背景として種々研究を重ねた結果、所定の応力を受けている状態或いは受けた血液試料中の赤血球による光散乱状態を経時的に観察すると、赤血球に応力を付与してから所定の時間経過時に得られた散乱光強度が血液試料中の赤血球の変形性すなわち蓄積負荷状態に密接に関連していることを見いだした。本第1発明はかかる知見に基づいて為されたものである。また、血液試料中の赤血球に所定の異なる第1応力および第2応力がそれぞれ与えられた状態で得た光散乱状態を観察すると、散乱光強度の変化が血液試料中の赤血球の変形性すなわち蓄積負荷状態に密接に関連していることを見いだした。本第2発明はかかる知見に基づいて為されたものである。また、所定の応力を受けた血液試料中の赤血球の遊離ヘモグロビン濃度を経時的に観察すると、所定の時点で得られた遊離ヘモグロビン濃度が血液試料中の赤血球の損傷状態すなわち蓄積負荷状態に密接に関連していることを見いだした。本第3発明はかかる知見に基づいて為されたものである。
【0007】
【課題を解決するための第1の手段】
すなわち、上記第1発明の要旨とするところは、血液試料中の赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定方法であって、(a) 前記血液試料の赤血球に所定の応力を付与してから所定時間経過後において、その血液試料内に照射された光が前記赤血球に散乱された散乱光を検出する散乱光検出工程と、(b) 予め求められた関係から前記散乱光の光強度に基づいて前記赤血球の損傷率を決定する損傷率決定工程とを、含むことにある。
【0008】
【第1発明の効果】
赤血球による散乱光の強度は、その散乱の原因となる赤血球の形状に対応している。このため、上記第1発明の方法によれば、赤血球に所定の応力を付与してから所定時間経過後において、血液試料中の赤血球により散乱を受けた散乱光の光強度に基づいて前記赤血球の損傷率が決定されることから、その損傷率は、上記所定時間経過後において赤血球に蓄積された形状変化すなわち蓄積負荷を表すものであるので、採血された所定の血液試料から赤血球の損傷状態すなわち蓄積負荷状態を溶血(膜破断)前に速やかに且つ容易に測定でき、絶対評価が可能となる。
【0009】
【第1発明の他の態様】
ここで、好適には、前記散乱光検出工程は、前記赤血球の膜破壊前に実行されるものであり、前記損傷率決定工程は、前記血液試料において前記膜破壊前における赤血球の損傷率を決定するものである。このようにすれば、赤血球の膜構造の破壊前において、蓄積負荷状態を測定することができる。
【0010】
また、好適には、前記散乱光の光強度をOSD1(t) とすると、前記赤血球の損傷率Kは、予め記憶された式[K=f(OSD1(t))]から上記散乱光の光強度OSD1(t) に基づいて求められるものである。このようにすれば、容易且つ正確に赤血球の蓄積負荷状態を測定することができる。
【0011】
【課題を解決するための第2の手段】
また、上記第2発明の要旨とするところは、血液試料内における赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定方法であって、(a) 前記血液試料内に照射された光が前記赤血球により散乱された第1散乱光を検出する第1散乱光検出工程と、(b) その第1散乱光検出工程における第1散乱光の検出とは異なる応力付与下において、前記血液試料内に照射された光が前記赤血球に散乱された第2散乱光を検出する第2散乱光検出工程と、(c) 前記第1散乱光と前記第2散乱光の光強度の変化に基づいて前記赤血球の変形率を決定する変形率決定工程とを、含むことにある。
【0012】
【第2発明の効果】
赤血球による散乱光の強度は、その散乱の原因となる赤血球の形状に対応している。このため、上記第2発明によれば、異なる応力(負荷)が与えられた状態における血液試料中の赤血球により散乱を受けた第1散乱光と第2散乱光の光強度の変化に基づいて前記赤血球の変形率が決定されることから、その変形率は、異なる負荷により赤血球に蓄積された形状変化の差すなわち蓄積負荷の差を表すものであるので、採血された所定の血液試料から実際の応力下での赤血球の変形状態すなわち蓄積負荷状態を溶血(膜破断)前に速やかに且つ容易に測定でき、絶対評価が可能となる。
【0013】
【第2発明の他の態様】
ここで、好適には、前記第1散乱光検出工程および第2散乱光検出工程は、前記赤血球の膜破壊前および後に実行されるものであり、前記変形率決定工程は、前記血液試料において前記膜破壊前および後における赤血球の変形率を決定するものである。このようにすれば、赤血球の膜構造の破壊前および後において、蓄積負荷状態を測定することができる。
【0014】
また、好適には、前記第1散乱光の光強度をOSD1(t) 、前記第2散乱光の光強度をOSD2(t) とすると、前記赤血球の変形率Dは式[D=OSD2(t) /OSD1(t) ]から前記第1散乱光と前記第2散乱光の光強度比OSD2(t) /OSD1(t) に基づいて求められるものである。このようにすれば、容易且つ正確に赤血球の蓄積負荷状態を測定することができる。
【0015】
【課題を解決するための第3の手段】
また、上記第3発明の要旨とするところは、血液試料内における赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定方法であって、(a) 前記血液試料内を透過する光の透過強度に基づいてその血液試料内の遊離ヘモグロビン濃度を測定する遊離ヘモグロビン濃度測定工程と、(b) 前記血液試料内を透過する光の透過強度に基づいてその血液試料内の総ヘモグロビン濃度を測定する総ヘモグロビン濃度測定工程と、(c) 前記遊離ヘモグロビン濃度および総ヘモグロビン濃度に基づいて前記血液試料の溶血率を決定する溶血率決定工程とを、含むことにある。
【0016】
【第3発明の効果】
遊離ヘモグロビン濃度は、赤血球の損傷状態すなわち蓄積負荷状態に対応している。このため、上記第3発明によれば、所定の時点で測定された遊離ヘモグロビン濃度と総ヘモグロビン濃度とに基づいて前記血液試料の溶血率が決定されるとともに、その溶血率は、赤血球の損傷率の進行速度蓄積負荷の大きさを表すものであるので、採血された所定の血液試料から溶血率すなわち蓄積負荷状態を溶血(膜破断)前に速やかに且つ容易に測定できる。
【0017】
【第3発明の他の態様】
ここで、好適には、前記血液試料内の赤血球を膜破断により溶血させる溶血工程を含み、前記総ヘモグロビン濃度測定工程は、その溶血工程により赤血球が溶血された血液試料内の総ヘモグロビン濃度を測定するものである。このようにすれば、総ヘモグロビン濃度が正確に測定されるので、それを用いて得られた溶血率の精度が高められる。
【0018】
また、好適には、前記遊離ヘモグロビン濃度をA(t) 、前記総ヘモグロビン濃度をA(t) とすると、前記溶血率H(%) は、予め記憶された式 [H=(A(t)/A(t)) ×100]から、求められるものである。このようにすれば、容易且つ正確に赤血球の蓄積負荷状態を測定することができる。
【0019】
【課題を解決するための第4の手段】
前記第1発明方法を好適に実施するための装置発明の要旨とするところは、血液試料中の赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定装置であって、(a) 前記血液試料の赤血球に所定の応力が加えられるために所定の流通断面を備えた測定管と、(b) その測定管内において血液試料に照射された光が前記赤血球により散乱された散乱光を検出する散乱光検出部と、(c) その散乱光検出部において検出された散乱光の強度に基づいて前記赤血球の損傷率を決定する損傷率決定手段とを、含むことにある。
【0020】
【第4発明の効果】
このようにすれば、赤血球による散乱光の強度は、その散乱の原因となる赤血球の形状に対応している。このため、上記装置発明によれば、所定の時点において測定管内の血液試料中の赤血球により散乱を受けた散乱光の光強度に基づいて前記赤血球の損傷率が決定されることから、その損傷率は、赤血球に蓄積された形状変化すなわち蓄積負荷を表すものであるので、採血された所定の血液試料から赤血球の損傷状態すなわち蓄積負荷状態を溶血(膜破断)前に速やかに且つ容易に測定でき、絶対評価が可能となる。
【0021】
【第4発明の他の態様】
ここで、好適には、前記散乱光の光強度をOSD1(t) 、赤血球の損傷率をKとすると、上記損傷率決定手段は、予め記憶された式[K=f(OSD1(t) ) ]から前記散乱光の光強度OSD1(t) に基づいて赤血球の損傷率Kを求めるものである。このようにすれば、容易且つ正確に赤血球の蓄積負荷状態を示す赤血球の損傷率Kを測定することができる。
【0022】
【課題を解決するための第5の手段】
前記第2発明方法を好適に実施するための装置発明の要旨とするところは、血液試料中の赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定装置であって、(a) 前記血液試料を通過させるために、赤血球が配向或いは変形し始めるように設定された第1流通断面を備えた大径部とその大径部よりも大きい応力を受けるようにその第1流通断面よりも小さな第2流通断面を備えた小径部とを有する測定管と、(b) その測定管の大径部内において所定の応力が加えられている血液試料に照射された光が前記赤血球により散乱された第1散乱光を検出する第1散乱光検出部と、(c) その測定管の小径部内において前記大径部よりも大きな応力が加えられている血液試料に照射された光が前記赤血球により散乱された第2散乱光を検出する第2散乱光検出部と、(d) 前記第1散乱光検出部において検出された第1散乱光と前記第2散乱光検出部において検出された第2散乱光との強度変化に基づいて前記赤血球の変形率を決定する変形率決定手段とを、含むことにある。
【0023】
【第5発明の効果】
このようにすれば、赤血球による散乱光の強度は、その散乱の原因となる赤血球の形状に対応している。このため、上記装置発明によれば、第1散乱光検出部および第2散乱光検出部により、大径部内および小径部内において異なる応力(負荷)が与えられた状態における血液試料中の赤血球により散乱を受けた第1散乱光と第2散乱光が計測され、変形率決定手段により、それら第1散乱光と第2散乱光の光強度の変化たとえば強度差或いは比に基づいて前記赤血球の変形率が決定される。その変形率は、異なる負荷により赤血球に蓄積された形状変化の差すなわち蓄積負荷の差を表すものであるので、採血された所定の血液試料から実際の応力下での赤血球の変形状態すなわち蓄積負荷状態を溶血(膜破断)前に速やかに且つ容易に測定でき、絶対評価が可能となる。
【0024】
【第5発明の他の態様】
ここで、好適には、前記第1散乱光の光強度をOSD1(t) 、前記第2散乱光の光強度をOSD2(t) 、前記赤血球の変形率をDとすると、上記変形率決定手段は、予め記憶された式[D=OSD2(t) /OSD1(t) ]から前記第1散乱光と前記第2散乱光の光強度比OSD2(t) /OSD1(t) に基づいて前記赤血球の変形率Dを算出するものである。このようにすれば、容易且つ正確に赤血球の蓄積負荷状態を示す赤血球の変形率Dを測定することができる。
【0025】
また、好適には、前記測定管の大径部および小径部に対して一方向からレーザ光をそれぞれ照射するための単一のレーザ光源素子と、そのレーザ光源素子からの光を2方向へ分割する光分割器と、その光分割器により分割された2方向の光を前記測定管の大径部および小径部に対して一方向から単色光をそれぞれ照射するように導く光学系とを含むレーザ光源部が備えられる。このようにすれば、共通のレーザ光源素子からのレーザ光を、測定管の大径部および小径部に対して同様に照射させることができることから、2位置の照射条件が同等となるので、大径部および小径部からの第1散乱光および第2散乱光の光強度比が正確に得られる。
【0026】
また、好適には、前記第1散乱光検出部および第2散乱光検出部は、前記測定管の大径部および小径部に対するレーザ光の照射方向を中心とする所定角度範囲内の散乱光を受光するために、前記直線状の測定管の軸心まわりに回転可能な受光素子支持装置により支持された受光素子をそれぞれ備えたものである。このようにすれば、大径部および小径部における第1散乱光および第2散乱光が同時に測定される利点がある。
【0027】
【課題を解決するための第6の手段】
前記第3発明方法を好適に実施するための装置発明の要旨とするところは、血液試料中の赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定装置であって、(a) 前記血液試料内を透過する光の透過強度に基づいてその血液試料内の遊離ヘモグロビン濃度を測定する遊離ヘモグロビン濃度測定部と、(b) 前記血液試料内を透過する光の透過強度に基づいてその血液試料内の総ヘモグロビン濃度を測定する総ヘモグロビン濃度測定部と、(c) 前記遊離ヘモグロビン濃度および総ヘモグロビン濃度に基づいて前記血液試料の溶血率を決定する溶血率決定手段とを、含むことにある。
【0028】
【第6発明の効果】
遊離ヘモグロビン濃度は、赤血球の損傷状態すなわち蓄積負荷状態に対応している。このため、上記装置発明によれば、溶血率決定手段により、遊離ヘモグロビン濃度測定部により測定された遊離ヘモグロビン濃度と総ヘモグロビン濃度測定部により測定された総ヘモグロビン濃度とに基づいて前記血液試料の溶血率が決定されるとともに、その溶血率は、赤血球の損傷率の進行速度すなわち蓄積負荷の大きさを表すものであるので、採血された所定の血液試料から溶血率すなわち蓄積負荷状態を溶血(膜破断)前に速やかに且つ容易に測定できる。
【0029】
【第6発明の他の態様】
ここで、好適には、前記総ヘモグロビン濃度測定部は、前記血液試料内の赤血球が溶血させられた後に、その血液試料内の総ヘモグロビン濃度を測定するものである。このようにすれば、総ヘモグロビン濃度が正確に測定されるので、それを用いて得られた溶血率の精度が高められる。
【0030】
また、好適には、前記遊離ヘモグロビン濃度測定部は、(a) 前記血液試料中の有形成分を除去するためのフィルタと、(b) 酸素飽和度の影響を受け難い予め設定された波長の光を、そのフィルタによって有形成分が除去された血液試料に向かって投射する第1光源素子と、(c) その第1光源素子から投射され且つその血液試料を通過した光を検出する第1受光素子と、(d) その第1受光素子により検出された光強度に基づいて、その血液試料中の遊離ヘモグロビン濃度を算出する遊離ヘモグロビン濃度算出手段とを備え、その第1受光素子により検出された光強度に基づいて、その血液試料中の遊離ヘモグロビン濃度を算出するものである。このようにすれば、この遊離ヘモグロビン濃度測定部では、血液試料中の有形成分たとえば赤血球、白血球などの球体が除去された状態で、透過光強度からその透過光の吸収率が測定されるので、有形成分の散乱が少なくなり、測定精度が高められる。
【0031】
また、好適には、前記遊離ヘモグロビン濃度をA(t) 、前記総ヘモグロビン濃度をA(t) とすると、前記溶血率決定手段は、予め記憶された式 [H=(A(t)/A(t)) ×100]から、前記溶血率H(%) を算出するものである。このようにすれば、容易且つ正確に赤血球の蓄積負荷状態を測定することができる。
【0032】
また、好適には、前記総ヘモグロビン濃度測定部は、(a) 酸素飽和度および赤血球の影響をうけ難い波長の光を、前記赤血球が膜破壊された血液試料に向かって投射する第2光源素子と、(b) その第2光源素子から投射され且つその赤血球が膜破断された血液試料を通過した光を検出する第2受光素子と、(c) その第2受光素子により検出された光強度に基づいて、その赤血球が溶血させられた血液試料中の総ヘモグロビン濃度を算出する総ヘモグロビン濃度算出手段とを、含むものである。このようにすれば、上記総ヘモグロビン濃度測定部では、透過光強度からその透過光の吸収率が測定され、その吸収率から血液試料中の赤血球が溶血した状態で総ヘモグロビン濃度が測定されることから、その血液試料中の総ヘモグロビン濃度が得られる。
【0033】
また、好適には、前記総ヘモグロビン濃度算出手段は、前記低浸透圧溶液が加えられた血液試料中の総ヘモグロビン濃度を測定し、測定されたその総ヘモグロビン濃度をその低浸透圧溶液の容積に基づいて補正し、その低浸透圧溶液が加えられる前の容積の血液試料中の総ヘモグロビン濃度を算出するものである。このようにすれば、この総ヘモグロビン濃度測定部では、血液試料中に加えられた低浸透圧溶液の容積によって薄められた状態で測定された総ヘモグロビン濃度が、その低浸透圧溶液の容積に基づいて血液試料中に加えられる前の総ヘモグロビン濃度に修正されるので、高精度の総ヘモグロビン濃度が得られる。
【0034】
また、好適には、低浸透圧溶液を前記血液試料に混入させることによりその血液試料に含まれる赤血球を溶血させる溶血部を含み、前記総ヘモグロビン濃度測定部は、その溶血部により赤血球が溶血させられた血液試料に含まれる総ヘモグロビン濃度を測定するものである。このようにすれば、総ヘモグロビン濃度が正確に測定される。
【0035】
また、好適には、前記第4発明または第5発明の測定管を通過した血液試料をそれぞれ貯留する第1容器および第2容器を備え、前記遊離ヘモグロビン濃度測定部は、その第1容器内に導かれた血液試料内を透過する光の透過強度に基づいてその血液試料内の遊離ヘモグロビン濃度を測定し、前記総ヘモグロビン濃度測定部は、その第2容器内に導かれた血液試料内を透過する光の透過強度に基づいてその血液試料内の総ヘモグロビン濃度を測定するものである。このようにすれば、共通の血液試料から赤血球損傷率K、赤血球変形率D、および溶血率Hが略同時に得られ、絶対評価が可能となる利点がある。
