JPS62207831A - Electron beam melting method - Google Patents

Electron beam melting method

Info

Publication number
JPS62207831A
JPS62207831A JP4931886A JP4931886A JPS62207831A JP S62207831 A JPS62207831 A JP S62207831A JP 4931886 A JP4931886 A JP 4931886A JP 4931886 A JP4931886 A JP 4931886A JP S62207831 A JPS62207831 A JP S62207831A
Authority
JP
Japan
Prior art keywords
electron beam
melting
ingot
vacuum
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4931886A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanayama
金山 宏志
Toshio Onoe
尾上 俊雄
Tatsuhiko Sodo
龍彦 草道
Tetsuhiro Muraoka
村岡 哲弘
Yuji Koyama
佑二 児山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4931886A priority Critical patent/JPS62207831A/en
Publication of JPS62207831A publication Critical patent/JPS62207831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To enable easy adjustment of the oxygen content in an ingot and the production of a low oxygen-content ingot by evacuating a melting atmosphere while introducing a nonoxidizing gas into said atmosphere at the time of melting raw materials contg. an active metal. CONSTITUTION:The raw materials G are melted by irradiating an electron beam B from an electron beam irradiating device 2a on said material while the raw material G contg. the active metal such as Ti or Zr is continuously supplied into a water cooled vessel 4 of an electron beam melting device. The molten metal M formed in such a manner is fed into a water cooled casting mold 8 and is successively cooled to solidify. The ingot I is continuously drawn by a drawing device 9. The inside of a shielding case 1 is evacuated to a vacuum by a discharge system 5 while the nonoxidizing gas such as Ar, He or H2 is introduced through a flow rate regulating valve 12 into the case 1 in the stage of melting.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、TiやZr等の活性金属を含む原料に電子ビ
ームを照射して溶解し、11% Zrあるいはこれらの
合金等の鋳塊・鋳造物を製造するに当たり、これらの製
造物に混入してくる酸素量をできるだけ少なく抑える為
の電子ビーム溶解方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention melts a raw material containing active metals such as Ti and Zr by irradiating it with an electron beam, and produces an ingot of 11% Zr or an alloy thereof. This invention relates to an electron beam melting method for suppressing the amount of oxygen mixed into cast products as much as possible when producing these products.

[従来の技術] Ti等の活性金属の溶解には従来よりVAR(真空アー
ク再溶解)法が汎用されている。即ちVAR法とは、活
性金属を電極状に成形し高真空下(10−2〜10−3
torr程度)で該電極と水冷るつぼ内溶渇間にアーク
を発生させ、これにより電極を溶解させる方法である。
[Prior Art] The VAR (vacuum arc remelting) method has been widely used for melting active metals such as Ti. In other words, the VAR method involves forming an active metal into an electrode shape and applying it under high vacuum (10-2 to 10-3
This is a method in which an arc is generated between the electrode and the melting melt in a water-cooled crucible at a temperature of about 10.5 torr (approximately 1.5 torr), thereby melting the electrode.

ところがこの方法では、アーク溶解に先立ってTi等の
活性金属製電極を製造する必要があり、工程が煩雑で生
産性及び経済的が低いという難点があった。
However, in this method, it is necessary to manufacture an electrode made of an active metal such as Ti prior to arc melting, which has the disadvantage that the process is complicated and productivity and economy are low.

一方真空技術の進歩及び電子ビーム照射装置の大型化に
伴ムい電子ビームを利用した溶解法が提案され注目を集
めている。、即ち電子ビーム溶解法とは、高真空下(1
0−2〜10−6 torr程度)で溶解原料に電子ビ
ームを照射して溶解する方法であり、この方法であれば
粒状原料やスクラップ等をそのままの形態で溶解するこ
とができ、VAR法で必須とされる電極製造工程等が全
く不要である。しかも電磁場制御により電子ビームを自
由方向に走査させることができるので、異形の鋳塊でも
容易に溶製することができる。
On the other hand, as vacuum technology progresses and electron beam irradiation equipment becomes larger, a melting method using an electron beam has been proposed and is attracting attention. In other words, the electron beam melting method is performed under high vacuum (1
This is a method of melting raw materials by irradiating them with an electron beam at a temperature of about 0-2 to 10-6 torr). With this method, granular raw materials and scraps can be melted in their original form, and the VAR method There is no need for any required electrode manufacturing process. Moreover, since the electron beam can be scanned in any direction by electromagnetic field control, even irregularly shaped ingots can be easily melted.

[発明が解決しようとする問題点コ この様な電子ビーム溶解方法は前述した様に種々の長所
を有しているが、反面構造上の制約から金属溶湯中の酸
素含有量(以下[0]と記す)が増加し易いという問題
がある。即ち、電子ビーム溶解方法においては、VAR
に比べて金属溶湯が雰囲気ガスと接触する機会が多く、
又設備が比較的大型であって空気が漏れ込む可能性が大
きい為、Ti等の活性金属は酸化され易く[o]が不本
意に増加し易い。
[Problems to be Solved by the Invention] This electron beam melting method has various advantages as described above, but on the other hand, due to structural constraints, the oxygen content in the molten metal (hereinafter referred to as [0] ) is likely to increase. That is, in the electron beam melting method, VAR
There are more opportunities for molten metal to come into contact with atmospheric gas than in
Furthermore, since the equipment is relatively large and there is a large possibility that air will leak in, active metals such as Ti are easily oxidized and [o] is likely to increase undesirably.

