JPS62206875A - Manufacture of semiconductor memory element - Google Patents

Manufacture of semiconductor memory element

Info

Publication number
JPS62206875A
JPS62206875A JP61048680A JP4868086A JPS62206875A JP S62206875 A JPS62206875 A JP S62206875A JP 61048680 A JP61048680 A JP 61048680A JP 4868086 A JP4868086 A JP 4868086A JP S62206875 A JPS62206875 A JP S62206875A
Authority
JP
Japan
Prior art keywords
silicon
groove
layer
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61048680A
Other languages
Japanese (ja)
Other versions
JPH0691211B2 (en
Inventor
Takao Yonehara
隆夫 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61048680A priority Critical patent/JPH0691211B2/en
Priority to GB8705061A priority patent/GB2188776B/en
Priority to DE19873707195 priority patent/DE3707195A1/en
Priority to FR878703030A priority patent/FR2595507B1/en
Publication of JPS62206875A publication Critical patent/JPS62206875A/en
Priority to US07/936,738 priority patent/US5342792A/en
Publication of JPH0691211B2 publication Critical patent/JPH0691211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32055Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • H10B99/22Subject matter not provided for in other groups of this subclass including field-effect components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To eliminate the need for an etchback process, and to simplify a manufacturing process largely by depositing polycrystalline silicon only on a layer consisting of silicon or silicon containing nitrogen formed at the bottom of a groove section. CONSTITUTION:A groove 2 in approximately several mum thickness is shaped to an silicon substrate 1 through reactive ion etching, and an oxide film 3 is formed on the inner wall of the groove 2 and the surface of the substrate 1. A film for selective formation is shaped on the inner wall of the groove 2 and the surface of the substrate. Only the film 5 for selective formation on the bottom of the groove 2 is left, and others are removed. Polycrystalline silicon 6 is deposited selectively only in the groove 2 through a CVD method under the conditions of deposition depositing only on the film 5 for selective formation or a surface denaturation layer. An oxide film 7 is formed, and an electrode 8 is shaped, thus completing a groove capacitance section. Accordingly, polycrystalline silicon is deposited only on the film 5 for selective formation, and is not deposited on the oxide film 3 on the surface of the substrate 1, thus eliminating the need for an etchback process.

Description

【発明の詳細な説明】 [産業上の利用分野] 未発IJ1は溝容量を利用した半導体記憶素子の製造方
法に係り、特に溝容鼠部の簡易な形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] Undeveloped IJ1 relates to a method of manufacturing a semiconductor memory element using trench capacitance, and particularly relates to a simple method of forming a trench capacitance.

[従来技術] ダイナミックラム(DRAM)、MOS型メモリの集積
度は増加の一途をたどり、84kbitから256kb
it 。
[Prior art] The density of dynamic RAM (DRAM) and MOS memory continues to increase, from 84kbit to 256kbit.
it.

更には1Mbitの時代に入ろうとしている。Furthermore, we are about to enter the era of 1Mbit.

たとえば、容量型のメモリセルでは、電荷を蓄積するた
めの容量部と、蓄積している電荷を読出すためのMOS
トランジスタ部とから構成されているが、高集積化を達
成するためには、セル面桔の大部分を閉める容量部を縮
小する必要がある。なぜならば、 MOSトランジスタ
部の縮小化は限界に近づいているからである。
For example, a capacitive memory cell has a capacitive part for storing charge and a MOS for reading out the stored charge.
However, in order to achieve high integration, it is necessary to reduce the capacitance section that closes most of the cell surface. This is because the miniaturization of the MOS transistor section is approaching its limit.

そこで、容量部を縮小する方法が種々提案されている。Therefore, various methods have been proposed to reduce the capacitance section.

しかし、単純に容量部を二次元平面上で縮小すると蓄積
゛准荷積が減少してしまい、これを補うためには、絶縁
層を薄くするか、又は使用されている5i02より高い
誘電率を有する材料を特別に使用しなければならない、
そこで特別な材料を用いることなく、しかも縮小化が可
能な溝容量型メモリセルが提案されている。
However, simply reducing the capacitance on a two-dimensional plane will reduce the accumulated load. special use must be made of materials that have
Therefore, a trench capacitive memory cell has been proposed that does not require the use of special materials and can be downsized.

第2図は、従来の溝容量型メモリセルの基本構造を示す
概略的断面図である。
FIG. 2 is a schematic cross-sectional view showing the basic structure of a conventional trench capacitive memory cell.