【0036】
また、好適には、前記溶血部は、低浸透圧溶液を前記第2容器内の血液試料に混入させることによりその血液試料に含まれる赤血球を膜破壊して溶血させるものである。このようにすれば、この溶血部では、低浸透圧溶液を血液試料内に混入させるだけで赤血球の膜が容易に破断される。
【0037】
【発明の好適な実施の形態】
以下、本発明の好適な実施の形態について図面を参照しつつ詳細に説明する。
【0038】
図1は、本発明の一実施例の赤血球蓄積負荷状態(損傷状態)測定装置10の構成の要部を説明する図である。図1において、赤血球蓄積負荷測定装置10では、赤血球の変形性および赤血球損傷状態を測定するために生体やその循環器に接続された人工臓器循環器などから採取された血液試料Bは、第1血液試料容器12内に貯えられた後、その第1血液試料容器12から光散乱分布測定部14、電磁開閉弁16、および第2血液試料容器18を経て分配弁20により2つの並列した流路へ分流され、一方の流路では、遊離ヘモグロビン濃度測定部22を通過させられて第3血液試料容器24に受けられ、他方の流路では、総ヘモグロビン濃度測定部26を通過させられて第4血液試料容器28に受けられるようになっている。
【0039】
上記第1血液試料容器12には図示しないレベルセンサが設けられており、そのレベルセンサによって検知された血液試料容器12内の血液試料Bの上下レベル或いは下限レベルを示す信号が電子制御装置30へ供給されるようになっている。電子制御装置30は、図示しないCPU(中央演算処理装置)、制御プログラムが記憶されたROM、一時的記憶装置として機能するRAM、入出力インターフェースなどを備えた所謂マイクロコンピュータであり、予め記憶されたプログラムに従って入力信号を処理し、演算結果すなわち測定結果を表示装置48に表示させる。
【0040】
前記第2血液試料容器18、第3血液試料容器24、第4血液試料容器28は、上記電子制御装置30に制御される負圧制御弁32、34、36を介して負圧ポンプ38に接続されており、測定開始操作に応答してそれら負圧制御弁32、34、36の作動によってそれぞれの中の負圧が制御されることにより、前記光散乱分布測定部14、遊離ヘモグロビン濃度測定部22、総ヘモグロビン濃度測定部26を通過させられる血液試料Bの流量或いは流速が予め設定された値に制御されるようになっている。
【0041】
膜破壊溶液容器40内には、血液試料Bを溶血させるためにたとえば純水などの赤血球破壊溶液すなわち低浸透圧溶液Mが収容されている。この膜破壊溶液容器40は、電子制御装置30によって制御される正圧制御弁42を介してエヤーポンプ44に接続されており、測定開始操作に応答してその中の正圧が制御されることにより、供給管46を介して総ヘモグロビン濃度測定部26へ供給される低浸透圧溶液Mの流量或いは流速が予め設定された値に制御されるようになっている。上記膜破壊溶液容器40、供給管46、低浸透圧溶液Mが供給される後述の容器100などは、溶血部49を構成している。
【0042】
上記光散乱分布測定部14は、たとえば図2に示すように、(a) 血液試料Bを通過させるために基台47に立設され、赤血球が配向・変形し始める応力たとえば生体内で生じる剪断応力よりも少し大きい3.3Pa程度の応力が付与されるように設定された第1流通断面を備えた大径管部50aとその大径管部50aに続いてそれよりも小径で相対的に大きな応力が赤血球に付与されるように第1流通断面よりも小さく設定された第2流通断面を備えた小径管部50bとを有して、前記第1血液試料容器12の下流且つ遊離ヘモグロビン濃度測定部22および総ヘモグロビン濃度測定部26よりも上流側に設けられた透明且つ直線状の測定管50と、(b) 基台47に固定され、大径管部50aおよび小径管部50b内を流通する血液試料Bに対して一方向から赤血球から散乱を受けやすい波長の赤色光すなわちレーザ光をそれぞれ照射するレーザ光源部52と、(c) 測定管50の軸心Cまわりに回動可能となるように基台47に設けられ、大径管部50aおよび小径管部50bにおいて、そのレーザ光源部52からのレーザ光Lの照射に基づいてその大径管部50aおよび小径管部50bの軸心を中心として扇状に散乱する光散乱分布をそれぞれ検出する散乱光検出部54とを備えている。
【0043】
上記光散乱分布測定部14では、大径管部50aにおいて赤血球が比較的小さな応力を受けた状態で血液試料Bの光散乱分布が測定され、同時に小径管部50b内において赤血球が比較的応力を受ける状態で血液試料Bの光散乱分布が測定されることから、それら大径管部50aにおける光散乱分布と小径管部50bにおける光散乱分布との差に基づいて、血液試料B中の赤血球の変形性が容易に測定される。大径管部50aでは赤血球は比較的小さな応力を受けるので変形量が少ないが、小径管部50bでは赤血球が応力を受けて変形して光散乱分布が相対的に変化する傾向があるので、両光散乱分布強度の差或いは比(割合)または散乱範囲の差或いは比(割合)を算出して表示装置48に表示することにより、血液試料B中の赤血球の変形性すなわち赤血球形状の変形容易性が評価される。上記大径管部50aおよび小径管部50bを備えた測定管50は、赤血球に応力を付与するための応力付与手段或いは応力付与工程に対応している。
【0044】
上記レーザ光源部52は、(a) 単一のレーザ光源素子56と、(b) このレーザ光源素子56からのレーザ光Lを2方向に時分割するために、そのレーザ光Lと同じ軸心まわりに連続回転させられるプリズムミラー58を備えた光分割器60と、(c) その光分割器60により2方向に分割されたレーザ光L1およびL2を、大径管部50aおよび小径管部50b内の血液試料Bに対して直角となる方向から照射するように導くために、上記レーザ光L1およびL2を反射させる一対のプリズムミラー62aおよび62bと、反射されたレーザ光L1およびL2を所定の光束とする一対のコリメータレンズ64aおよび64bと、そのレーザ光L1およびL2を大径管部50aおよび小径管部50b内を流通する血液試料Bに対して直角方向から照射するように導く光ファイバなどの一対の光導波路66aおよび66bとを有する光学系装置68とを備え、同出力のパルス状のレーザ光L1およびL2を大径管部50aおよび小径管部50b内を流通する血液試料Bに対して直角方向から照射するようになっている。
【0045】
また、上記散乱光検出部54は、前記大径管部50aおよび小径管部50b内からの散乱光を受ける1対の受光素子70aおよび70bと、前記レーザ光L1およびL2の照射方向を中心とする所定角度範囲たとえば左右150°の角度範囲内の散乱光分布強度を測定するために、それら1対の受光素子70aおよび70bを直線状の測定管50の軸心Cまわりに回動可能に支持する受光素子支持装置72とを備えたものである。この受光素子支持装置72は、基台47において軸心Cまわりに回動可能に設けられた回動台74と、電子制御装置30からの指令に従って回動台74を駆動する駆動モータ76と、軸心Cからの距離が変更可能に回動台74に立設された支柱78と、軸心Cと平行な方向に位置変更可能に支柱78に設けられて受光素子70aおよび70bを支持する一対のアーム80aおよび80bと、測定管50を固定するためにその上端部を把持した状態で支柱78の上端部に設けられた固定アーム82とを備えている。一対のアーム80aおよび80bは、上記受光素子70aおよび70bが軸心Cから150mm程度の位置であって上記光導波路66aおよび66bの照射位置から下方へ15mm程度の位置となるように、それら受光素子70aおよび70bを支持している。上記受光素子70a、アーム80aが大径管部50aからの散乱光を検出する第1散乱光検出部に対応し、上記受光素子70b、アーム80bが小径管部50bからの散乱光を検出する第2散乱光検出部に対応している。
【0046】
前記電子制御装置30では、レーザ光源部52から照射された状態で駆動モータ76を作動させることにより1対の受光素子70aおよび70bを軸心Cまわりに回動させて、大径管部50aおよび小径管部50bについてレーザ光L1およびL2の照射方向を中心とする所定角度範囲内の散乱光分布強度をそれぞれ測定させるとともに、それら大径管部50aにおける光散乱分布と小径管部50bにおける光散乱分布との強度差或いは比や散乱角度範囲の差或いは比を算出し、血液試料B中の赤血球の変形性を示すパラメータとして表示装置48に表示させる。一般に、大径管部50a内では流通過程の赤血球はそれほど応力を受けないので変形が少ないが、小径管部50b内では流通過程の赤血球が受ける応力が大きくなって変形が大きくなり、光散乱分布が相対的にブロードとなる傾向にあるため、上記大径管部50aにおける光散乱分布と小径管部50bにおける光散乱分布との強度差或いは比や散乱角度範囲の差或いは比に基づいて、上記血液試料B中の赤血球の変形性が示される。
【0047】
電子制御装置30では、たとえば(1) 式に示す予め実験的に求められ且つ記憶された関係から、上記第1散乱光検出部において、赤血球に所定の応力を付与してから所定の時間が経過したときに検出された散乱光の光強度OSD1(t) に基づいて、赤血球損傷率Kが算出される。この意味において電子制御装置30は、赤血球損傷率Kを決定する赤血球損傷率決定手段として機能している。測定管50の大径部50a内において、血液試料B中の赤血球が所定の応力(ストレス)を受けている状態において経時的に変形を受けるとき、赤血球損傷率Kは、経時的な赤血球の変形の受け易さすなわち変形性を表すパラメータとなり、赤血球に蓄積された負荷に対応している。たとえば、赤血球損傷率Kが大きい値となるほど赤血球の変形性が低く、赤血球に蓄積された負荷が大きいことを示す。
【0048】
K=f(OSD1(t))・・・(1)
【0049】
また、電子制御装置30では、たとえば(2) 式に示す予め記憶された関係から、上記第1散乱光検出部および第2散乱光検出部においてそれぞれ検出された、第1散乱光の光強度OSD1(t) および第2散乱光の光強度OSD2(t) に基づいて、赤血球の変形率Dが算出される。この意味において、電子制御装置30は、赤血球の変形率Dを決定する変形率決定手段として機能している。第1散乱光の光強度OSD1(t) は、測定管50の大径部50a内において赤血球に比較的軽い応力が付与されたときの値であるが、第2散乱光の光強度OSD2(t) は、測定管50の小径部50b内において赤血球が大径部50aよりも強い応力を受けているときの値であるので、上記赤血球の変形率Dは、応力に対する赤血球の変形の受け易さすなわち変形性を表すパラメータとなり、赤血球に蓄積された負荷に対応している。たとえば、赤血球の変形率Dが大きい値となるほど赤血球の変形割合性が高く、赤血球に蓄積された負荷が少ないことを示す。
【0050】
D=OSD2(t) /OSD1(t) ・・・(2)
【0051】
図3は、散乱光の測定角度位置を示す横軸と散乱光強度OSDを示す縦軸とからなる二次元座標において、その散乱光強度OSDを0度から1.5度の範囲内において示す光散乱分布の一例を示している。また、この図3では、0分以後において、30分、60分、90分毎の経過時間における測定点が散乱角度毎に示されている。
【0052】
前記遊離ヘモグロビン濃度測定部22は、たとえば図4に示すように、血液試料Bを通過させるときにそれに含まれる固形成分たとえば血球を除去するフィルタ86と、そのフィルタ86を通過した血液試料Bを貯留する容器88と、その容器88内から血液試料Bを外部へ導く透明管90と、その透明管90が貫通させられる保持部材92内に設けられて、遊離ヘモグロビン(血球外に遊離しているヘモグロビン)に吸収されるように選択された波長λ1(たとえば600nm)の光を透明管90内の血液試料Bに向かって投射するLED(発光)素子94と、上記保持部材92内に設けられてその透明管90内の血液試料Bを透過した光を受光して出力する受光素子96とを備えている。LED(発光)素子94から放射された光のうち、血液試料B内の遊離ヘモグロビンによって吸収された残りの光が受光素子96によって受光される。このため、電子制御装置30では、予め求められ且つ記憶された遊離ヘモグロビンの吸収のないときの受光強度Imaxと実際の受光強度I1 とに基づいて吸収率S1 [=(Imax−I1 )/Imax]が算出され、図示しない予め求められ且つ記憶された関係からその吸収率S1 に基づいて遊離ヘモグロビン濃度A1 (%)が算出される。なお、図5は、このように測定された遊離ヘモグロビン濃度A1 の0分以後において、30分、60分、90分毎の測定点を用いて経時的変化を示している。このように、電子制御装置30は遊離ヘモグロビン濃度A1 (%)を算出するための遊離ヘモグロビン濃度算出手段としても機能している。
【0053】
前記総ヘモグロビン濃度測定部26は、たとえば図6に示すように、血液試料Bを貯留し且つ前記膜破壊溶液容器40から供給される低浸透圧溶液Mを受け入れてその血液試料Bを赤血球の膜破壊により溶血させる容器100と、その容器100内から溶血させられた後の血液試料Bを外部へ導く透明管102と、その透明管102が貫通させられる保持部材104内に設けられて、酸素飽和度に影響されず且つ遊離ヘモグロビンに吸収されるように選択された波長λ2(たとえば600nm)の光を透明管102内の溶血後の血液試料Bに向かって投射するLED(発光)素子106と、上記保持部材104内に設けられてその透明管102内の溶血後の血液試料Bを透過した光を受光して出力する受光素子108とを備えている。LED(発光)素子106から放射された光のうち、血液試料B内の遊離ヘモグロビンによって吸収された残りの光が受光素子108によって受光される。このため、電子制御装置30では、予め求められ且つ記憶された遊離ヘモグロビンの吸収のないときの受光強度Imaxと実際の受光強度I2 とに基づいて吸収率S2 [=(Imax−I2 )/Imax]が算出され、図示しない予め求められ且つ記憶された関係からその吸収率S2 に基づいて総ヘモグロビン濃度A2 (%)が算出される。このように、電子制御装置30は総ヘモグロビン濃度A2 (%)を算出するための総ヘモグロビン濃度算出手段としても機能している。
【0054】
電子制御装置30では、上記のようにして総ヘモグロビン濃度A2 (%)が算出されると、上記総ヘモグロビン濃度測定部26において所定時点で測定された総ヘモグロビン濃度A2 と遊離ヘモグロビン濃度測定部22において所定時点で測定された遊離ヘモグロビン濃度A1 との割合であるH[=(A1 (t) /A(t))×100]が前記赤血球の膜破壊を示す溶血率Hとして算出される。この溶血率Hが小さいほど、溶血量が少なく、遊離ヘモグロビン濃度測定部22において測定された遊離ヘモグロビン濃度A1 が低いため、上記所定時点における血液試料B中の赤血球の膜破壊は少ないとされる。この意味において、電子制御装置30は溶血率決定手段として機能している。
【0055】
図7は、前記電子制御装置30の制御作動の要部を説明するフローチャートである。図7において、ステップ(以下、ステップを省略する)S1では、電磁開閉弁16、負圧制御弁32、34、36、正圧制御弁42が共に開かれるとともに負圧ポンプ38およびエヤーポンプ44が作動されることにより、電磁開閉弁16が開かれ1回の採取で得られた血液試料Bが血液試料容器12内から光散乱分布測定部14を通して第2血液試料容器18に向かって流動させられるとともに、その第2血液試料容器18内の血液試料Bが遊離ヘモグロビン濃度測定部22および総ヘモグロビン濃度測定部24を通して第3血液試料容器24および第4血液試料容器28へ並列的に流動させられる。
【0056】
次いで、前記散乱光検出工程および散乱光検出手段或いは第1、第2散乱光検出工程および第1、第2散乱光検出手段に対応するS2では、光散乱分布測定部14の第1散乱光検出部( 受光素子70a、アーム80a) において検出された第1散乱光の光強度OSD1(t) および第2散乱光検出部( 受光素子70b、アーム80b) において検出された第2散乱光の光強度OSD2(t) が読み込まれる。次いで、前記損傷率決定工程および損傷率決定手段に対応するS3では、予め記憶された(1) 式に示す関係から、赤血球に所定の応力を付与してから所定の時間が経過したときに上記第1散乱光検出部において検出された第1散乱光の光強度OSD1(t) に基づいて、赤血球損傷率Kが算出される。次に、前記変形率決定工程および変形率決定手段に対応するS4では、たとえば(2) 式に示す予め記憶された関係から、上記第1散乱光検出部および第2散乱光検出部においてそれぞれ検出された、第1散乱光の光強度OSD1(t) および第2散乱光の光強度OSD2(t) に基づいて、赤血球の変形率Dが算出される。
【0057】
続いて、前記遊離ヘモグロビン測定工程および遊離ヘモグロビン測定手段に対応するS5では、前記遊離ヘモグロビン濃度測定部22において、LED(発光)素子94から放射された光のうち、血液試料B内の遊離ヘモグロビンによって吸収された残りの光が受光素子96によって受光され、予め求められ且つ記憶された遊離ヘモグロビンの吸収のないときの受光強度Imaxと上記受光素子96による実際の受光強度I1 とに基づいて吸収率S1 [=(Imax−I1 )/Imax]が算出され、図示しない予め求められ且つ記憶された関係からその吸収率S1 に基づいて遊離ヘモグロビン濃度A1 (%)が算出される。このS5は、遊離ヘモグロビン濃度A1 (%)を算出するための遊離ヘモグロビン濃度算出手段としても機能している。
【0058】