一方Ti等の活性金属の機械的特性は[0]に大きく影
響され、第2図及び第3図に夫々示す様に[0コが増加
すれば製造品の強度及び硬度は増加する。そしてTiや
Zr等の成分規格によると、[0]は用途に応じて様々
に規制されており、その規格に応じて装入原料の配合割
合を考慮し[0]を調整する様にしている。ところが従
来の溶解法では、溶解時に[0]が増加するという問題
があり、その為製造品中(鋳塊中)の[0]の調整を困
難にしている。特に低酸素含有鋳塊を溶製する必要があ
る場合には、上記の問題が大きくクローズアップされて
くる。
On the other hand, the mechanical properties of active metals such as Ti are greatly influenced by [0], and as shown in FIGS. 2 and 3, the strength and hardness of manufactured products increase as [0] increases. According to component standards for Ti, Zr, etc., [0] is regulated in various ways depending on the application, and [0] is adjusted according to the standards by considering the blending ratio of charging raw materials. . However, in the conventional melting method, there is a problem that [0] increases during melting, which makes it difficult to adjust [0] in manufactured products (ingots). In particular, when it is necessary to melt a low-oxygen-containing ingot, the above-mentioned problem comes into sharp focus.

本発明はこうした事情に着目してなされたものであって
、その目的はTiやZr等の活性金属を含む原料を使用
した場合であっても、[0]の不本意な増加を生ずるこ
となく[0コの規格内への調整を容易にし、且つ低酸素
含有鋳塊の溶製を可能とし得る様な電子ビーム溶解方法
を提供しようとするものである。
The present invention has been made in view of these circumstances, and its purpose is to prevent an unwanted increase in [0] even when using raw materials containing active metals such as Ti and Zr. [The purpose of the present invention is to provide an electron beam melting method that facilitates adjustment to within the standard of 0 and enables melting of low-oxygen-containing ingots.

[問題点を解決する為の手段] 上記の目的を達成した本発明の構成は、活性金属を含む
原料を電子ビーム溶解するに当たり、溶解雰囲気中に非
酸化性ガスを導入しつつ該雰囲気を真空引きして溶解す
るところに要旨を有するものである。
[Means for Solving the Problems] The configuration of the present invention that achieves the above objects is such that when raw materials containing active metals are melted with electron beams, a non-oxidizing gas is introduced into the melting atmosphere and the atmosphere is evacuated. The key point is that it is pulled and dissolved.

[作用] まず本発明者らは溶解原料としてスポンジTiを選択し
、電子ビーム溶解時に生ずる[0]の増加傾向を定量的
に把握する為、第4図に示す様な装置を用いて溶解実験
を行なった。実験はシールドケース1内を真空排気系統
5にて真空引きし、シールドケース1内への空気漏れ込
み量が多い場合と少ない場合を想定し、真空度が低い場
合と高い場合とについて行なった。その結果を第5図に
示す。尚第5図には、第4図に示した真空計P及び圧力
制御装置11に関連して設けられた流量調整弁12がら
空気を強制的に導入したときの結果も併記している。又
第4図中2は電子ビーム照射装置、4は原料溶解用容器
(水冷容器)、Bは電子ビームを夫々示す。第5図の結
果から明らかである様に、溶解後のTi鋳塊中の[0]
は、いずれも原料たるスポンジTi中の[0]よりも増
加しており、真空度が悪い程即ち空気漏れ込み量が多い
程[0]の増加傾向は顕著に現われる。
[Function] First, the present inventors selected sponge Ti as the melting raw material, and conducted a melting experiment using the apparatus shown in Fig. 4 in order to quantitatively understand the increasing tendency of [0] that occurs during electron beam melting. I did it. The experiment was conducted by evacuating the inside of the shield case 1 using the evacuation system 5, assuming cases in which the amount of air leaking into the shield case 1 was large and small, and the degree of vacuum was low and high. The results are shown in FIG. Note that FIG. 5 also shows the results when air was forcibly introduced through the flow rate regulating valve 12 provided in association with the vacuum gauge P and pressure control device 11 shown in FIG. In FIG. 4, 2 indicates an electron beam irradiation device, 4 indicates a container for dissolving raw material (water-cooled container), and B indicates an electron beam. As is clear from the results in Figure 5, [0] in the Ti ingot after melting.
are all higher than [0] in the sponge Ti, which is the raw material, and the tendency for [0] to increase becomes more pronounced as the degree of vacuum becomes worse, that is, as the amount of air leakage increases.