同図において、メモリセルは、電荷を蓄積するための溝
容量部と蓄積している電荷を読出すためのMOS )ラ
ンジスタ部とから構成されている。このうち溝容量部は
次にようにして形成される。
In the figure, a memory cell is composed of a groove capacitor section for accumulating charges and a MOS transistor section for reading out the accumulated charges. Of these, the groove capacitor portion is formed as follows.

まず、シリコン基板1に深い溝2が反応性イオンエツチ
ング等によって形成され、その溝2の内壁に酸化膜3が
形成される。続いて、多結晶シリコンを堆積させて溝2
内に埋込み、エッチバックによって平坦化して溝2内の
みに多結晶シリコン4を残存させる。こうして基板lと
多結晶シリコン4とが酸化膜3を挟んで対向し、容量部
を形成する。
First, a deep groove 2 is formed in a silicon substrate 1 by reactive ion etching or the like, and an oxide film 3 is formed on the inner wall of the groove 2. Subsequently, polycrystalline silicon is deposited to form grooves 2.
The polycrystalline silicon 4 is buried in the trench 2 and planarized by etching back to leave the polycrystalline silicon 4 only in the trench 2. In this way, the substrate 1 and the polycrystalline silicon 4 face each other with the oxide film 3 in between, forming a capacitive part.

E発IJIが解決しようとする問題点]しかしながら、
jM 2以外に堆積した多結晶シリコンをエッチバック
する工程は、終点検出が困難であるために、製造工程の
簡易化および簡略化を達成することができなかった。
[Problems that IJI from E is trying to solve] However,
In the process of etching back polycrystalline silicon deposited on areas other than jM2, it has been difficult to detect the end point, so it has not been possible to simplify or simplify the manufacturing process.

[問題点を解決するための手段] 本発明による半導体記憶素子の製造方法は、溝容量を利
用した半導体記憶素子を製造する方法において、 半導体基板に溝部を形成し。
[Means for Solving the Problems] A method for manufacturing a semiconductor memory element according to the present invention is a method for manufacturing a semiconductor memory element using trench capacitance, which comprises: forming a trench in a semiconductor substrate;

該溝部の底部および側壁と前記基板表面とに酸、1 化膜を形成し、 該底部の酸化膜上のみにシリコン又は窒素を含むシリコ
ンの層を形成し、 該シリコン又は窒素を含むシリコンの層上のみに選択的
に多結晶シリコンをIi、Iiさせて前記溝部を埋込み
、溝容量部を形成することを特徴とする。
forming an acid-monide film on the bottom and side walls of the trench and the surface of the substrate, forming a layer of silicon or silicon containing nitrogen only on the oxide film at the bottom, and forming a layer of silicon or silicon containing nitrogen; It is characterized in that polycrystalline silicon is selectively deposited on only the upper portion to fill the trench portion to form a trench capacitance portion.

[作用] このように、上記溝部の底部に設けられたシリコン又は
窒素を含むシリコンの層上のみに多結晶シリコンを堆積
させることによって、従来のようなエッチバック工程が
不要となり、製造工程を大幅に簡略化することができる
[Function] In this way, by depositing polycrystalline silicon only on the silicon or nitrogen-containing silicon layer provided at the bottom of the groove, the conventional etch-back process is no longer necessary, and the manufacturing process can be significantly simplified. It can be simplified to

[実施例] 以下、本発明の実施例を図面にノ^づいて詳細に説15
■する。
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.
■Do.

第1図(A)〜(E)は、本発明による半導体記憶素子
の製造方法の一実施例を示す部分的な製造工程図である
FIGS. 1A to 1E are partial manufacturing process diagrams showing an embodiment of the method for manufacturing a semiconductor memory element according to the present invention.

まず、同図(A)および(B)に示すように、シリコン
基板lに反応性イオンエツチングによって厚さ数7tm
程度の溝2を形成し、続いてI11!2の内壁および基
板lの表面に酸化膜3を形成する。
First, as shown in FIG.
Then, an oxide film 3 is formed on the inner wall of I11!2 and the surface of the substrate l.

次に、溝2の内壁および基板表面に低圧化学気相堆積法
、ECR(Electron cyclotron R
e5onance)法又はプラズマ若しくは光励起によ
るcvn法等によって、選択形成用膜(窒化シリコン膜
又は多結晶若しくは非晶質シリコン膜)を形成する。続
いて、リフトオフ法又は反応性イオンエツチングによっ
て、同図(C)に示すように、溝2の底部にある選択形
成用膜5のみを残して他を除去する。
Next, the inner wall of the groove 2 and the substrate surface are coated with a low pressure chemical vapor deposition method, ECR (Electron cyclotron R).
A selective formation film (silicon nitride film or polycrystalline or amorphous silicon film) is formed by the e5onance method or the CVN method using plasma or optical excitation. Subsequently, by lift-off method or reactive ion etching, only the selective formation film 5 at the bottom of the groove 2 is left and the rest is removed, as shown in FIG. 2C.