次に、前記総ヘモグロビン測定工程および総ヘモグロビン測定手段に対応するS6では、前記総ヘモグロビン濃度測定部26において、LED(発光)素子106から放射された光のうち、血液試料B内の遊離ヘモグロビンによって吸収された残りの光が受光素子108によって受光され、予め求められ且つ記憶された遊離ヘモグロビンの吸収のないときの受光強度Imaxと上記受光素子108による実際の受光強度I2 とに基づいて吸収率S2 [=(Imax−I2 )/Imax]が算出され、図示しない予め求められ且つ記憶された関係からその吸収率S2 に基づいて総ヘモグロビン濃度A2 (%)が算出される。このとき、測定対象である膜破壊された血液試料Bはそれに添加された低浸透圧溶液Mの容積分だけ薄められる。このため、好適には、低浸透圧溶液Mが添加される前の容積で測定された値となるように、低浸透圧溶液Mの添加容積に基づいて上記総ヘモグロビン濃度A2 (%)が補正される。たとえば、低浸透圧溶液Mの添加容積が血液試料Bの容積の10%である場合には、測定された吸収率S2 或いは総ヘモグロビン濃度A2 が10%増量補正される。このS6は、総ヘモグロビン濃度A2 (%)を算出するための総ヘモグロビン濃度算出手段としても機能している。
【0059】
続いて、前記溶血率決定工程および溶血率決定手段に対応するS7では、上記S5において算出された遊離ヘモグロビン濃度A1 (%)と上記S6において算出された総ヘモグロビン濃度A2 (%)とに基づいて、溶血率H(%)[=(A1 (t) /A(t))×100]が算出される。そして、蓄積負荷評価工程および蓄積負荷評価手段に対応するS8では、予め記憶された関係から、実際の損傷率Kまたは変形率Dと溶血率Hとに基づいて前記血液試料B内の赤血球の蓄積負荷が評価される。上記関係はたとえば図8に示すものであり、この場合には損傷率K(=f(OSD1(t))と溶血率Hとに基づいて血液試料B内の赤血球の蓄積負荷が評価される。たとえば、損傷率Kおよび溶血率Hが略零であれば、血液試料B内の赤血球の蓄積負荷が略零であると評価される。損傷率Kがある程度増加しても溶血率Hが略零であれば、血液試料B内の赤血球の蓄積負荷が比較的軽度(未溶血期)であると評価される。損傷率Kおよび溶血率Hが共にある程度増加している場合は、血液試料B内の赤血球の蓄積負荷が中度(溶血後I期)であると評価される。溶血率Hがたとえば50%以上となり且つ損傷率Kの低下が見られれば、血液試料B内の赤血球の蓄積負荷が重度(溶血後II期)であると評価される。次いで、表示工程或いは表示手段に対応するS9では、上記S3,S4,S7,S8において求められた,損傷率K、変形率D、溶血率H、蓄積負荷評価値が、表示装置48において数値、グラフなどの形態で画面上に光学表示され或いは紙の上にインク表示される。
【0060】
上述のように、本実施例の赤血球蓄積負荷状態測定装置10によれば、(a) 血液試料Bを通過させるために所定の流通断面を備えた測定管50と、(b) その測定管50内において所定の応力が加えられている血液試料Bに照射された光が前記赤血球により散乱された散乱光を検出する散乱光検出部54と、(c) その散乱光検出部54において、赤血球に応力が付与されてから所定時間が経過した時点で検出された散乱光の強度OSD1(t) に基づいて赤血球の損傷率Kを決定する損傷率決定手段(電子制御装置30)とが備えられている。上記損傷率Kは、所定時間内において赤血球に蓄積された形状変化すなわち蓄積負荷を表すものであるので、採血された所定の血液試料から赤血球の損傷状態すなわち蓄積負荷状態を溶血(膜破断)前に速やかに且つ容易に測定できる。
【0061】
また、本実施例によれば、式(1) に示す予め記憶された関係[K=f(OSD1(t))]から実際の散乱光の光強度OSD1(t) に基づいて赤血球の損傷率Kが求められるので、容易且つ正確に赤血球の蓄積負荷状態を示す赤血球の損傷率Kを測定することができる。
【0062】
また、本実施例の赤血球蓄積負荷状態測定装置10によれば、(a) 血液試料Bを通過させるために、赤血球が配向或いは変形し始めるように設定された第1流通断面積を備えた大径部50aとその大径部50aよりも大きい応力を受けるようにその第1流通断面積よりも小さな第2流通断面積を備えた小径部50bとを有する測定管50と、(b) その測定管50の大径部50a内において所定の応力が加えられている血液試料Bに照射された光が赤血球により散乱された第1散乱光を検出する第1散乱光検出部(70a、80a)と、(c) その測定管50の小径部50b内において大径部50aよりも大きな応力が加えられている血液試料Bに照射された光が赤血球により散乱された第2散乱光を検出する第2散乱光検出部(70b、80b)と、(d) その第1散乱光検出部において検出された第1散乱光の光強度OSD1(t) と前記第2散乱光検出部において検出された第2散乱光の光強度OSD2(t) との間の変化に基づいて赤血球の変形率Dを決定する変形率決定手段(電子制御装置30)とが備えられている。上記赤血球の変形率Dは、相互に異なる応力の付与下における赤血球の変形性を示し、その変形性は蓄積負荷に対応するものであるので、採血された所定の血液試料から赤血球の損傷状態すなわち蓄積負荷状態を溶血(膜破断)前に速やかに且つ容易に測定できる。
【0063】
また、本実施例によれば、式(2) に示す予め記憶された関係[D=OSD2(t) /OSD1(t) ]から実際の第1散乱光と前記第2散乱光の光強度比OSD2(t) /OSD1(t) に基づいて前記赤血球の変形率Dが算出されるので、容易且つ正確に赤血球の蓄積負荷状態を示す赤血球の変形率Dを測定することができる。
【0064】
また、本実施例によれば、測定管50の大径部50aおよび小径部50bに対して一方向からレーザ光をそれぞれ照射するための単一のレーザ光源素子56と、そのレーザ光源素子56からのレーザ光を2方向へ分割する光分割器60と、その光分割器60により分割された2方向の光を測定管50の大径部50aおよび小径部50bに対して一方向から単色のレーザ光をそれぞれ照射するように導く光学系装置68とを含むレーザ光源部52が備えられることから、共通のレーザ光源素子56からのレーザ光Lを測定管50の大径部50aおよび小径部50bに対して同様に照射させることができるので、2位置の照射条件が同等となるとともに、大径部50aおよび小径部50bからの第1散乱光および第2散乱光の光強度比OSD2(t) /OSD1(t) が正確に得られる。
【0065】
また、本実施例によれば、第1散乱光検出部(70a、80a)および第2散乱光検出部(70b、80b)は、測定管50の大径部50aおよび小径部50bに対するレーザ光L1およびL2の照射方向を中心とする所定角度範囲内の散乱光を受光するために、前記直線状の測定管の軸心まわりに回転可能な受光素子支持装置72により支持された受光素子70aおよび70bをそれぞれ備えたものであるので、大径部50aおよび小径部50bにおける第1散乱光および第2散乱光が同時に測定される利点がある。
【0066】
また、本実施例の赤血球蓄積負荷状態測定装置10によれば、(a) 血液試料B内を透過する光の透過強度に基づいてその血液試料B内の遊離ヘモグロビン濃度A(t) を所定時点で測定する遊離ヘモグロビン濃度測定部22と、(b) 血液試料B内を透過する光の透過強度に基づいてその血液試料内の総ヘモグロビン濃度A(t) を所定時点で測定する総ヘモグロビン濃度測定部26と、(c) 前記遊離ヘモグロビン濃度A(t) および総ヘモグロビン濃度A(t) に基づいて前記血液試料Bの溶血率Hを決定する溶血率決定手段(電子制御装置30)とが備えられている。上記溶血率Hは、赤血球の損傷率の進行速度すなわち蓄積負荷の大きさを表すものであるので、採血された所定の血液試料から赤血球の損傷状態すなわち蓄積負荷状態を溶血(膜破断)前に速やかに且つ容易に測定できる。また、上記遊離ヘモグロビン濃度測定部22と総ヘモグロビン濃度測定部26とは、遊離ヘモグロビン濃度A(t) と総ヘモグロビン濃度A(t) とを同時期に測定してもよいので、この場合には一層速やかに溶血率Hが求められる。
【0067】
また、本実施例によれば、総ヘモグロビン濃度測定手段26は、血液試料B内の赤血球が溶血させられた後に、その血液試料B内の総ヘモグロビン濃度A(t) を測定するものである。このようにすれば、総ヘモグロビン濃度A(t) が正確に測定されるので、それを用いて得られた溶血率Hの精度が高められる。
【0068】
また、本実施例によれば、遊離ヘモグロビン濃度測定部22は、(a) 血液試料B中の有形成分を除去するためのフィルタ86と、(b) 酸素飽和度の影響を受け難い予め設定された波長の光を、そのフィルタ86によって有形成分が除去された血液試料Bに向かって投射するLED(第1光源素子)94と、(c) そのLED94から投射され且つその血液試料Bを通過した光を検出する受光素子96と、(d) その受光素子96により検出された光強度に基づいて、その血液試料B中のヘモグロビン濃度を算出する遊離ヘモグロビン濃度算出手段(電子制御装置30)とを備え、その受光素子96により検出された光強度に基づいて、血液試料B中の遊離ヘモグロビン濃度A(t) を算出するものであることから、血液試料B中の有形成分たとえば赤血球、白血球などの球体が除去された状態で、透過光強度からその透過光の吸収率が測定されるので、有形成分の散乱が少なくなり、測定精度が高められる。
【0069】
また、本実施例によれば、予め記憶された関係 [H=(A(t)/A(t)) ×100 ] から、実際の遊離ヘモグロビン濃度A(t) および総ヘモグロビン濃度A(t) に基づいて溶血率H(%) を算出するものであるので、容易且つ正確に赤血球の蓄積負荷状態を測定することができる。
【0070】
また、本実施例によれば、総ヘモグロビン濃度測定部26は、(a) 酸素飽和度および赤血球の影響をうけ難い波長の光を、赤血球が溶血された血液試料Bに向かって投射するLED(第2光源素子)106と、(b) そのLED106から投射され且つその赤血球が膜破断された血液試料Bを通過した光を検出する第2受光素子108と、(c) その第2受光素子108により検出された光強度に基づいて、その赤血球が溶血させられた血液試料中の総ヘモグロビン濃度A(t) を算出する総ヘモグロビン濃度算出手段(電子制御装置30)とを、含み、透過光強度からその透過光の吸収率が測定され、その吸収率から血液試料中の赤血球が溶血した状態で総ヘモグロビン濃度が測定されることから、その血液試料中の総ヘモグロビン濃度A(t) が得られる。
【0071】
また、本実施例によれば、総ヘモグロビン濃度測定部26は、低浸透圧溶液Mが加えられた血液試料中の総ヘモグロビン濃度を測定し、測定されたその総ヘモグロビン濃度をその低浸透圧溶液Mの容積に基づいて補正し、その低浸透圧溶液Mが加えられる前の容積の血液試料中の総ヘモグロビン濃度A(t) を算出するものであるので、高精度の総ヘモグロビン濃度A(t) が得られる。
【0072】
また、本実施例によれば、低浸透圧溶液Mを血液試料Bに混入させることによりその血液試料Bに含まれる赤血球を溶血させる溶血部49を含み、総ヘモグロビン濃度測定部26は、その溶血部49により赤血球が溶血させられた血液試料に含まれる総ヘモグロビン濃度A(t) を測定するものであるので、総ヘモグロビン濃度A(t) が正確に測定される。
【0073】
また、本実施例によれば、測定管50を通過した血液試料Bをそれぞれ貯留する(第1)容器88および(第2)容器100を備え、同じ血液試料Bに対して前記損傷率Kおよび変形率Dの測定に続いて、遊離ヘモグロビン濃度測定部22は、その容器88内に導かれた血液試料B内を透過する光の透過強度に基づいてその血液試料B内の遊離ヘモグロビン濃度A(t) を測定し、総ヘモグロビン濃度測定部26は、その容器100内に導かれた血液試料B内を透過する光の透過強度に基づいてその血液試料B内の総ヘモグロビン濃度A(t) を同時平行的に測定するものであるので、共通の血液試料Bから赤血球損傷率K、赤血球変形率D、および溶血率Hが略同時に得られる利点がある。
【0074】
また、本実施例によれば、上記溶血部49は、低浸透圧溶液Mを(第2)容器100内の血液試料Bに混入させることによりその血液試料Bに含まれる赤血球を膜破断して溶血させるものであり、低浸透圧溶液Mを血液試料B内に混入させるだけで赤血球の膜が容易に破断される。
【0075】
以上、本発明の一実施例を図面に基づいて説明したが、本発明は他の態様においても適用される。
【0076】
たとえば、前述の実施例では、(1) 式から赤血球損傷率Kが算出され、(2) 式から赤血球変形率Dが求められていたが、他の式が用いられてもよい。要するに、散乱光強度の変化に基づいて導かれるパラメータであればよい。
【0077】
また、前述の実施例の遊離ヘモグロビン濃度測定部22では、血液試料B中の固形分を除去するためのフィルタ86が備えられていたが、必ずしも備えらえれていなくてもよい。また、総ヘモグロビン濃度測定部26において、そのようなフィルタが設けられていないが、たとえば透明管102の上流側に設けられていてもよい。
【0078】
また、前述の実施例の赤血球蓄積負荷(損傷状態)測定装置10では、血液試料B中の赤血球の変形性を測定するための光散乱分布測定部14が遊離ヘモグロビン濃度測定部22および総ヘモグロビン濃度測定部26の上流側に設けられていたが、必ずしも設けられていなくてもよい。このようにすれば、光散乱分布測定部14において血液試料B中の赤血球が変形させられることがなくなるので、その赤血球の損傷状態が一層正確に測定される。
【0079】
また、前述の実施例において、光散乱分布測定部14の測定管50は、大径管部50aを上流側に小径管部50bを下流側に備えていたが、逆に大径管部50aを下流側に小径管部50bを上流側に備えていてもよい。
【0080】
また、前述の実施例において、遊離ヘモグロビン濃度測定部22と総ヘモグロビン濃度測定部26とは、分配弁20の下流側において並列に設けられていたが、直列に設けられていてもよい。このような場合には、遊離ヘモグロビン濃度測定部22が総ヘモグロビン濃度測定部26の上流側に設けられ、血液試料Bの測定必要容積が少なくなる利点がある。
【0081】
また、前述の実施例において、血液試料容器12から光散乱分布測定部14、遊離ヘモグロビン濃度測定部22、および総ヘモグロビン濃度測定部26へ流される血液試料Bは、連続的に流されてもよいし、間欠的に流されてもよい。
【0082】
また、前述の実施例の散乱光の光強度OSD1(t) 、OSD2(t) や透過光は赤血球の形状のみならず、その酸素飽和度や血球濃度の影響を受けることがあるので、その散乱光の光強度OSD1(t) 、OSD2(t) の計測時、或いは、損傷率K、変形率D、溶血率Hの計測時において、予め求めたヘマトクリット値および酸素飽和度に基づいて補正が行われるようにしてもよい。
【0083】
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である赤血球蓄積負荷状態測定装置の構成を説明する図である。
【図2】図1の赤血球蓄積負荷状態測定装置に設けられた光散乱測定部の構成を説明する図である。
【図3】図2の光散乱測定部によって測定された0度から1.5度の範囲内における光散乱分布の一例を示す図であって、当初の測定時である0分時以後において、30分、60分、90分毎の経過時間における測定点が散乱角度毎に示されている。
【図4】図1の赤血球蓄積負荷状態測定装置に設けられた遊離ヘモグロビン濃度測定部の構成を説明する図である。
【図5】図4で測定された血液試料における遊離ヘモグロビン濃度を、当初の測定時である0分時以後において、30分、60分、90分毎に示す時間経過特性図である。
【図6】図1の赤血球蓄積負荷状態測定装置に設けられた総ヘモグロビン濃度測定部の構成を説明する図である。
【図7】図1の電子制御装置の制御作動の要部を説明するフローチャートである。
【図8】図7の赤血球蓄積負荷評価の内容を説明する図である。
【符号の説明】
10:赤血球蓄積負荷状態測定装置
14:光散乱分布測定部
22:遊離ヘモグロビン濃度測定部
26:総ヘモグロビン濃度測定部
30:電子制御装置(損傷率決定手段、変形率決定手段、遊離ヘモグロビン濃度算出手段、総ヘモグロビン濃度算出手段、溶血率決定手段、蓄積負荷評価手段、表示手段)
49:溶血部
50a:大径管部
50b:小径管部
50:測定管
52:レーザ光源部
54:散乱光検出部
56:レーザ光源素子
60:光分割器
68:光学系装置
70a:受光素子、80a:アーム( 第1散乱光検出部)
70b:受光素子、80b:アーム( 第2散乱光検出部)
72:受光素子支持装置
94:LED(発光)素子(第1発光素子)
96:受光素子(第1受光素子)
106:LED(発光)素子(第2発光素子)
108:受光素子(第2受光素子)
S3:損傷率決定工程、損傷率決定手段
S4:変形率決定工程、変形率決定手段
S5:遊離ヘモグロビン濃度測定工程、遊離ヘモグロビン濃度算出手段
S6:総ヘモグロビン濃度測定工程、総ヘモグロビン濃度算出手段
S7:溶血率決定工程、溶血率決定手段
S8:蓄積負荷評価工程、蓄積負荷評価手段
S9:表示手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an erythrocyte accumulation state measurement method and apparatus capable of measuring an accumulation state of erythrocytes contained in blood circulated in a circulatory organ of a living body.