第5図の結果をもとに溶解実験後に測定した空気漏れ込
み量(以下リークレートと呼ぶ)を横軸に、溶解前後に
おける酸素の変動量Δ[0]を縦軸に夫々プロットした
場合の両者の関係を第6図に示す。第6図の結果からも
明らかである様に、電子ビーム溶解炉へのリークレート
の増加に伴なってTi鋳塊中への[0]が急激に増加し
ており、溶解時に招ける鋳塊中への[o]の不本意な増
加を防止するにはシールドケース1内へのり−クレート
を極力小さくすることがいかに重要であるかが理解され
る。その為には電子ビーム溶解炉への空気漏れ込み(以
下リークと呼ぶ)の可能性のある箇所例えばフランジ部
、覗窓等の気密度を十分に高めてやればよいと考えられ
る。しかしながら実際問題として、フランジ部等の如く
リークの可能性をもった箇所は非常に多く、且つ長期間
操業していると気密度も低化してくる為、リークを完全
に0にすることは実際上不可能である。
Based on the results in Figure 5, the amount of air leakage measured after the dissolution experiment (hereinafter referred to as leak rate) is plotted on the horizontal axis, and the amount of oxygen fluctuation Δ[0] before and after dissolution is plotted on the vertical axis. The relationship between the two is shown in FIG. As is clear from the results in Figure 6, as the leak rate to the electron beam melting furnace increases, the amount of [0] in the Ti ingot increases rapidly, and the amount of [0] in the Ti ingot increases during melting. It is understood how important it is to make the size of the crate as small as possible in order to prevent an unwanted increase in [o] inside the shield case 1. To this end, it is considered that airtightness should be sufficiently increased at locations where air may leak into the electron beam melting furnace (hereinafter referred to as leakage), such as flanges and viewing windows. However, as a practical matter, there are many places where there is a possibility of leaks, such as flanges, etc., and the airtightness decreases after long-term operation, so it is actually impossible to completely eliminate leaks. above is impossible.

そこで本発明者らは、電子ビーム溶解炉へのリークがあ
る程度束じた場合であっても、鋳塊中への[0]の不本
意な増加を防止し得る方法を確立しようとして種々検討
した。その結果、Ar。
Therefore, the present inventors conducted various studies in an attempt to establish a method that can prevent an unwanted increase in [0] in the ingot even if leakage to the electron beam melting furnace is limited to some extent. . As a result, Ar.

He等の不活性ガス又はH2等の還元性ガス若しくは両
者の混合ガス(それらを総括して非酸化性ガスと呼ぶ)
をシールドケース1内に導入することが鋳塊中の[0]
の不本意な増加を防止する上で効果的であることを見出
し本発明を完成するに至った。
Inert gas such as He, reducing gas such as H2, or a mixture of both gases (collectively referred to as non-oxidizing gases)
[0] in the ingot is introduced into the shield case 1.
The present inventors have discovered that this is effective in preventing an undesirable increase in

本発明者らは、非酸化性ガス導入による効果を調査する
為、第7図に示す装置を用いて実験を行なった。実験は
、ガスボンベ13中の非酸化性ガスを流量調整弁12を
介してシールドケース1内に導入し、内圧を一定にした
状態でスポンジTiを溶解し、Ti鋳塊中の酸素変動量
Δ[0]を調査した。尚第7図に示した実験装置におい
ては、ガスボンベ13以外の他の構成は第4図に示した
装置と同様である。実験の結果を第8図に示す。
The present inventors conducted an experiment using the apparatus shown in FIG. 7 in order to investigate the effect of introducing non-oxidizing gas. In the experiment, the non-oxidizing gas in the gas cylinder 13 was introduced into the shield case 1 through the flow rate regulating valve 12, the Ti sponge was melted with the internal pressure kept constant, and the amount of oxygen fluctuation in the Ti ingot Δ[ 0] was investigated. The experimental apparatus shown in FIG. 7 has the same structure as the apparatus shown in FIG. 4 except for the gas cylinder 13. The results of the experiment are shown in FIG.

この実験では、リークの大きい場合と小さい場合のいず
れの場合についても非酸化性ガス(Ar、He又はH2
)を導入しており、非酸化性ガスを導入“しないときよ
りも真空度を低下させているが、いずれの場合において
も非酸化性ガスを導入することによって溶解時における
鋳塊中の[0コの不本意な増加を防止し得ることが理解
される。そして非酸化性ガス導入による効果は、リーク
レートの大きい場合の方がより顕著に現われている。又
非酸化性ガスの導入量が多い程、[01増加に対する防
止効果が大きい。更にAr、He等の不活性ガスによる
上記防止効果はほぼ同等と認められるが、還元性ガスで
あるH2による防止効果はAr、Heに比べて若干高い
値を得ている。
In this experiment, non-oxidizing gas (Ar, He or H2) was used for both large and small leaks.
), which lowers the degree of vacuum than when non-oxidizing gas is not introduced, but in either case, by introducing non-oxidizing gas, the [0 It is understood that an undesirable increase in the amount of non-oxidizing gas can be prevented.The effect of introducing non-oxidizing gas is more pronounced when the leak rate is large.Also, the effect of introducing non-oxidizing gas is more pronounced when the leak rate is large. The higher the amount, the greater the prevention effect against the increase in [01.Furthermore, the prevention effect of inert gases such as Ar and He is almost the same, but the prevention effect of H2, which is a reducing gas, is slightly lower than that of Ar and He. It's getting a high value.