なお1選択形成用膜5の代りに、レジストをマスクとし
て用い、溝2の底部の酸化膜2上のみにシリコンイオン
又は窒素イオンを低加速電圧で注入して表面変成層を形
成してもよい、また、集束イオンビーム法を用いれば、
マスクを使用せずに同様の表面変成層を形成することが
できる。
Note that instead of the selective formation film 5, a resist may be used as a mask and silicon ions or nitrogen ions may be implanted only onto the oxide film 2 at the bottom of the groove 2 at a low acceleration voltage to form a surface metamorphic layer. , and if we use the focused ion beam method,
A similar surface modification layer can be formed without using a mask.

次に、後述するように、選択形成相11’25又は表面
変成層のみに堆積する堆積条件のCVD法によって、多
結晶シリコン8を溝2内のみに選択的に堆積させる(同
図(D))。そして、同図(E)に示すように、酸化膜
7を形成した後、電極8を形成して溝容量部が完成する
Next, as will be described later, polycrystalline silicon 8 is selectively deposited only in the groove 2 by a CVD method with deposition conditions such that it is deposited only on the selectively formed phase 11'25 or the surface metamorphic layer (FIG. 1(D)). ). Then, as shown in FIG. 3E, after forming an oxide film 7, an electrode 8 is formed to complete the trench capacitor section.

このように、選択形成用膜5上のみに多結晶シリコンが
堆積し、基板lの表面の酸化膜3上には堆積しないため
に、従来のようなエッチパック工程が不要となる。また
、堆積速度を適当に選択することで、多結晶シリコンB
の高さを任意に設定することが可能である。以下、多結
晶シリコンθを堆積させる具体例を述べる。
In this way, polycrystalline silicon is deposited only on the selective formation film 5 and not on the oxide film 3 on the surface of the substrate l, so that the conventional etch pack process is not necessary. In addition, by appropriately selecting the deposition rate, polycrystalline silicon B
It is possible to set the height arbitrarily. A specific example of depositing polycrystalline silicon θ will be described below.

まず、第1図(C)に示すように、溝底部の酸化nq 
a上にシリコン又は窒化シリコンの選択形成相■I、!
5が形成された基板1を反応槽内に設置し、800〜1
000℃に維持する。そして大気圧下で原料ガスSiH
2012、5iC14又はSiH4とHCIおよびH2
ガスを導入して多結晶シリコン6を堆積させる。 Si
H2C:I2ガスを用いた場合の典型的の流(よは、S
iH2G!2が0.5 u/win 、 HClが13
i/+iin 、 H2が150 fl / mir+
である。なお、 1(CIガスを添加することで、選択
形成用膜5と酸化膜3との間の堆積選択比が向上する。
First, as shown in FIG. 1(C), the oxidized nq
Selective formation phase of silicon or silicon nitride on a ■I,!
The substrate 1 on which 5 is formed is placed in a reaction tank, and 800 to 1
Maintain at 000°C. Then, under atmospheric pressure, the raw material gas SiH
2012, 5iC14 or SiH4 with HCI and H2
Polycrystalline silicon 6 is deposited by introducing gas. Si
Typical flow when using H2C:I2 gas (Yo, S
iH2G! 2 is 0.5 u/win, HCl is 13
i/+iin, H2 is 150 fl/mir+
It is. Note that by adding 1 (CI gas), the deposition selectivity between the selective formation film 5 and the oxide film 3 is improved.

このような条件で、シリコン又は窒化シリコンの選択形
成相l125kに、堆積速度0.03〜0.08 g 
m/winで多結晶シリコン6が堆積し、しかも基板表
面上の酸化膜3上には全く堆積しなかった。
Under these conditions, the selective formation phase l125k of silicon or silicon nitride is deposited at a deposition rate of 0.03 to 0.08 g.
Polycrystalline silicon 6 was deposited at a rate of m/win, and was not deposited at all on the oxide film 3 on the substrate surface.

