JPS6220626A - Suction device for diesel engine - Google Patents

Suction device for diesel engine

Info

Publication number
JPS6220626A
JPS6220626A JP16044085A JP16044085A JPS6220626A JP S6220626 A JPS6220626 A JP S6220626A JP 16044085 A JP16044085 A JP 16044085A JP 16044085 A JP16044085 A JP 16044085A JP S6220626 A JPS6220626 A JP S6220626A
Authority
JP
Japan
Prior art keywords
valve
intake
suction
valves
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16044085A
Other languages
Japanese (ja)
Other versions
JPH0562211B2 (en
Inventor
Masanori Sawara
佐原 正憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP16044085A priority Critical patent/JPS6220626A/en
Publication of JPS6220626A publication Critical patent/JPS6220626A/en
Publication of JPH0562211B2 publication Critical patent/JPH0562211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To improve a degree of combustibility at a wide engine speed range, by installing plural pieces of an on-off valve in each suction passage side by side,and varying each valve opening suction pressure of these valves, in case of a device which installs these on-off valves, restricting the extent of suction intake up to the point midway in a suction stroke, in the suction passage at every cylinder. CONSTITUTION:Each of on-off valves 11 and 12 consisting of a suction pressure responsive valve is installed side by side in an auxiliary suction passage 9b of a suction passage 9, classified by cylinders, to be interconnected to a suction port 5, and with these on-off valves 11 and 12, suction intake into a combustion chamber 3 is restricted up to the point midway in a suction stroke, but from the midway of the suction stroke, suction air is suddenly lead into the combustion chamber 3 whereby adiabatic compression is made so as to be performed. Also a suction throttle valve 13 is installed in a main suction passage 9a. Each of these on-off valves 11 and 12 is provided with the valve body 17 connected to a diaphragm 19 via a coupling shaft 18 and constituted to be be opened by suction pressure to be taken from an interconnecting hole 23 to a chamber 20 against a spring 22. In addition, each of these on-off valves 11 and 12 varies energizing force of the spring 22 for these valves whereby each suction pressure is made so as to be varied.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はディーゼルエンジンの始動促進およびエミッシ
ョンの改善のため、断然圧縮により吸気温度を上昇させ
るようにしたディーゼルエンジンの吸気装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an intake system for a diesel engine that increases the temperature of intake air through compression in order to promote starting of the diesel engine and improve emissions.

(従来技術) 従来、実開昭59−107936号公報に示されるよう
に、ディーゼルエンジンにおいて始動時に着火性を高め
るため、燃焼室に供給する吸気を断然圧縮して吸気温度
を上昇させるようにした吸気装置(始動促進装置)が知
られている。この装置は、吸気通路に吸気行程の途中で
開作動する開閉弁を設け、具体的には主吸気通路に吸気
絞り弁を設けるとともに、この吸気絞り弁を迂回するバ
イパス吸気通路にl?0rIi弁を設け、始動時から暖
機時までの低負荷運転状態時に、吸気絞り弁により主吸
気通路を絞った状態で、上記rM開閉弁吸気行程の途中
で開作動させるようにしている。そしてこのような開閉
弁の作動により、吸気行程の途中までは燃焼室への吸気
の導入を制限し、吸気行程の途中から急激に燃焼室に吸
気を導入して断然圧縮を行わせている。この装置による
と、エアヒータによって吸気を加熱する場合と比べ、多
大のエネルギーが電力として消費されることがなく、し
かも燃焼室内で効率良く吸気温度を高めることができる
。なお、上記従来の装置では始動暖機運転時に開閉弁を
作動させているが、通常運転時にも燃焼室温度が低く燃
焼不良等が生じる可能性がある低負荷低回転特等適当な
範囲に亘る運転領域で開閉弁を作動させるようにすれば
、吸気温度の上昇により燃焼性が向上されるとともに白
煙やHC等の発生が防止される。
(Prior Art) Conventionally, as shown in Japanese Utility Model Application Publication No. 59-107936, in order to improve the ignitability at the time of starting a diesel engine, the intake air supplied to the combustion chamber is definitely compressed to increase the intake air temperature. Intake devices (starting promotion devices) are known. This device is provided with an on-off valve in the intake passage that opens during the intake stroke, and specifically, an intake throttle valve is provided in the main intake passage, and a bypass intake passage that bypasses the intake throttle valve is provided with an intake valve. An 0rIi valve is provided, and the rM opening/closing valve is opened in the middle of the intake stroke while the main intake passage is throttled by the intake throttle valve during low-load operating conditions from startup to warm-up. By operating such an on-off valve, the introduction of intake air into the combustion chamber is restricted until the middle of the intake stroke, and intake air is suddenly introduced into the combustion chamber from the middle of the intake stroke to ensure compression. According to this device, compared to the case where intake air is heated by an air heater, a large amount of energy is not consumed as electric power, and moreover, the intake air temperature can be efficiently raised in the combustion chamber. In addition, in the above-mentioned conventional device, the on-off valve is operated during startup and warm-up operation, but even during normal operation, the combustion chamber temperature is low and poor combustion may occur, such as during low-load, low-speed operation, etc. If the on-off valve is operated in this region, combustion performance will be improved by raising the intake air temperature, and generation of white smoke, HC, etc. will be prevented.