Ti金属溶渇が飛散する場合において、分子状酸素(0
2)によって酸化される過程を考慮すると、鋳塊への[
0]増加は主として真空中での02の拡散速度及びTi
の酸化反応過程での酸素分圧に関係するものと考えられ
る。モしてArやHe等の不活性ガスを導入すると雰囲
気中の02の拡散速度が遅くなフて鋳塊中の[0]の不
本意な増加が抑制されるのに対し、H2等の還元性ガス
を導入した場合には拡散速度の低下による効果に加え、
Tiの酸化反応速度に影響を及ぼす酸素分圧が低下する
ことの効果が加わる為、H2を導入した場合の方がAr
、He等を導入した場合よりもその効果が大きいものと
考えられる。
When the Ti metal melt scatters, molecular oxygen (0
Considering the oxidation process caused by 2), [
0] increase mainly due to the diffusion rate of 02 in vacuum and Ti
This is thought to be related to the oxygen partial pressure during the oxidation reaction process. When an inert gas such as Ar or He is introduced, the diffusion rate of 02 in the atmosphere is slowed down and an unwanted increase in [0] in the ingot is suppressed, whereas the reduction of H2, etc. When a reactive gas is introduced, in addition to the effect of reducing the diffusion rate,
Ar
, He, etc. are considered to have a greater effect than when introduced.

本発明は基本的には鋳塊中への[0]の不本意な増加を
防止するという目的を達成する為のものであり、そして
既述の構成を採用することによってその目的を達成し得
たものであるが、電子ビーム溶解方法には溶解原料中の
不純物に由来する別の欠点も指摘される。例えばスポン
ジTiの如きスポンジ状活性金属には製造工程で微量の
塩化物が混入してくるが、この様なスポンジ状活性金属
を溶解原料として用いた場合には、溶解工程で塩化物が
揮発し溶湯が発泡状態を呈しつつ飛散するという極めて
好ましくない現象(スプラッシュ現象)が発生し、溶湯
の歩留り低下を招くばかりでなく飛散した溶滴が溶解炉
の内壁や電子ビーム照射装置等に付着して操業上のトラ
ブルを誕発し、メンテナンス作業を煩雑且つ困難なもの
にしている。
The present invention is basically intended to achieve the purpose of preventing an undesired increase in [0] in the ingot, and this purpose can be achieved by adopting the configuration described above. However, another disadvantage of the electron beam melting method is that it originates from impurities in the melted raw material. For example, a small amount of chloride is mixed into a sponge-like active metal such as sponge Ti during the manufacturing process, but when such a sponge-like active metal is used as a raw material for dissolution, the chloride volatilizes during the melting process. An extremely undesirable phenomenon (splash phenomenon) occurs in which the molten metal scatters while exhibiting a foaming state, which not only causes a decrease in the yield of the molten metal, but also causes the scattered droplets to adhere to the inner walls of the melting furnace, electron beam irradiation equipment, etc. This causes operational troubles and makes maintenance work complicated and difficult.

そこで本発明者らは、原料としてこの様なスポンジ状活
性金属を使用した場合でもスプラッシュ現象による歩留
り低下を生ずることなく、且つ安定した操業性等を保障
し得る様な電子ビーム溶解方法を開発し、既に出願した
1(特願昭60−218721号)。上記技術はスプラ
ッシュ現象によって飛散した金属溶湯(以下溶滴と呼ぶ
)を回収する為の技術であるが、これらの技術において
も鋳塊中への[0]増加という問題は避けがたく、従っ
てこれらの技術に上記した本発明の構成を組合わせるこ
とも可能である。そしてこの場合には回収される溶滴中
の[o]にも考慮を払う必要がある。
Therefore, the inventors of the present invention have developed an electron beam melting method that does not cause a drop in yield due to the splash phenomenon even when such a sponge-like active metal is used as a raw material, and can ensure stable operability. , which has already been filed 1 (Japanese Patent Application No. 60-218721). The above techniques are techniques for recovering molten metal (hereinafter referred to as droplets) scattered by the splash phenomenon, but even with these techniques, the problem of an increase in [0] in the ingot is unavoidable. It is also possible to combine the above technique with the configuration of the present invention. In this case, consideration must also be given to [o] in the collected droplets.