[発明の効果] 以」−詳細に説明したように、未発1!IIによる半導
体記憶素子の製造方法は、溝部の底部に設けられたシリ
コン又は窒素を含むシリコンの層−にのみに多結晶シリ
コンを堆積させることによって、従来のようなエッチバ
ック工程が不安となり、製造工程を大幅に簡略化するこ
とができる。
[Effects of the invention] - As explained in detail, the unreleased 1! In the method for manufacturing a semiconductor memory element according to II, polycrystalline silicon is deposited only on the silicon layer or the silicon layer containing nitrogen provided at the bottom of the trench, which makes the conventional etch-back process unstable and makes the manufacturing process difficult. The process can be greatly simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(E)は、未発IJ】による半導体記憶
素子の製造方法の一実施例を示す部分的な製造工程図、 第2図は、従来の溝容量型メモリセルの基本構造を示す
概略的断面図である。 l壷・挙手導体基板 2−・・溝 3・・・酸化膜 5Φ・・選択形成用膜 εψ番φ多結晶シリコン
FIGS. 1(A) to (E) are partial manufacturing process diagrams showing an example of a method for manufacturing a semiconductor memory element using undeveloped IJ. FIG. 2 is a basic diagram of a conventional trench capacitive memory cell. FIG. 3 is a schematic cross-sectional view showing the structure. l pot/raised hand conductor substrate 2-... groove 3... oxide film 5Φ... film for selective formation εψ number φ polycrystalline silicon

Claims (5)

【特許請求の範囲】[Claims] (1)溝容量を利用した半導体記憶素子を製造する方法
において、 半導体基板に溝部を形成し、 該溝部の底部および側壁と前記基板表面 とに酸化膜を形成し、 該底部の酸化膜上のみにシリコン又は窒 素を含むシリコンの層を形成し、 該シリコン又は窒素を含むシリコンの層 上のみに選択的に多結晶シリコンを成長させて前記溝部
を埋込み、溝容量部を形成することを特徴とする半導体
記憶素子の製造方法。
(1) In a method of manufacturing a semiconductor memory element using trench capacitance, a trench is formed in a semiconductor substrate, an oxide film is formed on the bottom and side walls of the trench, and the surface of the substrate, and only on the oxide film at the bottom. A layer of silicon or silicon containing nitrogen is formed on the substrate, and polycrystalline silicon is selectively grown only on the silicon or silicon layer containing nitrogen to fill the trench and form a trench capacitor. A method for manufacturing a semiconductor memory element.
(2)上記シリコン又は窒素を含むシリコンの層は、多
結晶若しくは非晶質シリコン層であることを特徴とする
特許請求の範囲第1項記載の半導体記憶素子の製造方法
(2) The method for manufacturing a semiconductor memory element according to claim 1, wherein the silicon or nitrogen-containing silicon layer is a polycrystalline or amorphous silicon layer.
(3)上記シリコン又は窒素を含むシリコンの層は窒化
シリコン層であることを特徴とする特許請求の範囲第1
項記載の半導体記憶素子の製造方法。
(3) Claim 1, characterized in that the layer of silicon or silicon containing nitrogen is a silicon nitride layer.
A method for manufacturing a semiconductor memory element as described in 1.
(4)上記シリコン又は窒素を含むシリコンの層はシリ
コンイオンが上記底部の酸化膜表面に注入されて形成さ
れた表面変成層であることを特徴とする特許請求の範囲
第1項記載の半導体記憶素子の製造方法。
(4) The semiconductor memory according to claim 1, wherein the layer of silicon or silicon containing nitrogen is a surface metamorphic layer formed by implanting silicon ions into the surface of the bottom oxide film. Method of manufacturing elements.
(5)上記シリコン又は窒素を含むシリコンの層は窒素
イオンが上記底部の酸化脱表面に注入されて形成された
表面変成層であることを特徴とする特許請求の範囲第1
項記載の半導体記憶素子の製造方法。
(5) The layer of silicon or silicon containing nitrogen is a surface metamorphic layer formed by injecting nitrogen ions into the oxidized and de-oxidized surface of the bottom.
A method for manufacturing a semiconductor memory element as described in 1.
JP61048680A 1986-03-07 1986-03-07 Method for manufacturing semiconductor memory device Expired - Lifetime JPH0691211B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61048680A JPH0691211B2 (en) 1986-03-07 1986-03-07 Method for manufacturing semiconductor memory device
GB8705061A GB2188776B (en) 1986-03-07 1987-03-04 Method of manufacturing semiconductor memory element
DE19873707195 DE3707195A1 (en) 1986-03-07 1987-03-06 METHOD FOR PRODUCING A SEMICONDUCTOR MEMORY ELEMENT
FR878703030A FR2595507B1 (en) 1986-03-07 1987-03-06 METHOD FOR MANUFACTURING A SEMICONDUCTOR MEMORY ELEMENT
US07/936,738 US5342792A (en) 1986-03-07 1992-08-31 Method of manufacturing semiconductor memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61048680A JPH0691211B2 (en) 1986-03-07 1986-03-07 Method for manufacturing semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS62206875A true JPS62206875A (en) 1987-09-11
JPH0691211B2 JPH0691211B2 (en) 1994-11-14