[0002]
[Prior art]
In a circulatory system of a living body provided with a circulatory organ such as an artificial heart or an artificial blood vessel, not only the hemolysis due to the destruction of the red blood cells, but also the shape and deformability of the red blood cells are caused in the blood circulating the organs. It has been pointed out that such erythrocyte damage causes poor peripheral circulation and hemolytic anemia. This erythrocyte damage means that the erythrocyte membrane does not break but the membrane structure is broken or the rupture of the membrane occurs, and the accumulation of the mechanical load on the erythrocytes in the circulatory organ prosthesis Is believed to be due to Therefore, for the clinical research of the circulatory system artificial organ and the diagnosis of the living body, the damage state, that is, the accumulated load state of the red blood cells contained in the blood circulated in the circulatory organ of the living body is changed before the hemolysis (membrane rupture). There is a demand for a method or apparatus for measuring the state of erythrocyte accumulation (damage), which enables accurate measurement and evaluation.
[0003]
Conventionally, with respect to the measurement of the state of erythrocyte damage by a circulatory organ, (a) the amount of a substance mixed into plasma components due to membrane destruction of erythrocytes, for example, free hemoglobin or LDH (Lactic DeHydrogenase) is analyzed to quantitatively determine the concentration. A quantitative evaluation method for measuring, (b) a method for quantitatively evaluating the red blood cell membrane destruction based on the fluorescence intensity from a fluorescent antibody substance attached to the red blood cell membrane surface due to the destruction of the red blood cell membrane surface, and (c) enlarging the shape of the red blood cell (D) Observe the passing state of the filter using a filter through which the red blood cells can pass, and quantitatively determine the deformability of the red blood cells based on the light scattering state exerted by the red blood cells. There is a method to measure.
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional methods for measuring the state of damage to red blood cells, both require pretreatment of a blood sample corresponding to each measurement target and use of a measurement device therefor, which is time-consuming. During use and during evaluation, it has been difficult to quickly measure the damaged state of red blood cells from a predetermined blood sample collected on the spot.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to quickly and quickly determine the damaged state of red blood cells, that is, the accumulated load state, from a collected blood sample before hemolysis (membrane rupture). An object of the present invention is to provide a method and an apparatus for measuring a red blood cell accumulation load state which can be easily measured.
[0006]
The present inventor has conducted various studies on the background of the above circumstances, and as a result of observing the state of receiving a predetermined stress or the light scattering state of the red blood cells in the received blood sample over time, the present inventors applied stress to the red blood cells. Then, it was found that the scattered light intensity obtained at the elapse of a predetermined time was closely related to the deformability of red blood cells in the blood sample, that is, the state of accumulation load. The first invention has been made based on such knowledge. Also, when observing the light scattering state obtained in a state where predetermined different first and second stresses are respectively applied to the red blood cells in the blood sample, a change in the scattered light intensity indicates that the red blood cells in the blood sample have deformability, ie, accumulation. It has been found that it is closely related to the load condition. The second invention has been made based on such knowledge. In addition, when the free hemoglobin concentration of red blood cells in a blood sample subjected to a predetermined stress is observed over time, the free hemoglobin concentration obtained at a predetermined time is closely related to the damaged state of red blood cells in the blood sample, that is, the accumulation load state. I found something related. The third invention has been made based on such knowledge.
[0007]
[First means for solving the problem]
That is, the gist of the first invention is a method for measuring a red blood cell accumulation load state for measuring a red blood cell accumulation load state in a blood sample, wherein (a) applying a predetermined stress to the red blood cells of the blood sample. A scattered light detection step of detecting scattered light in which the light irradiated into the blood sample is scattered by the red blood cells after a lapse of a predetermined time from the application; and (b) detecting the scattered light from a relationship obtained in advance. Determining a damage rate of the red blood cells based on light intensity.
[0008]
[Effect of the first invention]
The intensity of the scattered light by the red blood cells corresponds to the shape of the red blood cells that causes the scattering. For this reason, according to the method of the first invention, after a predetermined time has passed since the predetermined stress was applied to the red blood cells, the red blood cells were scattered by the red blood cells in the blood sample based on the light intensity of the scattered light. Since the damage rate is determined, the damage rate represents the shape change accumulated in the red blood cells after the lapse of the predetermined time, that is, the accumulation load, and therefore, the damaged state of the red blood cells from the collected predetermined blood sample, The accumulated load state can be measured quickly and easily before hemolysis (membrane rupture), making absolute evaluation possible.
[0009]
[Other aspects of the first invention]
Here, preferably, the scattered light detection step is performed before the membrane destruction of the red blood cells, and the damage rate determining step determines the damage rate of the red blood cells before the membrane destruction in the blood sample. Is what you do. In this way, the accumulation load state can be measured before the erythrocyte membrane structure is destroyed.
[0010]
Further, preferably, assuming that the light intensity of the scattered light is OSD1 (t), the damage rate K of the red blood cell can be calculated from the previously stored equation [K = f (OSD1 (t))]. It is determined based on the intensity OSD1 (t). This makes it possible to easily and accurately measure the accumulation load state of red blood cells.
[0011]
[Second means for solving the problem]
In addition, the gist of the second invention is a method of measuring a red blood cell accumulation load state for measuring a red blood cell accumulation load state in a blood sample, wherein (a) light irradiated into the blood sample is A first scattered light detection step of detecting a first scattered light scattered by the red blood cells; and (b) a step of applying a stress different from the detection of the first scattered light in the first scattered light detection step to obtain a first scattered light in the blood sample. A second scattered light detecting step of detecting a second scattered light in which the light irradiated on the red blood cells is scattered, and (c) detecting the second scattered light based on a change in light intensity of the first scattered light and the second scattered light. And determining a deformation rate of the red blood cells.
[0012]
[Effect of the second invention]
The intensity of the scattered light by the red blood cells corresponds to the shape of the red blood cells that causes the scattering. For this reason, according to the second aspect, based on a change in the light intensity of the first scattered light and the second scattered light scattered by the red blood cells in the blood sample in a state where different stresses (loads) are applied. Since the deformation rate of the erythrocytes is determined, the deformation rate represents the difference in the shape change accumulated in the erythrocytes due to different loads, that is, the difference in the accumulation load. The deformation state of red blood cells under stress, that is, the accumulated load state, can be measured quickly and easily before hemolysis (membrane breakage), and absolute evaluation is possible.
[0013]
[Another aspect of the second invention]
Here, preferably, the first scattered light detection step and the second scattered light detection step are performed before and after membrane destruction of the red blood cells, and the deformation rate determination step is performed in the blood sample. It determines the rate of red blood cell deformation before and after membrane disruption. In this way, the accumulation load state can be measured before and after the erythrocyte membrane structure is destroyed.
[0014]
Preferably, if the light intensity of the first scattered light is OSD1 (t) and the light intensity of the second scattered light is OSD2 (t), the deformation rate D of the red blood cell is expressed by the formula [D = OSD2 (t) / OSD1 (t)] based on the light intensity ratio OSD2 (t) / OSD1 (t) of the first scattered light and the second scattered light. This makes it possible to easily and accurately measure the accumulation load state of red blood cells.
[0015]
[Third Means for Solving the Problems]
Further, the gist of the third invention is a method of measuring the accumulation load state of red blood cells in a blood sample, the method comprising: (a) transmission of light transmitted through the blood sample; Measuring the concentration of free hemoglobin in the blood sample based on the intensity; and (b) measuring the concentration of total hemoglobin in the blood sample based on the transmission intensity of light transmitted through the blood sample. A total hemoglobin concentration measuring step; and (c) a hemolysis rate determining step of determining a hemolysis rate of the blood sample based on the free hemoglobin concentration and the total hemoglobin concentration.
[0016]
[Effect of the third invention]
The free hemoglobin concentration corresponds to the state of erythrocyte damage or accumulation. Therefore, according to the third aspect, the hemolysis rate of the blood sample is determined based on the free hemoglobin concentration and the total hemoglobin concentration measured at a predetermined time, and the hemolysis rate is determined by the damage rate of erythrocytes. This indicates the magnitude of the accumulation load of the traveling speed, so that the hemolysis rate, that is, the accumulation load state can be quickly and easily measured from the collected blood sample before hemolysis (membrane breakage).
[0017]
[Other aspects of the third invention]
Here, preferably, the method includes a hemolysis step of hemolyzing red blood cells in the blood sample by membrane rupture, wherein the total hemoglobin concentration measurement step measures the total hemoglobin concentration in the blood sample in which red blood cells are hemolyzed by the hemolysis step. Is what you do. In this way, the total hemoglobin concentration is accurately measured, so that the accuracy of the hemolysis rate obtained using the same is improved.
[0018]
Preferably, the free hemoglobin concentration is A 1 (T), the total hemoglobin concentration is represented by A 2 (T), the hemolysis rate H (%) is calculated by a previously stored equation [H = (A 1 (T) / A 2 (T)) × 100]. This makes it possible to easily and accurately measure the accumulation load state of red blood cells.
[0019]
[Fourth Means for Solving the Problems]
The gist of the invention for suitably implementing the first invention method is an erythrocyte accumulation load measuring apparatus for measuring the accumulation load state of erythrocytes in a blood sample, wherein (a) the blood A measuring tube having a predetermined flow cross section for applying a predetermined stress to the red blood cells of the sample; and (b) scattering in which light irradiated on the blood sample in the measuring tube detects scattered light scattered by the red blood cells. A light detection unit; and (c) a damage rate determination unit that determines a damage rate of the red blood cells based on the intensity of the scattered light detected by the scattered light detection unit.
[0020]
[Effect of the fourth invention]
In this way, the intensity of the scattered light by the red blood cells corresponds to the shape of the red blood cells that causes the scattering. For this reason, according to the above device invention, the damage rate of the red blood cells is determined based on the light intensity of the scattered light scattered by the red blood cells in the blood sample in the measurement tube at a predetermined point in time. Represents the change in shape accumulated in red blood cells, that is, the accumulated load. Therefore, it is possible to quickly and easily measure the damaged state of red blood cells, that is, the accumulated load state, from a collected blood sample before hemolysis (membrane rupture). , Absolute evaluation becomes possible.
[0021]
[Another aspect of the fourth invention]
Here, preferably, assuming that the light intensity of the scattered light is OSD1 (t) and the damage rate of red blood cells is K, the damage rate determination means uses a previously stored equation [K = f (OSD1 (t)). ], The damage rate K of red blood cells is obtained based on the light intensity OSD1 (t) of the scattered light. This makes it possible to easily and accurately measure the erythrocyte damage rate K indicating the erythrocyte accumulation load state.
[0022]
[Fifth Means for Solving the Problems]
The gist of the device invention for suitably implementing the second invention method is an erythrocyte accumulation load measuring device for measuring the accumulation load state of erythrocytes in a blood sample, wherein: In order to allow the sample to pass through, a large-diameter portion having a first flow cross-section set so that red blood cells begin to be oriented or deformed, and a smaller diameter than the first flow cross-section so as to receive a greater stress than the large-diameter portion A measuring tube having a small-diameter portion having a second flow cross section; and (b) a light beam applied to a blood sample to which a predetermined stress is applied within a large-diameter portion of the measuring tube, the light beam being scattered by the red blood cells. (1) a first scattered light detection unit for detecting scattered light; and (c) light irradiated to a blood sample to which a stress greater than that of the large diameter portion is applied in the small diameter portion of the measurement tube is scattered by the red blood cells. Second scattered light A second scattered light detection unit to be detected; and (d) a second scattered light detected by the first scattered light detection unit and a second scattered light detected by the second scattered light detection unit. And a deformation rate determining means for determining a deformation rate of the red blood cells.
[0023]
[Effect of the fifth invention]
In this way, the intensity of the scattered light by the red blood cells corresponds to the shape of the red blood cells that causes the scattering. For this reason, according to the device invention, the first scattered light detector and the second scattered light detector scatter the red blood cells in the blood sample in a state where different stresses (loads) are applied in the large diameter portion and the small diameter portion. The received first scattered light and second scattered light are measured, and the deformation ratio determining means determines the deformation ratio of the red blood cells based on a change in the light intensity of the first scattered light and the second scattered light, for example, an intensity difference or ratio. Is determined. Since the deformation rate indicates a difference in shape change accumulated in red blood cells due to different loads, that is, a difference in accumulated loads, the deformation state of red blood cells under actual stress from a predetermined blood sample collected, that is, the accumulated load. The condition can be measured quickly and easily before hemolysis (membrane rupture), making absolute evaluation possible.
[0024]
[Other aspects of the fifth invention]
Preferably, the light intensity of the first scattered light is OSD1 (t), the light intensity of the second scattered light is OSD2 (t), and the deformation ratio of the red blood cells is D. Is based on the light intensity ratio OSD2 (t) / OSD1 (t) of the first scattered light and the second scattered light from a previously stored formula [D = OSD2 (t) / OSD1 (t)]. Is calculated. In this way, it is possible to easily and accurately measure the deformation ratio D of the red blood cells, which indicates the accumulation load state of the red blood cells.
[0025]
Preferably, a single laser light source element for irradiating a laser beam to the large-diameter portion and the small-diameter portion of the measurement tube from one direction, and the light from the laser light source device is divided into two directions. Including a light splitter, and an optical system for guiding the light in two directions split by the light splitter to irradiate the large-diameter portion and the small-diameter portion of the measurement tube with monochromatic light from one direction, respectively. A light source unit is provided. With this configuration, the laser light from the common laser light source element can be irradiated to the large diameter portion and the small diameter portion of the measurement tube in the same manner. The light intensity ratio of the first scattered light and the second scattered light from the diameter part and the small diameter part can be accurately obtained.