そこで本発明者らは上述した実験(第4図参照)と同様
にして溶滴中の[0]の増加を調査する為の実験を行な
った。まず第9図に示す実験装置を用いてスポンジTi
を溶解した。当該実験装置が第4図に示した装置と比べ
て相違するのは、水冷容器4における電子ビーム照射領
域を囲繞する如く金鋼14を立設した点であり、該金鋼
14によって溶滴を捕集し、該溶滴中の[0]を分析し
た。この実験においては前記第5図で採用した実験と同
様に、シールドケース1内へのリークレートが多い場合
と少ない場合を想定し、真空度が悪い場合と良い場合に
ついて行い、又流量調整弁12を介して空気を強制的に
導入したときの結果も調査した。その結果は第10図に
示す通りであり、スプラッシュ現象によって飛散した溶
滴中の[0]はいずれもスポンジTiの[01よりも増
加しており、真空度が低い程即ちリークが多い程[0]
増加の程度が顕著である。こうした傾向は前記第5図の
結果と一致している。
Therefore, the present inventors conducted an experiment similar to the experiment described above (see FIG. 4) to investigate the increase in [0] in the droplet. First, using the experimental apparatus shown in Fig. 9, a sponge Ti
was dissolved. The difference between this experimental apparatus and the apparatus shown in FIG. 4 is that a gold steel 14 is installed upright to surround the electron beam irradiation area in the water-cooled container 4, and the gold steel 14 is used to direct droplets. The droplets were collected and analyzed for [0] in the droplets. In this experiment, similar to the experiment adopted in FIG. The results were also investigated when air was forced in through the tube. The results are shown in Figure 10, and the [0] in the droplets scattered by the splash phenomenon is higher than the [01] of the Ti sponge, and the lower the degree of vacuum, that is, the more leakage, the more [0] 0]
The degree of increase is remarkable. These trends are consistent with the results shown in FIG. 5 above.

また第10図に示した結果をもとに、溶解実験後に測定
したリークレートを横軸に、溶解前後における酸素変動
量Δ[0]を縦軸に夫々プロットした場合の関係は第1
1図に示す通りであり、この場合においても前記第6図
に示した結果(鋳塊中への酸素変動量の場合)と同様に
、電子ビーム溶解炉へのリークの増加に伴なって、溶滴
中への[0]が急激に増加している。
Furthermore, based on the results shown in Figure 10, when the leak rate measured after the dissolution experiment is plotted on the horizontal axis and the oxygen fluctuation amount Δ[0] before and after dissolution is plotted on the vertical axis, the relationship is as follows:
As shown in Figure 1, in this case as well, as with the results shown in Figure 6 above (in the case of the amount of oxygen fluctuation in the ingot), as the leakage to the electron beam melting furnace increases, [0] into the droplet increases rapidly.

次に本発明者らは、溶滴中の[0]の増加に対する非酸
化性ガスの影響を調査する為、前記第7図及び第8図に
示した実験と同様の実験を行なった。その結果を第12
図に示す。第12図の結果より明らかな通り、本発明は
スポンジTiの如き活性金属を使用し、溶解工程でスプ
ラッシュ現象により生じた溶滴を何らかの形で回収する
場合であっても有効に応用することができる。
Next, the present inventors conducted experiments similar to those shown in FIGS. 7 and 8 above in order to investigate the influence of non-oxidizing gas on the increase in [0] in the droplets. The result is the 12th
As shown in the figure. As is clear from the results shown in Figure 12, the present invention can be effectively applied even when active metals such as sponge Ti are used and droplets generated by the splash phenomenon during the melting process are recovered in some way. can.

[実施例] 第1図は本発明方法を実施する為に構成される電子ビー
ム溶解装置の一例を示す概略説明図である。第1図にお
いて1はシールドケース、2a。
[Example] FIG. 1 is a schematic explanatory diagram showing an example of an electron beam melting apparatus configured to carry out the method of the present invention. In FIG. 1, 1 is a shield case and 2a.

2bは電子ビーム照射装置、3は原料供給ホッパー、4
は水冷容器、5は真空排気系統、8は水冷鋳型、9は鋳
片引抜装置、11は圧力制御装置、12は流量調整弁、
Bは電子ビーム、Gは活性金属を含んだ原料、Mは金属
溶湯、■は鋳片、Pは真空計を夫々示す。第1図に示し
た電子ビーム溶解装置において、TiやZr等の活性金
属を含んだ原料Gを原料供給ホッパー3から水冷容器4
内へ連続的に供給しつつ、電子ビーム照射装置2aから
の電子ビームBを照射して原料Gを溶解し、生じた金属
溶湯Mは水冷容器4の他端に設けた溢流口4aから水冷
鋳型8へ送って順次冷却凝固させ、鋳片引抜装置9によ
り鋳片Iを連続的に引き抜いて行くものである。尚電子
ビーム照射装置2bから照射される電子ビームBは、水
冷容器4及び水冷鋳型8表層部の金属溶湯Mを保熱し、
金属溶湯Mの円滑な流れを保障する役割りを果たす。
2b is an electron beam irradiation device, 3 is a raw material supply hopper, 4
5 is a water-cooled container, 5 is a vacuum exhaust system, 8 is a water-cooled mold, 9 is a slab drawing device, 11 is a pressure control device, 12 is a flow rate adjustment valve,
B indicates an electron beam, G indicates a raw material containing an active metal, M indicates a molten metal, ■ indicates a slab, and P indicates a vacuum gauge. In the electron beam melting apparatus shown in FIG.
The raw material G is melted by irradiating the electron beam B from the electron beam irradiation device 2a, and the resulting molten metal M is cooled by water from the overflow port 4a provided at the other end of the water-cooled container 4. The slab I is sent to a mold 8 and sequentially cooled and solidified, and the slab I is continuously pulled out by a slab drawing device 9. Note that the electron beam B irradiated from the electron beam irradiation device 2b retains heat of the molten metal M on the surface layer of the water-cooled container 4 and the water-cooled mold 8,
It plays the role of ensuring smooth flow of molten metal M.