Family

ID=12810031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61048680A Expired - Lifetime JPH0691211B2 (en) 1986-03-07 1986-03-07 Method for manufacturing semiconductor memory device

Country Status (4)

Country Link
JP (1) JPH0691211B2 (en)
DE (1) DE3707195A1 (en)
FR (1) FR2595507B1 (en)
GB (1) GB2188776B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143254A (en) * 1987-11-28 1989-06-05 Mitsubishi Electric Corp Semiconductor storage device
US4963506A (en) * 1989-04-24 1990-10-16 Motorola Inc. Selective deposition of amorphous and polycrystalline silicon
EP0430514B1 (en) * 1989-11-27 1996-01-31 AT&T Corp. Substantially facet free selective epitaxial growth process
US5168089A (en) * 1989-11-27 1992-12-01 At&T Bell Laboratories Substantially facet-free selective epitaxial growth process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196565A (en) * 1981-05-22 1982-12-02 Ibm Method of forming vertical fet
JPS60115254A (en) * 1983-11-28 1985-06-21 Hitachi Ltd Semiconductor device and manufacture thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681968A (en) * 1979-12-07 1981-07-04 Toshiba Corp Manufacture of semiconductor device
US4473598A (en) * 1982-06-30 1984-09-25 International Business Machines Corporation Method of filling trenches with silicon and structures
JPS60126861A (en) * 1983-12-13 1985-07-06 Fujitsu Ltd Semiconductor memory device
JPS60189964A (en) * 1984-03-12 1985-09-27 Hitachi Ltd Semiconductor memory
JPS6187358A (en) * 1984-10-05 1986-05-02 Nec Corp Semiconductor memory and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196565A (en) * 1981-05-22 1982-12-02 Ibm Method of forming vertical fet
JPS60115254A (en) * 1983-11-28 1985-06-21 Hitachi Ltd Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
DE3707195A1 (en) 1987-09-10
FR2595507B1 (en) 1991-09-27
GB2188776A (en) 1987-10-07
GB2188776B (en) 1989-11-01
FR2595507A1 (en) 1987-09-11
DE3707195C2 (en) 1992-08-06
JPH0691211B2 (en) 1994-11-14
GB8705061D0 (en) 1987-04-08

Similar Documents

Publication Publication Date Title
US6699747B2 (en) Method for increasing the capacitance in a storage trench
US7754576B2 (en) Method of forming inside rough and outside smooth HSG electrodes and capacitor structure
JPH1056154A (en) Manufacture of semiconductor device
US6528384B2 (en) Method for manufacturing a trench capacitor
US5897352A (en) Method of manufacturing hemispherical grained polysilicon with improved adhesion and reduced capacitance depletion
JPH06318680A (en) Semiconductor storage device and its manufacture
US6781180B1 (en) Trench capacitor and method for fabricating the same
US5508223A (en) Method for manufacturing DRAM cell with fork-shaped capacitor
US6500707B2 (en) Method for manufacturing a trench capacitor of a memory cell of a semiconductor memory
US20020171099A1 (en) Semiconductor device and manufacturing method thereof
US5631480A (en) DRAM stack capacitor with ladder storage node
JPH05315543A (en) Semiconductor device and manufacture thereof
US6867089B2 (en) Method of forming a bottle-shaped trench in a semiconductor substrate
US20040095896A1 (en) Silicon nitride island formation for increased capacitance
JPH0697682B2 (en) Method for manufacturing semiconductor device
JPS62206875A (en) Manufacture of semiconductor memory element
US5342792A (en) Method of manufacturing semiconductor memory element
US5512768A (en) Capacitor for use in DRAM cell using surface oxidized silicon nodules
US6114198A (en) Method for forming a high surface area capacitor electrode for DRAM applications
US6716696B2 (en) Method of forming a bottle-shaped trench in a semiconductor substrate
US20090197384A1 (en) Semiconductor memory device and method for manufacturing semiconductor memory device
US6821861B1 (en) Method for fabricating an electrode arrangement for charge storage
JP2565293B2 (en) Method of forming capacitive element
US20040126964A1 (en) Method for fabricating capacitor in semiconductor device
US5753552A (en) Method for fabricating a storage electrode without polysilicon bridge and undercut