[0026]
Preferably, the first scattered light detection unit and the second scattered light detection unit detect scattered light within a predetermined angle range centered on a laser beam irradiation direction with respect to a large diameter portion and a small diameter portion of the measurement tube. In order to receive light, a light receiving element supported by a light receiving element supporting device rotatable around the axis of the linear measuring tube is provided. With this configuration, there is an advantage that the first scattered light and the second scattered light in the large diameter portion and the small diameter portion are measured at the same time.
[0027]
[Sixth Means for Solving the Problems]
The gist of the invention for suitably implementing the third invention method is an erythrocyte accumulation load measuring device for measuring the accumulation load state of erythrocytes in a blood sample, wherein (a) the blood A free hemoglobin concentration measuring section for measuring the free hemoglobin concentration in the blood sample based on the transmission intensity of light transmitted through the sample; and (b) the blood sample based on the transmission intensity of light transmitted through the blood sample. A total hemoglobin concentration measuring unit for measuring a total hemoglobin concentration in the blood sample; and (c) a hemolysis rate determining means for determining a hemolysis rate of the blood sample based on the free hemoglobin concentration and the total hemoglobin concentration.
[0028]
[Effect of the sixth invention]
The free hemoglobin concentration corresponds to the state of erythrocyte damage or accumulation. For this reason, according to the above-described apparatus invention, the hemolysis of the blood sample is performed by the hemolysis rate determining means based on the free hemoglobin concentration measured by the free hemoglobin concentration measurement unit and the total hemoglobin concentration measured by the total hemoglobin concentration measurement unit. The hemolysis rate is determined, and the hemolysis rate indicates the rate of progress of the damage rate of the erythrocytes, that is, the magnitude of the accumulation load. Therefore, the hemolysis rate, that is, the accumulation load state, is determined from the collected blood sample. It can be measured quickly and easily before breaking.
[0029]
[Another aspect of the sixth invention]
Here, preferably, the total hemoglobin concentration measuring section measures the total hemoglobin concentration in the blood sample after the red blood cells in the blood sample are lysed. In this way, the total hemoglobin concentration is accurately measured, so that the accuracy of the hemolysis rate obtained using the same is improved.
[0030]
Preferably, the free hemoglobin concentration measuring section comprises: (a) a filter for removing formed components in the blood sample; and (b) a filter having a predetermined wavelength which is hardly affected by oxygen saturation. (C) a first light source element for projecting light toward the blood sample from which components have been removed by the filter; and (c) a first light source element for detecting light projected from the first light source element and passing through the blood sample. A light receiving element; and (d) a free hemoglobin concentration calculating means for calculating a free hemoglobin concentration in the blood sample based on the light intensity detected by the first light receiving element. Based on the obtained light intensity, the concentration of free hemoglobin in the blood sample is calculated. In this way, in the free hemoglobin concentration measuring section, the absorptivity of the transmitted light is measured from the transmitted light intensity in a state where the spheres such as red blood cells and white blood cells in the blood sample are removed. In addition, scattering of the formed material is reduced, and the measurement accuracy is improved.
[0031]
Preferably, the free hemoglobin concentration is A 1 (T), the total hemoglobin concentration is represented by A 2 (T), the hemolysis rate determining means uses the formula [H = (A 1 (T) / A 2 (T)) × 100] to calculate the hemolysis rate H (%). This makes it possible to easily and accurately measure the accumulation load state of red blood cells.
[0032]
Preferably, the total hemoglobin concentration measuring section comprises: (a) a second light source element for projecting light having a wavelength that is hardly affected by oxygen saturation and erythrocytes toward a blood sample whose erythrocytes have undergone membrane destruction; (B) a second light receiving element for detecting light projected from the second light source element and passing through the blood sample whose red blood cells have been broken, and (c) a light intensity detected by the second light receiving element. And calculating a total hemoglobin concentration in the blood sample in which the red blood cells have been lysed based on With this configuration, in the total hemoglobin concentration measuring section, the absorption rate of the transmitted light is measured from the transmitted light intensity, and the total hemoglobin concentration is measured from the absorption rate in a state where the red blood cells in the blood sample are hemolyzed. Gives the total hemoglobin concentration in the blood sample.
[0033]
Preferably, the total hemoglobin concentration calculating means measures the total hemoglobin concentration in the blood sample to which the hypotonic solution has been added, and converts the measured total hemoglobin concentration to the volume of the hypotonic solution. And to calculate the total hemoglobin concentration in the volume of blood sample before the hypotonic solution is added. In this way, in this total hemoglobin concentration measuring section, the total hemoglobin concentration measured in a state diluted by the volume of the hypotonic solution added to the blood sample is based on the volume of the hypotonic solution. As a result, the total hemoglobin concentration before being added to the blood sample is corrected, so that a highly accurate total hemoglobin concentration is obtained.
[0034]
Also, preferably, the blood sample includes a hemolytic unit for hemolyzing red blood cells contained in the blood sample by mixing the low osmotic pressure solution, the total hemoglobin concentration measuring unit, the hemolytic unit is used for hemolyzing red blood cells. It is for measuring the total hemoglobin concentration contained in the obtained blood sample. In this way, the total hemoglobin concentration is accurately measured.
[0035]
Preferably, the apparatus further comprises a first container and a second container for storing the blood sample that has passed through the measurement tube of the fourth invention or the fifth invention, respectively, wherein the free hemoglobin concentration measuring unit is provided in the first container. The free hemoglobin concentration in the blood sample is measured based on the transmission intensity of the light transmitted through the guided blood sample, and the total hemoglobin concentration measuring unit transmits the blood sample through the blood sample guided into the second container. In this method, the total hemoglobin concentration in the blood sample is measured based on the transmitted light intensity. In this way, the erythrocyte damage rate K, the erythrocyte deformation rate D, and the hemolysis rate H can be obtained almost simultaneously from a common blood sample, and there is an advantage that absolute evaluation is possible.
[0036]
Further, preferably, the hemolysis section mixes a low osmotic pressure solution with the blood sample in the second container to break down red blood cells contained in the blood sample to cause hemolysis. In this way, in the hemolysis section, the membrane of the red blood cells is easily broken only by mixing the low osmotic pressure solution into the blood sample.
[0037]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0038]
FIG. 1 is a diagram illustrating a main part of a configuration of a red blood cell accumulation load state (damage state) measuring device 10 according to an embodiment of the present invention. In FIG. 1, the erythrocyte accumulation load measuring device 10 uses a first blood sample B collected from a living body or an artificial organ circulator connected to the circulator to measure the deformability of the erythrocytes and the state of erythrocyte damage. After being stored in the blood sample container 12, the two parallel flow paths from the first blood sample container 12 through the light scattering distribution measuring unit 14, the electromagnetic open / close valve 16, and the second blood sample container 18 by the distribution valve 20. In one flow path, it is passed through the free hemoglobin concentration measuring unit 22 and received by the third blood sample container 24, and in the other flow path, it is passed through the total hemoglobin concentration measuring unit 26 and The blood sample container 28 can receive the blood sample.
[0039]
The first blood sample container 12 is provided with a level sensor (not shown), and a signal indicating the upper or lower level or the lower limit level of the blood sample B in the blood sample container 12 detected by the level sensor is sent to the electronic control unit 30. Is supplied. The electronic control unit 30 is a so-called microcomputer including a CPU (Central Processing Unit) (not shown), a ROM storing a control program, a RAM functioning as a temporary storage device, an input / output interface, and the like. The input signal is processed according to the program, and the calculation result, that is, the measurement result is displayed on the display device 48.
[0040]
The second blood sample container 18, the third blood sample container 24, and the fourth blood sample container 28 are connected to a negative pressure pump 38 via negative pressure control valves 32, 34 and 36 controlled by the electronic control unit 30. The negative pressure control valves 32, 34 and 36 control the negative pressure in each of them in response to the measurement start operation, whereby the light scattering distribution measuring unit 14, the free hemoglobin concentration measuring unit 22, the flow rate or the flow rate of the blood sample B passed through the total hemoglobin concentration measuring unit 26 is controlled to a preset value.
[0041]
In the membrane disruption solution container 40, an erythrocyte disruption solution such as pure water, that is, a low osmotic pressure solution M is contained to lyse the blood sample B. The membrane breaking solution container 40 is connected to an air pump 44 via a positive pressure control valve 42 controlled by the electronic control unit 30, and the positive pressure therein is controlled in response to a measurement start operation. The flow rate or flow rate of the low osmotic pressure solution M supplied to the total hemoglobin concentration measuring section 26 via the supply pipe 46 is controlled to a preset value. The membrane disrupting solution container 40, the supply pipe 46, and a container 100 to be described later to which the low osmotic pressure solution M is supplied constitute a hemolysis section 49.
[0042]
The light scattering distribution measuring unit 14 is, as shown in FIG. 2, for example, (a) erected on a base 47 so as to allow the blood sample B to pass therethrough, and a stress at which red blood cells start to be oriented and deformed, for example, a shear generated in a living body. A large-diameter pipe section 50a having a first flow cross section set so as to apply a stress of about 3.3 Pa slightly larger than the stress, and a large-diameter pipe section 50a followed by a relatively smaller diameter than the large-diameter pipe section 50a A small-diameter tube portion 50b having a second flow cross-section set smaller than the first flow cross-section so that a large stress is applied to the red blood cells, and having a downstream and free hemoglobin concentration of the first blood sample container 12. A transparent and linear measuring tube 50 provided upstream of the measuring unit 22 and the total hemoglobin concentration measuring unit 26, and (b) the inside of the large-diameter tube portion 50a and the small-diameter tube portion 50b fixed to the base 47. Blood test in circulation A laser light source 52 for irradiating red light of a wavelength that is easily scattered from red blood cells, ie, a laser light, from B in one direction, and (c) a base so as to be rotatable around the axis C of the measuring tube 50. The large-diameter tube portion 50a and the small-diameter tube portion 50b are provided on the base 47, and center on the axes of the large-diameter tube portion 50a and the small-diameter tube portion 50b based on the irradiation of the laser light L from the laser light source portion 52. And a scattered light detection unit 54 for detecting a light scattering distribution scattered in a fan shape.
[0043]
In the light scattering distribution measuring unit 14, the light scattering distribution of the blood sample B is measured in a state where the red blood cells receive relatively small stress in the large-diameter tube portion 50a, and at the same time, the red blood cells in the small-diameter tube portion 50b exert a relatively small stress. Since the light scattering distribution of the blood sample B is measured in the receiving state, the red blood cells in the blood sample B are measured based on the difference between the light scattering distribution in the large diameter tube portion 50a and the light scattering distribution in the small diameter tube portion 50b. Deformability is easily measured. In the large-diameter tube portion 50a, red blood cells receive relatively small stress, so that the amount of deformation is small. However, in the small-diameter tube portion 50b, red blood cells are deformed by stress and the light scattering distribution tends to change relatively. By calculating the difference or ratio (ratio) of the light scattering distribution intensity or the difference or ratio (ratio) of the scattering range and displaying it on the display device 48, the deformability of the red blood cells in the blood sample B, that is, the deformability of the red blood cell shape is easy. Is evaluated. The measurement tube 50 having the large-diameter tube portion 50a and the small-diameter tube portion 50b corresponds to a stress applying means or a stress applying step for applying stress to red blood cells.
[0044]
The laser light source unit 52 includes (a) a single laser light source element 56 and (b) the same axial center as the laser light L in order to time-divide the laser light L from the laser light source element 56 in two directions. (C) the laser beam L1 and the laser beam L2 split in two directions by the light splitter 60 having a prism mirror 58 that is continuously rotated around the light splitter 60; A pair of prism mirrors 62a and 62b that reflect the laser beams L1 and L2 and the reflected laser beams L1 and L2 are directed to a predetermined direction in order to guide the blood sample B in the sample to be irradiated from a right angle. A pair of collimator lenses 64a and 64b as light beams, and the laser beams L1 and L2 are perpendicular to the blood sample B flowing through the large-diameter tube portion 50a and the small-diameter tube portion 50b. An optical system device 68 having a pair of optical waveguides 66a and 66b, such as optical fibers, for guiding the laser beams L1 and L2 to irradiate the laser beams L1 and L2 having the same output from the large-diameter tube portion 50a and the small-diameter tube portion. The blood sample B flowing through the inside 50b is irradiated from a right angle direction.
[0045]
The scattered light detection unit 54 includes a pair of light receiving elements 70a and 70b that receive scattered light from inside the large-diameter tube portion 50a and the small-diameter tube portion 50b, and the irradiation direction of the laser beams L1 and L2. In order to measure the scattered light distribution intensity within a predetermined angle range, for example, an angle range of 150 ° left and right, the pair of light receiving elements 70a and 70b are rotatably supported around the axis C of the linear measuring tube 50. And a light receiving element support device 72 that performs the above-described operations. The light receiving element support device 72 includes a turntable 74 provided rotatably around the axis C on the base 47, a drive motor 76 for driving the turntable 74 in accordance with a command from the electronic control unit 30, A column 78 erected on the turntable 74 so that the distance from the axis C can be changed, and a pair of columns 78 provided on the column 78 so that the position can be changed in a direction parallel to the axis C to support the light receiving elements 70a and 70b. Arm 80a and 80b, and a fixed arm 82 provided at the upper end of the column 78 in a state where the upper end is gripped to fix the measuring tube 50. The pair of arms 80a and 80b are arranged such that the light receiving elements 70a and 70b are at positions about 150 mm from the axis C and about 15 mm downward from the irradiation positions of the optical waveguides 66a and 66b. 70a and 70b are supported. The light receiving element 70a and the arm 80a correspond to a first scattered light detection unit that detects scattered light from the large-diameter tube 50a, and the light-receiving element 70b and the arm 80b detect scattered light from the small-diameter tube 50b. It corresponds to the 2 scattered light detection section.
[0046]
In the electronic control unit 30, the pair of light receiving elements 70a and 70b are rotated around the axis C by operating the drive motor 76 in a state where the large diameter tube 50a is irradiated with the laser light from the laser light source 52. The scattered light distribution intensity of the small-diameter tube portion 50b within a predetermined angle range centered on the irradiation direction of the laser beams L1 and L2 is measured, and the light scattering distribution in the large-diameter tube portion 50a and the light scattering in the small-diameter tube portion 50b are measured. The intensity difference or ratio with the distribution or the difference or ratio of the scattering angle range is calculated and displayed on the display device 48 as a parameter indicating the deformability of the red blood cells in the blood sample B. In general, red blood cells in the flow process are not so much stressed in the large-diameter tube portion 50a, so that the deformation is small. Tend to be relatively broad, based on the intensity difference or ratio between the light scattering distribution in the large-diameter tube portion 50a and the light scattering distribution in the small-diameter tube portion 50b or the difference or ratio in the scattering angle range, The deformability of red blood cells in blood sample B is indicated.
[0047]
In the electronic control unit 30, for example, a predetermined time has elapsed since the predetermined stress was applied to the red blood cells in the first scattered light detection unit, based on the relationship experimentally obtained and stored in advance as shown in equation (1). The erythrocyte damage rate K is calculated based on the light intensity OSD1 (t) of the scattered light detected at this time. In this sense, the electronic control unit 30 functions as an erythrocyte damage rate determination unit that determines the erythrocyte damage rate K. In the large diameter portion 50a of the measurement tube 50, when the red blood cells in the blood sample B are deformed with time while being subjected to a predetermined stress (stress), the red blood cell damage rate K is determined by the time-dependent red blood cell deformation. And a parameter indicating the deformability, and corresponds to the load accumulated in the red blood cells. For example, a larger value of the red blood cell damage rate K indicates that the deformability of the red blood cells is lower and the load accumulated on the red blood cells is larger.
[0048]
K = f (OSD1 (t)) (1)
[0049]
In addition, in the electronic control unit 30, for example, the light intensity OSD1 of the first scattered light detected by the first scattered light detection unit and the second scattered light detection unit from the relationship stored in advance as shown in Expression (2). The red blood cell deformation ratio D is calculated based on (t) and the light intensity OSD2 (t) of the second scattered light. In this sense, the electronic control unit 30 functions as a deformation ratio determining unit that determines the deformation ratio D of the red blood cells. The light intensity OSD1 (t) of the first scattered light is a value when a relatively light stress is applied to the red blood cells in the large diameter portion 50a of the measurement tube 50, but the light intensity OSD2 (t) of the second scattered light is ) Is the value when the red blood cells are subjected to a stronger stress than the large diameter part 50a in the small diameter part 50b of the measuring tube 50. Therefore, the deformation rate D of the red blood cells is the sensitivity of the red blood cells to the stress. That is, it becomes a parameter representing the deformability, and corresponds to the load accumulated in the red blood cells. For example, the larger the red blood cell deformation rate D, the higher the red blood cell deformation ratio and the smaller the load accumulated on the red blood cells.