そして溶解時には、Ar、He又はN2等の非酸化性ガ
スを流量調整弁12を介してシールドケース1内(溶解
雰囲気内)へ導入しつつ、シールドケース1内を真空排
気系統5にて真空引きする。この様な電子ビーム溶解方
法を実施するに当たり、溶解装置内へのり一クレートを
予め測定して非酸化性ガスを導入したときの真空度合を
設定しておき、その設定値に基づいてkr等の非酸化性
ガスの導入量を圧力制御装置11及び流量調整弁12に
よって調整すればよい。この様に構成を採用することに
よって金属溶湯M、ひいては鋳塊への[0]の不本意増
加を防止することができる。
During melting, a non-oxidizing gas such as Ar, He, or N2 is introduced into the shield case 1 (inside the melting atmosphere) through the flow rate adjustment valve 12, and the inside of the shield case 1 is evacuated by the vacuum exhaust system 5. do. When carrying out such an electron beam melting method, the degree of vacuum when non-oxidizing gas is introduced is determined in advance by measuring the glue crate in the melting apparatus, and then the vacuum level of kr etc. is determined based on the set value. The amount of non-oxidizing gas introduced may be adjusted using the pressure control device 11 and the flow rate adjustment valve 12. By employing this configuration, it is possible to prevent an unwanted increase in [0] in the molten metal M and, by extension, in the ingot.

ここで導入される非酸化性ガスとしては、Ar、He、
Ne等の不活性ガスやN2等の還元性ガス等が好ましく
、例えばN2を使用すると窒素含有量[N]の増加を生
じることがあり、またCOやco2は炭素含有量[C]
及び[01の増加を生じることもあるので好ましくない
。しかし[N]が高くても問題がない場合もあり得るの
で、非酸化性ガスの種類は製品の用途や要求特性等に応
じて適宜選定すればよい。又非酸化性ガスの導入量は多
ければ多い程[Oコ増加の防止に効果的であるが、あま
り真空度の方を悪くすると電子ビームBが進行する際の
熱損失が大きくなる為、真空度が10−2torr程度
を下回ることのない種弁酸化性ガスの導入量を抑えるの
がよい。
The non-oxidizing gases introduced here include Ar, He,
An inert gas such as Ne or a reducing gas such as N2 is preferable; for example, using N2 may increase the nitrogen content [N], and CO or co2 may increase the carbon content [C].
and [01 may occur, which is not preferable. However, there may be cases where there is no problem even if [N] is high, so the type of non-oxidizing gas may be appropriately selected depending on the intended use of the product, required characteristics, etc. Also, the larger the amount of non-oxidizing gas introduced, the more effective it is in preventing an increase in O. However, if the degree of vacuum is too poor, the heat loss when the electron beam B advances will increase, so the vacuum It is preferable to suppress the amount of the seed valve oxidizing gas introduced so that the temperature does not fall below about 10-2 torr.

第13図は本発明の他の実施例を示す概略説明図であり
、木賃的な構成は第1図の例と同じである。但し本例で
は図示する如く電子ビーム照射装置2aからの電子ビー
ム照射領域を囲繞する如く水冷容器4の上部に耐熱性の
水冷金属壁17を立設している。本例においては原料G
にスポンジ状活性金属を用いた場合にその効果が顕著に
現わ・れるものであり、スポンジ状活性金属溶解時のス
プラッシュ現象によって飛散する金属溶融M(溶滴)を
該水冷金属壁17によって捕集し、且つ捕集された該金
属に定期的に電子ビームを照射することによりこれを溶
融して下部の水冷容器4へ流下させることによって、飛
散による活性金属のロスを防止し得る様に構成している
。尚電子ビーム照射装置2bから照射される電子ビーム
は、水冷容器4内及び水冷鋳型8表層部の金属溶湯Mを
保熱し、金属溶湯Mの円滑な流れを保障する役割りを果
たすことは前述した通りであるが、この時点ではもはや
スプラッシュ現象を起こすことはないので、水冷金属壁
エフを配設する必要はない。又第13図中19は、水冷
金属壁17の上方開口部に必要により設けられる塩化物
捕集用トラップを示す。即ちスプラッシュ現象はスポン
ジ状活性金属中に残留している塩化物(MgC12やN
aC1)の蒸発によって発生するものであり、これらの
塩化物はシールドケース1の内壁に付着して高真空引き
を阻害したり、或は真空排気系統5の油拡散ポンプやロ
ータリーポンプ等のオイルを汚染するといった多くのト
ラブルを引き起こす。殊にMgct2は吸湿性が高いの
で、操業中断時にケーシング内を大気に曝すと急速に吸
湿し、操業再開時の真空引きを著しく阻害する。こうし
た塩化物付着による問題を回避する為、本例では図示す
る如く水冷金属壁17で囲繞された上方開口部に塩化物
捕集用トラップ19を配設し、塩化物を吸着除去し得る
ように構成している。その他の構成例えば圧力制御装置
11や流量調整弁12等は第1図に示した例と同様であ
り、本例においても飛散しない金属溶湯Mは勿論のこと
飛散する溶滴中への[03の不本意な増加を防止し得る
ものである。
FIG. 13 is a schematic explanatory diagram showing another embodiment of the present invention, and the physical structure is the same as the example in FIG. 1. However, in this example, as shown in the figure, a heat-resistant water-cooled metal wall 17 is erected on the upper part of the water-cooled container 4 so as to surround the electron beam irradiation area from the electron beam irradiation device 2a. In this example, raw material G
This effect becomes remarkable when a sponge-like active metal is used in the water-cooled metal wall 17, and the water-cooled metal wall 17 captures the molten metal M (droplets) scattered by the splash phenomenon when the sponge-like active metal is melted. The collected metal is periodically irradiated with an electron beam to melt it and flow down into the lower water-cooled container 4, thereby preventing loss of active metal due to scattering. are doing. As mentioned above, the electron beam irradiated from the electron beam irradiation device 2b serves to retain heat of the molten metal M in the water-cooled container 4 and the surface layer of the water-cooled mold 8, and to ensure the smooth flow of the molten metal M. However, at this point, there is no longer a splash phenomenon, so there is no need to install a water-cooled metal wall F. Reference numeral 19 in FIG. 13 indicates a chloride trap provided in the upper opening of the water-cooled metal wall 17, if necessary. In other words, the splash phenomenon is caused by chlorides (MgC12 and N
These chlorides are generated by the evaporation of aC1), and these chlorides may adhere to the inner wall of the shield case 1 and obstruct high vacuuming, or may damage the oil in the oil diffusion pump, rotary pump, etc. of the vacuum exhaust system 5. It causes many problems such as pollution. In particular, Mgct2 has high hygroscopicity, so if the inside of the casing is exposed to the atmosphere during a suspension of operation, it will rapidly absorb moisture, which will significantly impede evacuation when restarting operation. In order to avoid such problems caused by chloride adhesion, in this example, a chloride trap 19 is disposed in the upper opening surrounded by a water-cooled metal wall 17 as shown in the figure, so that chloride can be adsorbed and removed. It consists of The other configurations, such as the pressure control device 11 and the flow rate regulating valve 12, are the same as in the example shown in FIG. This can prevent an involuntary increase.

第14図は本発明の更に他の実施例を示す概略説明図で
あり、溶滴回収方式に変更が加えられている他は第13
図に示した例と実質的に同じである。即ちこの例では耐
熱性の水冷金属壁17の代わりに溶解活性金属と同一材
質の捕集壁18を設け、溶解時に該捕集壁18に付着し
た溶滴を捕集壁18と共に再溶解して溶滴を回収するも
のである。この様な構成においても、第13図に示した
実施例と同様の効果を達成することができる。
FIG. 14 is a schematic explanatory diagram showing still another embodiment of the present invention, except that the droplet collection method is changed.
This is substantially the same as the example shown in the figure. That is, in this example, a collection wall 18 made of the same material as the dissolving active metal is provided in place of the heat-resistant water-cooled metal wall 17, and droplets attached to the collection wall 18 during melting are redissolved together with the collection wall 18. This is to collect the droplets. Even with such a configuration, the same effects as the embodiment shown in FIG. 13 can be achieved.

[発明の効果] 以上述べた如く本発明によれば、既述の構成を採用する
ことによフて、TiやZr等の活性金属を含んだ原料を
使用した場合であっても溶解時における鋳塊中への[0
]の不本意な増加を防止することができる。その結果鋳
塊中[0]の規格内への調整を容易にし、且つ低酸素含
有鋳塊の溶製が可能となった。
[Effects of the Invention] As described above, according to the present invention, by employing the above-described configuration, even when raw materials containing active metals such as Ti and Zr are used, the [0
] can be prevented from increasing unexpectedly. As a result, it became easy to adjust [0] in the ingot to within the specification, and it became possible to melt the ingot with low oxygen content.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する為に使用される電子ビー
ム溶解装置の一例を示す概略説明図、第2図及び第3図
は[0]が製造品の強度及び硬度に及ぼす影響を示すグ
ラフ、第4図は電子ビーム溶解工程で鋳塊中の[0]が
どの程度増加するかを調査する為に用いた実験装置の概
略説明図、第5図は第4図に示した実験装置を用いた場
合における鋳塊中の[0]と真空度の関係を示すグラフ
、第6図はり一クレートと酸素変動量Δ[o]との関係
を示すグラフ、第7図は非酸化性ガスの導入の効果を調
査する為に用いた実験装置の概略説明図、N8図は第7
図に示した実験装置を用いて行なった実験の結果を示す
グラフ、第9図は電子ビーム溶解時に飛散した溶滴中に
[01がどの程度増加するかを調査する為に用いた実験
装置の概略説明図、第10図は第9図に示した実験装置
を用いて得た溶滴中の[0]と真空度の関係を示すグラ
フ、第11図は溶滴中の酸素変動量Δ[o]とリークレ
ートとの関係を示すグラフ、第12図は非酸化性ガスの
導入が溶滴中の[0]に及ぼす影響を示すグラフ、第1
3図は本発明の他の実施例を示す概略説明図、第14図
は本発明の更に他の実施例を示す概略説明図である。 1・・・シールドケース 2.2a、2b・・・電子ビーム照射装置3・・・原料
供給ホッパー
Fig. 1 is a schematic explanatory diagram showing an example of an electron beam melting apparatus used to carry out the method of the present invention, and Figs. 2 and 3 show the influence of [0] on the strength and hardness of manufactured products. The graph, Figure 4 is a schematic illustration of the experimental equipment used to investigate how much [0] in the ingot increases during the electron beam melting process, and Figure 5 is the experimental equipment shown in Figure 4. A graph showing the relationship between [0] in the ingot and the degree of vacuum when using a non-oxidizing gas. A schematic explanatory diagram of the experimental equipment used to investigate the effect of introducing
Figure 9 is a graph showing the results of an experiment conducted using the experimental equipment shown in the figure. A schematic explanatory diagram, FIG. 10 is a graph showing the relationship between [0] in a droplet and the degree of vacuum obtained using the experimental apparatus shown in FIG. 9, and FIG. 11 is a graph showing the relationship between [0] in a droplet and the degree of vacuum, and FIG. Figure 12 is a graph showing the relationship between [0] in droplets and the leak rate.
FIG. 3 is a schematic explanatory diagram showing another embodiment of the present invention, and FIG. 14 is a schematic explanatory diagram showing still another embodiment of the present invention. 1... Shield case 2.2a, 2b... Electron beam irradiation device 3... Raw material supply hopper