[0050]
D = OSD2 (t) / OSD1 (t) (2)
[0051]
FIG. 3 is a diagram illustrating light having a scattered light intensity OSD within a range of 0 to 1.5 degrees in two-dimensional coordinates including a horizontal axis indicating a measurement angle position of the scattered light and a vertical axis indicating the scattered light intensity OSD. 4 shows an example of a scattering distribution. Further, in FIG. 3, after 0 minute, measurement points at elapsed time intervals of 30 minutes, 60 minutes, and 90 minutes are shown for each scattering angle.
[0052]
For example, as shown in FIG. 4, the free hemoglobin concentration measurement unit 22 stores a filter 86 that removes solid components such as blood cells contained in the blood sample B when passing the blood sample B, and stores the blood sample B that has passed through the filter 86. Container 88, a transparent tube 90 for guiding the blood sample B to the outside from the container 88, and a free hemoglobin (haemoglobin free outside the blood cells) provided in a holding member 92 through which the transparent tube 90 passes. ), Which emits light having a wavelength λ1 (for example, 600 nm) selected so as to be absorbed by the blood sample B in the transparent tube 90, and an LED (light emitting) element 94 provided in the holding member 92. And a light receiving element 96 for receiving and outputting light transmitted through the blood sample B in the transparent tube 90. Of the light emitted from the LED (light emitting) element 94, the remaining light absorbed by the free hemoglobin in the blood sample B is received by the light receiving element 96. For this reason, in the electronic control unit 30, the light reception intensity Imax when there is no absorption of free hemoglobin determined and stored in advance is set. 1 And the actual received light intensity I 1 And the absorption rate S based on 1 [= (Imax 1 −I 1 ) / Imax 1 ] Is calculated, and the absorption rate S is calculated from a relationship (not shown) obtained in advance and stored. 1 Hemoglobin concentration A based on 1 (%) Is calculated. FIG. 5 shows the free hemoglobin concentration A thus measured. 1 After 0 minute, the time-dependent change is shown using the measurement points every 30 minutes, 60 minutes, and 90 minutes. As described above, the electronic control unit 30 controls the free hemoglobin concentration A 1 It also functions as a free hemoglobin concentration calculating means for calculating (%).
[0053]
For example, as shown in FIG. 6, the total hemoglobin concentration measuring section 26 stores the blood sample B, receives the hypotonic solution M supplied from the membrane disrupting solution container 40, and converts the blood sample B into a red blood cell membrane. A container 100 for hemolysis by destruction, a transparent tube 102 for guiding the blood sample B after hemolysis from the inside of the container 100 to the outside, and a holding member 104 through which the transparent tube 102 penetrates, are provided with oxygen saturation. An LED (light emitting) element 106 for projecting light having a wavelength λ2 (for example, 600 nm) selected so as to be unaffected by the degree and absorbed by free hemoglobin toward the hemolyzed blood sample B in the transparent tube 102; A light receiving element 108 is provided in the holding member 104 and receives and outputs light transmitted through the hemolyzed blood sample B in the transparent tube 102. Of the light emitted from the LED (light emitting) element 106, the remaining light absorbed by the free hemoglobin in the blood sample B is received by the light receiving element 108. For this reason, in the electronic control unit 30, the light reception intensity Imax when there is no absorption of free hemoglobin determined and stored in advance is set. 2 And the actual received light intensity I 2 And the absorption rate S based on 2 [= (Imax 2 −I 2 ) / Imax 2 ] Is calculated, and the absorption rate S is calculated from a relationship (not shown) obtained in advance and stored. 2 Hemoglobin concentration A based on 2 (%) Is calculated. As described above, the electronic control unit 30 controls the total hemoglobin concentration A 2 It also functions as a total hemoglobin concentration calculating means for calculating (%).
[0054]
In the electronic control unit 30, the total hemoglobin concentration A 2 (%) Is calculated, the total hemoglobin concentration A measured at a predetermined time in the total hemoglobin concentration measurement unit 26 is calculated. 2 And the free hemoglobin concentration A measured at a predetermined time in the free hemoglobin concentration measurement unit 22 1 H [= (A 1 (T) / A 2 (T)) × 100] is calculated as the hemolysis rate H indicating the membrane destruction of the red blood cells. The smaller the hemolysis rate H, the smaller the hemolysis amount, and the free hemoglobin concentration A measured by the free hemoglobin concentration measurement unit 22. 1 Is low, it is assumed that the red blood cells in the blood sample B at the above-mentioned predetermined time point have little membrane destruction. In this sense, the electronic control unit 30 functions as a hemolysis rate determining unit.
[0055]
FIG. 7 is a flowchart illustrating a main part of the control operation of the electronic control unit 30. In FIG. 7, in step (hereinafter, step is omitted) S1, the solenoid on-off valve 16, the negative pressure control valves 32, 34, 36, and the positive pressure control valve 42 are all opened, and the negative pressure pump 38 and the air pump 44 operate. As a result, the electromagnetic on-off valve 16 is opened, and the blood sample B obtained by one sampling is caused to flow from the inside of the blood sample container 12 to the second blood sample container 18 through the light scattering distribution measuring unit 14. The blood sample B in the second blood sample container 18 is caused to flow in parallel to the third blood sample container 24 and the fourth blood sample container 28 through the free hemoglobin concentration measuring unit 22 and the total hemoglobin concentration measuring unit 24.
[0056]
Next, in S2 corresponding to the scattered light detection step and the scattered light detection means or the first and second scattered light detection steps, the first scattered light detection The light intensity OSD1 (t) of the first scattered light detected by the unit (the light receiving element 70a, the arm 80a) and the light intensity of the second scattered light detected by the second scattered light detecting unit (the light receiving element 70b, the arm 80b) OSD2 (t) is read. Next, in S3 corresponding to the damage rate determining step and the damage rate determining means, based on the relationship shown in equation (1) stored in advance, when a predetermined time has elapsed since a predetermined stress was applied to the red blood cells, The red blood cell damage rate K is calculated based on the light intensity OSD1 (t) of the first scattered light detected by the first scattered light detection unit. Next, in S4 corresponding to the deformation rate determination step and the deformation rate determination means, the first scattered light detection section and the second scattered light detection section respectively detect the relationship based on the relationship stored in advance as shown in equation (2). Based on the obtained light intensity OSD1 (t) of the first scattered light and the light intensity OSD2 (t) of the second scattered light, the deformation ratio D of the red blood cells is calculated.
[0057]
Subsequently, in S5 corresponding to the free hemoglobin measuring step and the free hemoglobin measuring means, the free hemoglobin in the blood sample B of the light radiated from the LED (light emitting) element 94 in the free hemoglobin concentration measuring section 22 is used. The remaining absorbed light is received by the light receiving element 96, and the light receiving intensity Imax when there is no absorption of free hemoglobin determined and stored in advance. 1 And the actual received light intensity I by the light receiving element 96 1 And the absorption rate S based on 1 [= (Imax 1 −I 1 ) / Imax 1 ] Is calculated, and the absorption rate S is calculated from a relationship (not shown) obtained in advance and stored. 1 Hemoglobin concentration A based on 1 (%) Is calculated. This S5 is the free hemoglobin concentration A 1 It also functions as a free hemoglobin concentration calculating means for calculating (%).
[0058]
Next, in S6 corresponding to the total hemoglobin measuring step and the total hemoglobin measuring means, in the total hemoglobin concentration measuring section 26, of the free hemoglobin in the blood sample B, of the light emitted from the LED (light emitting) element 106, The remaining absorbed light is received by the light receiving element 108, and the light receiving intensity Imax when there is no absorption of free hemoglobin determined and stored in advance. 2 And the actual received light intensity I by the light receiving element 108 2 And the absorption rate S based on 2 [= (Imax 2 −I 2 ) / Imax 2 ] Is calculated, and the absorption rate S is calculated from a relationship (not shown) obtained in advance and stored. 2 Hemoglobin concentration A based on 2 (%) Is calculated. At this time, the blood sample B whose membrane has been broken, which is the measurement target, is diluted by the volume of the hypotonic solution M added thereto. For this reason, preferably, the total hemoglobin concentration A based on the volume of addition of the hypotonic solution M is preferably set to a value measured in the volume before the hypotonic solution M is added. 2 (%) Is corrected. For example, when the addition volume of the hypotonic solution M is 10% of the volume of the blood sample B, the measured absorption rate S 2 Or total hemoglobin concentration A 2 Is increased by 10%. This S6 is the total hemoglobin concentration A 2 It also functions as a total hemoglobin concentration calculating means for calculating (%).
[0059]
Subsequently, in S7 corresponding to the hemolysis rate determination step and the hemolysis rate determination means, the free hemoglobin concentration A calculated in S5 is calculated. 1 (%) And the total hemoglobin concentration A calculated in S6 2 (%), The hemolysis rate H (%) [= (A 1 (T) / A 2 (T)) × 100] is calculated. Then, in S8 corresponding to the accumulation load evaluation step and the accumulation load evaluation means, the accumulation of red blood cells in the blood sample B is determined based on the actual damage rate K or deformation rate D and the hemolysis rate H based on the relationship stored in advance. The load is evaluated. The above relationship is shown in FIG. 8, for example. In this case, the accumulation load of red blood cells in the blood sample B is evaluated based on the damage rate K (= f (OSD1 (t)) and the hemolysis rate H). For example, if the damage rate K and the hemolysis rate H are substantially zero, the accumulation load of the red blood cells in the blood sample B is evaluated to be substantially zero. In this case, the accumulation load of red blood cells in the blood sample B is evaluated to be relatively light (in the non-hemolysis stage) .If both the damage rate K and the hemolysis rate H increase to some extent, the blood sample B Is evaluated to be moderate (stage I after hemolysis) .If the hemolysis rate H becomes, for example, 50% or more and the damage rate K decreases, the accumulation load of red blood cells in the blood sample B is evaluated. Is evaluated as severe (stage II after hemolysis). In S9 corresponding to the indicating means, the damage rate K, deformation rate D, hemolysis rate H, and accumulated load evaluation value obtained in S3, S4, S7, and S8 are displayed on the display device 48 in the form of numerical values, graphs, and the like. Optically displayed on the screen or ink displayed on paper.
[0060]
As described above, according to the erythrocyte accumulation load state measuring device 10 of the present embodiment, (a) the measuring tube 50 having a predetermined flow cross section for allowing the blood sample B to pass therethrough, and (b) the measuring tube 50 A scattered light detector 54 for detecting scattered light obtained by irradiating the blood sample B to which a predetermined stress is applied by the red blood cells, and (c) the scattered light detector 54 Damage rate determining means (electronic control device 30) for determining the damage rate K of red blood cells based on the intensity OSD1 (t) of the scattered light detected when a predetermined time has elapsed since the stress was applied. I have. Since the damage rate K represents the shape change accumulated in the red blood cells within a predetermined time, that is, the accumulation load, the damaged state of the red blood cells, that is, the accumulation load state, is determined from the collected blood sample before the hemolysis (membrane rupture). Can be measured quickly and easily.
[0061]
Further, according to the present embodiment, the damage rate of the red blood cells is determined based on the light intensity OSD1 (t) of the actual scattered light from the previously stored relation [K = f (OSD1 (t))] shown in Expression (1). Since K is determined, it is possible to easily and accurately measure the damage rate K of erythrocytes, which indicates the state of red blood cell accumulation load.
[0062]
Further, according to the erythrocyte accumulation load state measuring apparatus 10 of the present embodiment, (a) a large cross section having a first flow cross-sectional area set so that red blood cells start to be oriented or deformed in order to allow the blood sample B to pass therethrough. A measuring tube 50 having a diameter portion 50a and a small diameter portion 50b having a second flow cross section smaller than the first flow cross section so as to receive a larger stress than the large diameter portion 50a; and (b) measuring the measurement tube. A first scattered light detector (70a, 80a) for detecting a first scattered light obtained by scattered light by a red blood cell to irradiate the blood sample B to which a predetermined stress is applied within the large diameter portion 50a of the tube 50; (C) a second method for detecting second scattered light obtained by irradiating the blood sample B to which a stress greater than that of the large diameter portion 50a is applied in the small diameter portion 50b of the measurement tube 50 with red blood cells; Scattered light detector (70b 80b) and (d) the light intensity OSD1 (t) of the first scattered light detected by the first scattered light detector and the light intensity OSD2 (2) of the second scattered light detected by the second scattered light detector. t) and a deformation rate determining means (electronic control device 30) for determining the deformation rate D of the red blood cells based on the change between the two. The erythrocyte deformation rate D indicates the erythrocyte deformability under the application of different stresses, and the deformability corresponds to the accumulated load. The accumulated load state can be measured quickly and easily before hemolysis (membrane rupture).
[0063]
Further, according to the present embodiment, the light intensity ratio between the actual first scattered light and the second scattered light is obtained from the previously stored relationship [D = OSD2 (t) / OSD1 (t)] shown in Expression (2). Since the deformation rate D of the red blood cells is calculated based on OSD2 (t) / OSD1 (t), the deformation rate D of the red blood cells indicating the accumulation load state of the red blood cells can be easily and accurately measured.
[0064]
Further, according to the present embodiment, a single laser light source element 56 for irradiating the large diameter portion 50a and the small diameter portion 50b of the measurement tube 50 with laser light from one direction, respectively, Splitter 60 for splitting the laser light in two directions, and splitting the light in the two directions split by the splitter 60 into a single-color laser beam from one direction with respect to the large diameter portion 50a and the small diameter portion 50b of the measuring tube 50 Since the laser light source 52 including the optical system device 68 for guiding light to be irradiated is provided, the laser light L from the common laser light source element 56 is transmitted to the large diameter portion 50a and the small diameter portion 50b of the measurement tube 50. Therefore, the irradiation conditions at the two positions are equal, and the light intensity ratio OSD2 of the first scattered light and the second scattered light from the large-diameter portion 50a and the small-diameter portion 50b is obtained. ) / OSD1 (t) can be obtained accurately.
[0065]
Further, according to the present embodiment, the first scattered light detector (70a, 80a) and the second scattered light detector (70b, 80b) provide the laser light L1 for the large diameter portion 50a and the small diameter portion 50b of the measuring tube 50. And light receiving elements 70a and 70b supported by a light receiving element support device 72 rotatable about the axis of the linear measuring tube in order to receive scattered light within a predetermined angle range centered on the irradiation direction of L2. Is provided, so that there is an advantage that the first scattered light and the second scattered light in the large diameter portion 50a and the small diameter portion 50b are measured simultaneously.
[0066]
Further, according to the erythrocyte accumulation load state measuring apparatus 10 of the present embodiment, (a) the free hemoglobin concentration A in the blood sample B is determined based on the transmission intensity of light transmitted through the blood sample B. 1 (B) a free hemoglobin concentration measuring unit 22 for measuring (t) at a predetermined time; and (b) a total hemoglobin concentration A in the blood sample based on the transmission intensity of light transmitted through the blood sample B. 2 A total hemoglobin concentration measuring section 26 for measuring (t) at a predetermined time; and (c) the free hemoglobin concentration A 1 (T) and total hemoglobin concentration A 2 A hemolysis rate determining means (electronic control device 30) for determining the hemolysis rate H of the blood sample B based on (t). Since the hemolysis rate H indicates the rate of progress of the damage rate of the red blood cells, that is, the magnitude of the accumulation load, the damage state of the red blood cells, that is, the accumulation load state, is determined before the hemolysis (membrane rupture) from the collected blood sample. It can be measured quickly and easily. Further, the free hemoglobin concentration measuring section 22 and the total hemoglobin concentration measuring section 26 are provided with a free hemoglobin concentration A 1 (T) and total hemoglobin concentration A 2 (T) may be measured at the same time, and in this case, the hemolysis rate H is more quickly obtained.
[0067]
Further, according to the present embodiment, after the red blood cells in the blood sample B are hemolyzed, the total hemoglobin concentration A in the blood sample B is measured. 2 (T) is measured. In this way, the total hemoglobin concentration A 2 Since (t) is accurately measured, the accuracy of the hemolysis rate H obtained by using (t) is improved.
[0068]
Further, according to the present embodiment, the free hemoglobin concentration measuring unit 22 includes: (a) a filter 86 for removing material components in the blood sample B; and (b) a preset filter which is hardly affected by oxygen saturation. (First light source element) 94 for projecting the light of the set wavelength toward the blood sample B from which the formed components have been removed by the filter 86; and (c) projecting the blood sample B from the LED 94 (D) a free hemoglobin concentration calculating means (electronic control device 30) for calculating the hemoglobin concentration in the blood sample B based on the light intensity detected by the light receiving element 96; And based on the light intensity detected by the light receiving element 96, the free hemoglobin concentration A in the blood sample B 1 Since (t) is calculated, the absorptance of the transmitted light is measured from the transmitted light intensity in a state where the spheres such as red blood cells and white blood cells in the blood sample B are removed. The scattering of the formed material is reduced, and the measurement accuracy is improved.
[0069]
Further, according to the present embodiment, the relation [H = (A 1 (T) / A 2 (T)) × 100], the actual free hemoglobin concentration A 1 (T) and total hemoglobin concentration A 2 Since the hemolysis rate H (%) is calculated based on (t), the accumulation load state of red blood cells can be easily and accurately measured.
[0070]
Further, according to the present embodiment, the total hemoglobin concentration measuring unit 26 emits (a) light having a wavelength that is hardly affected by the oxygen saturation and the red blood cells toward the blood sample B in which the red blood cells are hemolyzed. A second light source element 106, (b) a second light receiving element 108 for detecting light projected from the LED 106 and passing through the blood sample B in which the red blood cells have undergone a film breakage, and (c) a second light receiving element 108. The hemoglobin concentration A in the blood sample in which the red blood cells have been lysed based on the light intensity detected by 2 (Electronic control unit 30) for calculating the total hemoglobin concentration (e), which calculates (t), wherein the absorptance of the transmitted light is measured from the transmitted light intensity, and from the absorptivity, the red blood cells in the blood sample are hemolyzed. Since the total hemoglobin concentration is measured, the total hemoglobin concentration A in the blood sample is determined. 2 (T) is obtained.
[0071]
Further, according to the present embodiment, the total hemoglobin concentration measuring unit 26 measures the total hemoglobin concentration in the blood sample to which the hypotonic solution M has been added, and compares the measured total hemoglobin concentration with the hypotonic solution. M corrected based on the volume of M, the total hemoglobin concentration A in the volume of blood sample before the hypotonic solution M was added 2 (T) is calculated, so that a highly accurate total hemoglobin concentration A 2 (T) is obtained.
[0072]
Further, according to the present embodiment, the hemolysis unit 49 for hemolyzing red blood cells contained in the blood sample B by mixing the hypotonic solution M into the blood sample B is included. Total hemoglobin concentration A contained in the blood sample in which erythrocytes have been lysed by section 49 2 (T) is measured, so that the total hemoglobin concentration A 2 (T) is accurately measured.
[0073]
Further, according to the present embodiment, a (first) container 88 and a (second) container 100 for storing the blood sample B that has passed through the measuring tube 50 are provided, respectively. Subsequent to the measurement of the deformation rate D, the free hemoglobin concentration measurement unit 22 determines the free hemoglobin concentration A in the blood sample B based on the transmission intensity of light transmitted through the blood sample B guided into the container 88. 1 (T) is measured, and the total hemoglobin concentration measuring unit 26 calculates the total hemoglobin concentration A in the blood sample B based on the transmission intensity of light transmitted through the blood sample B guided into the container 100. 2 Since (t) is measured in parallel, there is an advantage that the erythrocyte damage rate K, the erythrocyte deformation rate D, and the hemolysis rate H can be obtained almost simultaneously from a common blood sample B.
[0074]
Further, according to the present embodiment, the hemolysis section 49 mixes the low osmotic pressure solution M into the blood sample B in the (second) container 100 to break the red blood cells contained in the blood sample B. Hemolysis is performed, and the membrane of red blood cells is easily broken only by mixing the low osmotic pressure solution M into the blood sample B.
[0075]
As mentioned above, although one Example of this invention was described based on drawing, this invention is applied also to another aspect.
[0076]
For example, in the above-described embodiment, the erythrocyte damage rate K is calculated from equation (1), and the erythrocyte deformation rate D is obtained from equation (2). However, other equations may be used. In short, any parameters may be used as long as they are derived based on the change in the scattered light intensity.
[0077]
Further, in the free hemoglobin concentration measuring section 22 of the above-described embodiment, the filter 86 for removing the solid content in the blood sample B is provided, but the filter 86 is not necessarily provided. In the total hemoglobin concentration measuring section 26, such a filter is not provided, but may be provided, for example, on the upstream side of the transparent tube 102.
[0078]
Further, in the erythrocyte accumulation load (damage state) measuring device 10 of the above-described embodiment, the light scattering distribution measuring unit 14 for measuring the deformability of the erythrocytes in the blood sample B includes the free hemoglobin concentration measuring unit 22 and the total hemoglobin concentration. Although provided on the upstream side of the measuring section 26, it is not always necessary to provide the same. In this way, the light scattering distribution measuring section 14 does not deform the red blood cells in the blood sample B, so that the damaged state of the red blood cells can be measured more accurately.
[0079]
In the above-described embodiment, the measuring tube 50 of the light scattering distribution measuring unit 14 includes the large-diameter tube 50a on the upstream side and the small-diameter tube 50b on the downstream side. A small-diameter pipe portion 50b may be provided on the upstream side on the downstream side.
[0080]
In the above-described embodiment, the free hemoglobin concentration measuring unit 22 and the total hemoglobin concentration measuring unit 26 are provided in parallel on the downstream side of the distribution valve 20, but may be provided in series. In such a case, the free hemoglobin concentration measuring section 22 is provided on the upstream side of the total hemoglobin concentration measuring section 26, and there is an advantage that the required measurement volume of the blood sample B is reduced.
[0081]
In the above-described embodiment, the blood sample B flowing from the blood sample container 12 to the light scattering distribution measuring unit 14, the free hemoglobin concentration measuring unit 22, and the total hemoglobin concentration measuring unit 26 may be continuously flowed. Then, it may be flowed intermittently.
[0082]
Further, the light intensity OSD1 (t), OSD2 (t) and the transmitted light of the scattered light of the above-described embodiment may be affected by not only the shape of the red blood cell but also its oxygen saturation and blood cell concentration. When measuring the light intensity OSD1 (t) and OSD2 (t), or when measuring the damage rate K, the deformation rate D, and the hemolysis rate H, correction is performed based on the hematocrit value and oxygen saturation determined in advance. It may be made to be performed.
[0083]
Although the embodiments of the present invention have been described in detail with reference to the drawings, this is merely an embodiment, and the present invention is embodied in various modified and improved forms based on the knowledge of those skilled in the art. Can be.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of a red blood cell accumulation load state measuring device according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a configuration of a light scattering measurement unit provided in the red blood cell accumulation load state measurement device of FIG.
FIG. 3 is a diagram showing an example of a light scattering distribution within a range of 0 to 1.5 degrees measured by the light scattering measurement unit in FIG. 2; Measurement points at elapsed time intervals of 30, 60, and 90 minutes are shown for each scattering angle.
FIG. 4 is a diagram illustrating a configuration of a free hemoglobin concentration measurement unit provided in the erythrocyte accumulation load state measurement device of FIG. 1;
5 is a time-lapse characteristic diagram showing the free hemoglobin concentration in the blood sample measured in FIG. 4 every 30 minutes, 60 minutes, and 90 minutes after the initial measurement time of 0 minutes.
FIG. 6 is a diagram illustrating a configuration of a total hemoglobin concentration measurement unit provided in the red blood cell accumulation load state measurement device of FIG.
FIG. 7 is a flowchart illustrating a main part of a control operation of the electronic control device of FIG. 1;
FIG. 8 is a diagram for explaining the contents of the erythrocyte accumulation load evaluation of FIG. 7;
[Explanation of symbols]
10: Red blood cell accumulation load state measuring device
14: Light scattering distribution measuring unit
22: Free hemoglobin concentration measuring section
26: Total hemoglobin concentration measurement section
30: Electronic control device (damage rate determination means, deformation rate determination means, free hemoglobin concentration calculation means, total hemoglobin concentration calculation means, hemolysis rate determination means, accumulation load evaluation means, display means)
49: Hemolysis section
50a: Large diameter pipe
50b: small diameter pipe
50: measuring tube
52: Laser light source section
54: scattered light detector
56: Laser light source element
60: Light splitter
68: Optical system device
70a: light receiving element, 80a: arm (first scattered light detection unit)
70b: light receiving element, 80b: arm (second scattered light detector)
72: Light receiving element support device
94: LED (light emitting) element (first light emitting element)
96: light receiving element (first light receiving element)
106: LED (light emitting) element (second light emitting element)
108: light receiving element (second light receiving element)
S3: Damage rate determination step, damage rate determination means
S4: Deformation rate determining step, deformation rate determining means
S5: Free hemoglobin concentration measuring step, free hemoglobin concentration calculating means
S6: Total hemoglobin concentration measuring step, total hemoglobin concentration calculating means
S7: hemolysis rate determination step, hemolysis rate determination means
S8: accumulation load evaluation step, accumulation load evaluation means
S9: display means

Claims (24)

血液試料内における赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定方法であって、
前記血液試料の赤血球に所定の応力を付与してから所定時間経過後において、前記血液試料内に照射された光が該赤血球に散乱された散乱光を検出する散乱光検出工程と、
予め求められた関係から該散乱光の光強度に基づいて前記赤血球の損傷率を決定する損傷率決定工程と
を、含むことを特徴とする赤血球蓄積負荷状態測定方法。
A red blood cell accumulation load state measurement method for measuring the accumulation load state of red blood cells in a blood sample,
After applying a predetermined stress to the red blood cells of the blood sample, after a lapse of a predetermined time, a scattered light detection step of detecting scattered light in which the light applied to the blood sample is scattered by the red blood cells,
Determining a damage rate of the red blood cells based on the light intensity of the scattered light from a relationship obtained in advance.
前記散乱光検出工程は、前記赤血球の膜破壊前に実行されるものであり、
前記損傷率決定工程は、前記血液試料において前記膜破壊前における赤血球の損傷率を決定するものである請求項1の赤血球蓄積負荷状態測定方法。
The scattered light detection step is performed before the erythrocyte membrane destruction,
2. The method according to claim 1, wherein the damage rate determining step determines a damage rate of red blood cells in the blood sample before the membrane destruction.
前記散乱光の光強度をOSD1(t) とすると、前記赤血球の損傷率Kは次式(1) から該散乱光の光強度OSD1(t) に基づいて求められるものである請求項1または2の赤血球蓄積負荷状態測定方法。
K=f(OSD1(t))・・・(1)
Assuming that the light intensity of the scattered light is OSD1 (t), the damage rate K of the red blood cells is determined from the following expression (1) based on the light intensity OSD1 (t) of the scattered light. For measuring red blood cell accumulation load.
K = f (OSD1 (t)) (1)
血液試料内における赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定方法であって、
前記血液試料内に照射された光が前記赤血球により散乱された第1散乱光を検出する第1散乱光検出工程と、
該第1散乱光検出工程における第1散乱光の検出とは異なる応力付与下において、前記血液試料内に照射された光が前記赤血球に散乱された第2散乱光を検出する第2散乱光検出工程と、
前記第1散乱光と前記第2散乱光の光強度の変化に基づいて前記赤血球の変形率を決定する変形率決定工程と
を、含むことを特徴とする赤血球蓄積負荷状態測定方法。
A red blood cell accumulation load state measurement method for measuring the accumulation load state of red blood cells in a blood sample,
A first scattered light detection step of detecting a first scattered light in which the light applied to the blood sample is scattered by the red blood cells,
A second scattered light detection for detecting a second scattered light in which the light irradiated into the blood sample is scattered by the red blood cells under a stress applied differently from the detection of the first scattered light in the first scattered light detection step Process and
A method for determining a red blood cell accumulation load state, the method comprising: determining a deformation rate of the red blood cells based on a change in light intensity of the first scattered light and the second scattered light.
前記第1散乱光検出工程および第2散乱光検出工程は、前記赤血球の膜破壊前および後に実行されるものであり、
前記変形率決定工程は、前記血液試料において前記膜破壊前および後における赤血球の変形率を決定するものである請求項4の赤血球蓄積負荷状態測定方法。
The first scattered light detection step and the second scattered light detection step are performed before and after membrane destruction of the red blood cells,
5. The method of measuring a red blood cell accumulation load state according to claim 4, wherein the deformation rate determining step determines a deformation rate of red blood cells in the blood sample before and after the membrane destruction.
前記第1散乱光の光強度をOSD1(t) 、前記第2散乱光の光強度をOSD2(t) とすると、前記赤血球の変形率Dは次式(2) から前記第1散乱光と前記第2散乱光の光強度比OSD2(t) /OSD1(t) に基づいて求められるものである請求項4または5の赤血球蓄積負荷状態測定方法。
D=OSD2(t) /OSD1(t) ・・・(2)
Assuming that the light intensity of the first scattered light is OSD1 (t) and the light intensity of the second scattered light is OSD2 (t), the deformation ratio D of the red blood cell is expressed by the following equation (2). The red blood cell accumulation load state measuring method according to claim 4 or 5, which is obtained based on the light intensity ratio OSD2 (t) / OSD1 (t) of the second scattered light.
D = OSD2 (t) / OSD1 (t) (2)
血液試料内における赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定方法であって、
前記血液試料内を透過する光の透過強度に基づいて該血液試料内の遊離ヘモグロビン濃度を測定する遊離ヘモグロビン濃度測定工程と、
前記血液試料内を透過する光の透過強度に基づいて該血液試料内の総ヘモグロビン濃度を測定する総ヘモグロビン濃度測定工程と、
前記遊離ヘモグロビン濃度および総ヘモグロビン濃度に基づいて前記血液試料の溶血率を決定する溶血率決定工程と
を、含むことを特徴とする赤血球蓄積負荷状態測定方法。
A red blood cell accumulation load state measurement method for measuring the accumulation load state of red blood cells in a blood sample,
A free hemoglobin concentration measuring step of measuring a free hemoglobin concentration in the blood sample based on a transmission intensity of light transmitted through the blood sample,
A total hemoglobin concentration measuring step of measuring a total hemoglobin concentration in the blood sample based on a transmission intensity of light transmitted through the blood sample,
Determining a hemolysis rate of the blood sample based on the free hemoglobin concentration and the total hemoglobin concentration.
前記血液試料内の赤血球を膜破断により溶血させる溶血工程を含み、
前記総ヘモグロビン濃度測定工程は、該溶血工程により赤血球が溶血された血液試料内の総ヘモグロビン濃度を測定するものである請求項7の赤血球蓄積負荷状態測定方法。
Including a hemolysis step of hemolyzing red blood cells in the blood sample by membrane rupture,
8. The method for measuring a red blood cell accumulation load state according to claim 7, wherein the total hemoglobin concentration measuring step measures a total hemoglobin concentration in a blood sample in which red blood cells have been lysed in the hemolyzing step.
前記遊離ヘモグロビン濃度をA(t) 、前記総ヘモグロビン濃度をA(t) とすると、前記溶血率Hは、次式(3) から求められるものである請求項7または8の赤血球蓄積負荷状態測定方法。
H=[A(t)/A(t)] ×100 ・・・(3)
The free hemoglobin concentration A 1 (t), when the total hemoglobin concentration and A 2 (t), the rate of hemolysis H is red blood cells accumulate load according to claim 7 or 8 are those obtained from the following equation (3) Condition measurement method.
H = [A 1 (t) / A 2 (t)] × 100 (3)
血液試料中の赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定装置であって、
前記血液試料中の赤血球に所定の応力を付与するために所定の流通断面を備えた測定管と、
該測定管内において血液試料に照射された光が前記赤血球により散乱された散乱光を検出する散乱光検出部と、
予め求められた関係から該散乱光検出部において検出された散乱光の強度に基づいて前記赤血球の損傷率を決定する損傷率決定手段と
を、含むことを特徴とする赤血球蓄積負荷状態測定装置。
An erythrocyte accumulation load state measuring device for measuring the accumulation load state of red blood cells in a blood sample,
A measurement tube having a predetermined flow cross section to apply a predetermined stress to red blood cells in the blood sample,
A light irradiating the blood sample in the measurement tube detects a scattered light scattered by the red blood cells,
And a damage rate determining means for determining a damage rate of the red blood cells based on the intensity of the scattered light detected by the scattered light detection unit from a relationship obtained in advance.