Claims (1)

【特許請求の範囲】[Claims] 活性金属を含む原料を電子ビーム溶解するに当たり、溶
解雰囲気中に非酸化性ガスを導入しつつ該雰囲気を真空
引きして溶解することを特徴とする電子ビーム溶解方法
1. An electron beam melting method that comprises introducing a non-oxidizing gas into a melting atmosphere and evacuation of the atmosphere when melting a raw material containing an active metal with an electron beam.
JP4931886A 1986-03-06 1986-03-06 Electron beam melting method Pending JPS62207831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4931886A JPS62207831A (en) 1986-03-06 1986-03-06 Electron beam melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4931886A JPS62207831A (en) 1986-03-06 1986-03-06 Electron beam melting method

Publications (1)

Publication Number Publication Date
JPS62207831A true JPS62207831A (en) 1987-09-12

Family

ID=12827615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4931886A Pending JPS62207831A (en) 1986-03-06 1986-03-06 Electron beam melting method

Country Status (1)

Country Link
JP (1) JPS62207831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212726A (en) * 1987-12-18 1989-08-25 Westinghouse Electric Corp <We> Production of zirconium used in linear of nuclear fuel element
JPH04504142A (en) * 1990-07-19 1992-07-23 アクセル ジョンソン メタルズ インコーポレイテッド Reactive metal vacuum processing method and apparatus
CN108262365A (en) * 2018-01-19 2018-07-10 青海聚能钛业股份有限公司 A kind of electron-beam cold bed furnace melting TC4 alloys processing method and cut deal base processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212726A (en) * 1987-12-18 1989-08-25 Westinghouse Electric Corp <We> Production of zirconium used in linear of nuclear fuel element
JPH04504142A (en) * 1990-07-19 1992-07-23 アクセル ジョンソン メタルズ インコーポレイテッド Reactive metal vacuum processing method and apparatus
CN108262365A (en) * 2018-01-19 2018-07-10 青海聚能钛业股份有限公司 A kind of electron-beam cold bed furnace melting TC4 alloys processing method and cut deal base processing method

Similar Documents

Publication Publication Date Title
JP4504914B2 (en) Aluminum ingot manufacturing method, aluminum ingot, and protective gas for manufacturing aluminum ingot
US3072982A (en) Method of producing sound and homogeneous ingots
US5143355A (en) Apparatus for manufacturing oxygen-free copper
US6019812A (en) Subatmospheric plasma cold hearth melting process
US4858674A (en) Casting aluminium alloys
JPS62207831A (en) Electron beam melting method
JP2001335854A (en) Apparatus and method for refining high purity metal
JPH0778263B2 (en) Medium pressure electron beam furnace
JP4475166B2 (en) Method for continuous casting of molten metal
JPS6277429A (en) Electron beam melting method
JPH0531568A (en) Plasma melting/casting method
JP4209964B2 (en) Method for melting and casting metal vanadium and / or metal vanadium alloy
JPS62156233A (en) Electron beam melting method
JP2701670B2 (en) Continuous casting method
JPH05320781A (en) Method for deoxidation from ti alloy
JPH01242729A (en) Electron beam melting method for refractory high-melting-temperature metal material
JPH0421727A (en) Method and apparatus for producing titanium cast ingot
JPH0741880A (en) Cooling method and device for sponge titanium reducing furnace
JPS6277427A (en) Electron beam melting and casting apparatus
JP2004306039A (en) Continuously casting method for magnesium alloy molten metal
JPS62153108A (en) Fusion synthesis method
JP2553967B2 (en) Ultra-high cleanliness stainless steel manufacturing method
SU827575A1 (en) Method of producing ingots from copper by electrolytic refining
JPH0847747A (en) Method for continuously casting copper and its apparatus
JPH03247726A (en) Plasma melting method for active metal