前記散乱光の光強度をOSD1(t) とすると、前記赤血球の損傷率Kは次式(1) から該散乱光の強度OSD1(t))に基づいて求められるものである請求項10の赤血球蓄積負荷状態測定装置。
K=f(OSD1(t))・・・(1)
11. The erythrocyte according to claim 10, wherein, assuming that the light intensity of the scattered light is OSD1 (t), the damage rate K of the erythrocyte is obtained from the following equation (1) based on the scattered light intensity OSD1 (t)). Storage load state measurement device.
K = f (OSD1 (t)) (1)
血液試料中の赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定装置であって、
前記血液試料を通過させるために、赤血球が配向或いは変形し始めるように設定された第1流通断面を備えた大径部と該大径部よりも大きい応力を受けるように該第1流通断面よりも小さな第2流通断面を備えた小径部とを有する測定管と、
該測定管の大径部内において所定の応力が加えられている血液試料に照射された光が前記赤血球により散乱された第1散乱光を検出する第1散乱光検出部と、
該測定管の小径部内において前記大径部よりも大きな応力が加えられている血液試料に照射された光が前記赤血球により散乱された第2散乱光を検出する第2散乱光検出部と、
前記第1散乱光検出部において検出された第1散乱光と前記第2散乱光検出部において検出された第2散乱光との強度変化に基づいて前記赤血球の変形率を決定する変形率決定手段と
を、含むことを特徴とする赤血球蓄積負荷状態測定装置。
An erythrocyte accumulation load state measuring device for measuring the accumulation load state of red blood cells in a blood sample,
In order to allow the blood sample to pass through, a large-diameter portion having a first flow cross section set so that red blood cells start to be oriented or deformed, and a first flow cross section to receive a stress greater than the large diameter portion. A measuring tube having a small diameter portion with a second flow cross section,
A first scattered light detection unit configured to detect a first scattered light in which light applied to a blood sample to which a predetermined stress is applied in the large diameter portion of the measurement tube is scattered by the red blood cells;
A second scattered light detection unit that detects second scattered light scattered by the red blood cells, where light applied to the blood sample to which a stress greater than the large diameter part is applied in the small diameter part of the measurement tube;
Deformation rate determining means for determining a deformation rate of the red blood cells based on a change in intensity between the first scattered light detected by the first scattered light detection unit and the second scattered light detected by the second scattered light detection unit An erythrocyte accumulation load state measuring device, comprising:
前記第1散乱光の光強度をOSD1(t) 、前記第2散乱光の光強度をOSD2(t) とすると、前記赤血球の変形率Dは次式(2) から前記第1散乱光および第2散乱光の強度比OSD2(t) /OSD1(t) に基づいて求められるものである請求項12の赤血球蓄積負荷状態測定装置。
D=OSD2(t) /OSD1(t) ・・・(2)
Assuming that the light intensity of the first scattered light is OSD1 (t) and the light intensity of the second scattered light is OSD2 (t), the deformation ratio D of the red blood cell is expressed by the following equation (2). 13. The erythrocyte accumulation load state measuring device according to claim 12, wherein the erythrocyte accumulation load state measurement device is obtained based on the intensity ratio OSD2 (t) / OSD1 (t) of the two scattered lights.
D = OSD2 (t) / OSD1 (t) (2)
前記測定管の大径部および小径部に対して一方向からレーザ光をそれぞれ照射するための単一のレーザ光源素子と、該レーザ光源素子からの光を2方向へ分割する光分割器と、該光分割器により分割された2方向の光を前記測定管の大径部および小径部に対して一方向から単色光をそれぞれ照射するように導く光学系とを含むレーザ光源部を備えたものである請求項12の赤血球蓄積負荷状態測定装置。A single laser light source element for irradiating the laser beam from one direction to the large diameter portion and the small diameter portion of the measurement tube, and a light splitter that splits the light from the laser light source device into two directions, An optical system for guiding the light in the two directions split by the light splitter to irradiate the large-diameter portion and the small-diameter portion of the measuring tube with monochromatic light from one direction, respectively. The erythrocyte accumulation load state measuring device according to claim 12, which is: 前記第1散乱光検出部および第2散乱光検出部は、前記測定管の大径部および小径部に対するレーザ光の照射方向を中心とする所定角度範囲内の散乱光を受光するために、前記直線状の測定管の軸心まわりに回転可能な受光素子支持装置により支持された受光素子をそれぞれ備えたものである請求項14の赤血球蓄積負荷状態測定装置。The first scattered light detection unit and the second scattered light detection unit, in order to receive scattered light within a predetermined angle range around the irradiation direction of the laser beam to the large diameter portion and the small diameter portion of the measurement tube, 15. The red blood cell accumulation load state measuring device according to claim 14, further comprising a light receiving element supported by a light receiving element supporting device rotatable around the axis of the linear measurement tube. 血液試料中の赤血球の蓄積負荷状態を測定するための赤血球蓄積負荷状態測定装置であって、
前記血液試料内を透過する光の透過強度に基づいて該血液試料内の遊離ヘモグロビン濃度を測定する遊離ヘモグロビン濃度測定部と、
前記血液試料内を透過する光の透過強度に基づいて該血液試料内の総ヘモグロビン濃度を測定する総ヘモグロビン濃度測定部と、
前記遊離ヘモグロビン濃度および総ヘモグロビン濃度に基づいて前記血液試料の溶血率を決定する溶血率決定手段と
を、含むことを特徴とする赤血球蓄積負荷状態測定装置。
An erythrocyte accumulation load state measuring device for measuring the accumulation load state of red blood cells in a blood sample,
A free hemoglobin concentration measurement unit that measures the free hemoglobin concentration in the blood sample based on the transmission intensity of light transmitted through the blood sample,
A total hemoglobin concentration measurement unit that measures the total hemoglobin concentration in the blood sample based on the transmission intensity of light transmitted through the blood sample,
A hemolysis rate determining means for determining a hemolysis rate of the blood sample based on the free hemoglobin concentration and the total hemoglobin concentration.
前記総ヘモグロビン濃度測定部は、前記血液試料内の赤血球が溶血させられた後に、該血液試料内の総ヘモグロビン濃度を測定するものである請求項16の赤血球蓄積負荷状態測定装置。17. The erythrocyte accumulation state measuring device according to claim 16, wherein the total hemoglobin concentration measuring section measures the total hemoglobin concentration in the blood sample after red blood cells in the blood sample are lysed. 前記遊離ヘモグロビン濃度測定部は、
前記血液試料中の有形成分を除去するためのフィルタと、
酸素飽和度の影響を受け難い予め設定された波長の光を、該フィルタによって有形成分が除去された血液試料に向かって投射する第1光源素子と、
該第1光源素子から投射され且つ該血液試料を通過した光を検出する第1受光素子と、
該第1受光素子により検出された光強度に基づいて、該血液試料中の遊離ヘモグロビン濃度を算出する遊離ヘモグロビン濃度算出手段とを備え、
該第1受光素子により検出された光強度に基づいて、該血液試料中の遊離ヘモグロビン濃度を算出するものである請求項16の赤血球蓄積負荷状態測定装置。
The free hemoglobin concentration measuring section,
A filter for removing formed components in the blood sample,
A first light source element for projecting light of a preset wavelength that is hardly affected by oxygen saturation toward the blood sample from which the solid matter has been removed by the filter;
A first light receiving element for detecting light projected from the first light source element and passing through the blood sample;
A free hemoglobin concentration calculating means for calculating a free hemoglobin concentration in the blood sample based on the light intensity detected by the first light receiving element;
17. The red blood cell accumulation load state measuring device according to claim 16, wherein the concentration of free hemoglobin in the blood sample is calculated based on the light intensity detected by the first light receiving element.
前記遊離ヘモグロビン濃度をA(t) 、前記総ヘモグロビン濃度をA(t) とすると、前記溶血率Hは、次式(3) から求められるものである請求項16の赤血球蓄積負荷状態測定装置。
H=[(A(t)/A(t)]×100 ・・・(3)
17. The erythrocyte accumulation load state measurement according to claim 16, wherein the free hemoglobin concentration is A 1 (t) and the total hemoglobin concentration is A 2 (t), and the hemolysis rate H is obtained from the following equation (3). apparatus.
H = [(A 1 (t) / A 2 (t)] × 100 (3)
前記総ヘモグロビン濃度測定部は、
酸素飽和度および赤血球の影響をうけ難い波長の光を、前記赤血球が膜破壊された血液試料に向かって投射する第2光源素子と、
該第2光源素子から投射され且つ該赤血球が膜破壊された血液試料を通過した光を検出する第2受光素子と、
該第2受光素子により検出された光強度に基づいて、該赤血球が溶血させられた血液試料中の総ヘモグロビン濃度を算出する総ヘモグロビン濃度算出手段と
を、含むものである請求項16の赤血球蓄積負荷状態測定装置。
The total hemoglobin concentration measuring unit,
A second light source element for projecting light having a wavelength that is hardly affected by oxygen saturation and red blood cells toward a blood sample in which the red blood cells have undergone membrane disruption,
A second light receiving element for detecting light projected from the second light source element and passing through the blood sample in which the red blood cells have undergone membrane destruction;
17. The red blood cell accumulation load state according to claim 16, further comprising: total hemoglobin concentration calculating means for calculating a total hemoglobin concentration in a blood sample in which the red blood cells have been lysed based on the light intensity detected by the second light receiving element. measuring device.
前記総ヘモグロビン濃度算出手段は、前記低浸透圧溶液が加えられた血液試料中の総ヘモグロビン濃度を測定し、測定された該総ヘモグロビン濃度を該低浸透圧溶液の容積に基づいて補正し、該低浸透圧溶液が加えられる前の容積の血液試料中の総ヘモグロビン濃度を算出するものである請求項20の赤血球蓄積負荷状態測定装置。The total hemoglobin concentration calculating means measures the total hemoglobin concentration in the blood sample to which the hypotonic solution has been added, and corrects the measured total hemoglobin concentration based on the volume of the hypotonic solution. 21. The erythrocyte accumulation load state measuring apparatus according to claim 20, which is for calculating the total hemoglobin concentration in a blood sample in a volume before the hypotonic solution is added. 低浸透圧溶液を前記血液試料に混入させることにより該血液試料に含まれる赤血球を溶血させる溶血部を含み、
前記総ヘモグロビン濃度測定部は、該溶血部により赤血球が溶血させられた血液試料に含まれる総ヘモグロビン濃度を測定するものである請求項16の赤血球蓄積負荷状態測定装置。
Includes a hemolysis section that lyses red blood cells contained in the blood sample by mixing a hypotonic solution with the blood sample,
17. The erythrocyte accumulation state measuring device according to claim 16, wherein the total hemoglobin concentration measuring section measures the total hemoglobin concentration contained in the blood sample in which red blood cells are lysed by the hemolysis section.
請求項10または12の測定管を通過した血液試料を貯留する第1容器および第2容器を備え、
前記遊離ヘモグロビン濃度測定部は、該第1容器内に導かれた血液試料内を透過する光の透過強度に基づいて該血液試料内の遊離ヘモグロビン濃度を測定し、
前記総ヘモグロビン濃度測定部は、該第2容器内に導かれた血液試料内を透過する光の透過強度に基づいて該血液試料内の総ヘモグロビン濃度を測定するものである請求項16の赤血球蓄積状態測定装置。
It has a 1st container and a 2nd container which store the blood sample which passed a measurement tube of Claim 10 or 12, and is provided.
The free hemoglobin concentration measurement unit measures the free hemoglobin concentration in the blood sample based on the transmission intensity of light transmitted through the blood sample guided into the first container,
17. The red blood cell storage according to claim 16, wherein the total hemoglobin concentration measuring unit measures the total hemoglobin concentration in the blood sample based on the transmission intensity of light transmitted through the blood sample guided into the second container. Condition measuring device.
前記溶血部は、低浸透圧溶液を前記第2容器内の血液試料に混入させることにより該血液試料に含まれる赤血球を溶血させるものである請求項22の赤血球蓄積状態測定装置。23. The erythrocyte accumulation state measuring device according to claim 22, wherein the hemolyzing section hemolyzes red blood cells contained in the blood sample by mixing a low osmotic pressure solution with the blood sample in the second container.
JP2002305085A 2002-10-18 2002-10-18 Erythrocyte accumulation load state measurement method and device Ceased JP2004138561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305085A JP2004138561A (en) 2002-10-18 2002-10-18 Erythrocyte accumulation load state measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305085A JP2004138561A (en) 2002-10-18 2002-10-18 Erythrocyte accumulation load state measurement method and device

Publications (1)

Publication Number Publication Date
JP2004138561A true JP2004138561A (en) 2004-05-13

Family

ID=32452322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305085A Ceased JP2004138561A (en) 2002-10-18 2002-10-18 Erythrocyte accumulation load state measurement method and device

Country Status (1)

Country Link
JP (1) JP2004138561A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170390A (en) * 2007-01-15 2008-07-24 Yamaguchi Univ Dynamical characteristic measuring system of blood cell
JP2010025852A (en) * 2008-07-23 2010-02-04 Yamaguchi Univ Apparatus for measuring dynamical characteristic of blood cell
JP2012515898A (en) * 2009-01-21 2012-07-12 タラセフ,ミハエル Apparatus and method for characterizing blood and red blood cells by quantifying red blood cell membrane vulnerability
KR101423770B1 (en) 2008-01-08 2014-07-25 엘지전자 주식회사 Method and Apparatus For The Quantitative Determination Of Hemoglobin Using Whole Blood And Hemolysis
JP2016540971A (en) * 2013-10-31 2016-12-28 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー Method and apparatus for determining a correction factor for detecting hemolysis or for correcting the influence of hemolysis in measuring a hematocrit value

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170390A (en) * 2007-01-15 2008-07-24 Yamaguchi Univ Dynamical characteristic measuring system of blood cell
KR101423770B1 (en) 2008-01-08 2014-07-25 엘지전자 주식회사 Method and Apparatus For The Quantitative Determination Of Hemoglobin Using Whole Blood And Hemolysis
JP2010025852A (en) * 2008-07-23 2010-02-04 Yamaguchi Univ Apparatus for measuring dynamical characteristic of blood cell
JP2012515898A (en) * 2009-01-21 2012-07-12 タラセフ,ミハエル Apparatus and method for characterizing blood and red blood cells by quantifying red blood cell membrane vulnerability
JP2016540971A (en) * 2013-10-31 2016-12-28 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー Method and apparatus for determining a correction factor for detecting hemolysis or for correcting the influence of hemolysis in measuring a hematocrit value

Similar Documents

Publication Publication Date Title
JP4814994B2 (en) Method and system for quantitative determination of hemoglobin
JP4800318B2 (en) Apparatus and method for treating biological fluids
JP4532905B2 (en) Analytical method and apparatus therefor
JP2022116194A (en) Low volume coagulation assay
JP5075116B2 (en) Spectroscopic determination of analyte concentration
JP2018533012A (en) Optical sensor for detecting free hemoglobin in whole blood samples
US9417231B2 (en) Urine sample analyzing method and sample analyzer including classifying epithelial cells into at least two types based on the change of polarization condition
US8537356B2 (en) Opto-fluidic nanoparticle detection apparatus
JPH10510362A (en) Equipment for analyzing blood and other samples
KR20070012413A (en) Optical method and system to determine distribution of lipid particles in a sample
JP2004138561A (en) Erythrocyte accumulation load state measurement method and device
EP3258242A1 (en) Blood analyzing method, blood analyzer, computer program, calibrator set, and calibrator set manufacturing method
EP4092413A1 (en) Blood-clotting measurement device, blood-clotting time measurement method, method for determining completion of blood-clotting reaction, and automated centrifugal blood separator
EP2505991A1 (en) Biological material analyzer and biological material analysis method
JP2007514955A (en) Improved method and apparatus for measuring hemoglobin per cell
JPH046465A (en) Method for treating specimen and method and apparatus for measuring specimen
JPH01118747A (en) Particle analyzer
KR101895760B1 (en) Blood cell analysis system and control method thereof
JP2015138002A (en) Particle size measuring device, particle size measuring method, and particle size measuring program
EP4134670A1 (en) A hematology analyzer comprising a single hardware module and integrated workflow
JPH0575257B2 (en)
JPH0223825B2 (en)
JPH04136742A (en) Particle analyzer
JPH02138851A (en) Particle measuring apparatus
JP2004257919A (en) Grain size distribution measuring device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041019

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20070522