また、この装置において吸気行程途中で聞く開閉弁とし
ては、動弁機構や連動機構を介してエンジン出力軸で駆
動されるタイプのもの、またはシ′リンダ内に生じる負
圧に応じてこれが設定負正に達した時に開作動するタイ
プのもの(負圧応動弁)を採用し得るが、このうち後者
のタイプを用いれば、動弁機構や連動機構を必要とせず
簡単な構造で吸気の断然圧縮を行なわせることができる
In addition, the on-off valve heard during the intake stroke in this device is of the type that is driven by the engine output shaft via a valve train or interlocking mechanism, or that has a set negative pressure depending on the negative pressure generated within the cylinder. It is possible to adopt a type that opens when the positive pressure is reached (a negative pressure responsive valve), but if the latter type is used, the intake air can be completely compressed with a simple structure without the need for a valve mechanism or interlocking mechanism. can be made to do so.

ところで、このような負圧応動弁からなる開閉弁を用い
る場合に、従来では単にシリンダ内の負圧が一定の設定
負圧に達したとき開弁する上記開閉弁をシリンダ別の各
吸気通路に1個ずつ設けているにすぎないため、広い回
転数域に亘って良好に吸気の断然圧縮効果を発揮させる
ことが難しい。
By the way, when using an on-off valve consisting of such a negative pressure responsive valve, conventionally the on-off valve, which opens when the negative pressure in the cylinder reaches a certain set negative pressure, is placed in each intake passage for each cylinder. Since only one of them is provided, it is difficult to achieve a good compression effect of the intake air over a wide rotational speed range.

つまり、吸気の断然圧縮効果を高めるためには、開閉弁
の開弁負圧を大きくすることが望ましいが、シリンダ内
に生じる負圧は、ピストンまわり等からシリンダ内に流
入するリーク吸気量との関係でエンジン回転数が低り4
【るほど小さくなる傾向がある。このため、例えばアイ
ドル回転数以上の回転数域で良好な断然圧縮効果が得ら
れる程度に開弁負圧をある程度大きく設定すると、エン
ジン回転数が低いクランキング時にシリンダ内の負圧が
開弁負圧に達しなくなり、開閉弁が開作動しなくなって
吸気断然圧縮効果や吸気の充填が妨げられる場合がある
。また開作動しても回転数が低く吸気期間が長いため、
一度量いた開閉弁がBDC以前に閉じ、断熱膨張が生じ
て、逆に吸気温度が低下し、また吸気量が不足してスモ
ークが発生する問題が生じる。これを具体的に、第9図
に示すモータリング時のエンジン回転数とシリンダ内平
均温度との関係を調べた測定結果により説明すると、上
記のような設定で1個の開閉弁を用いたときのシリンダ
内平均温度は線Aのようになり、開閉弁を用いない場合
(線B)と比べてアイドル回転数以上では吸気温度上昇
効果が得られるものの、これにより低回転時には上記効
果が得られない。これは、アイドル回転数以下ではBD
Cより前に開閉弁が閉じ断熱膨張により温度が低下して
いるものと考えられる。従って断然圧縮効果を充分に得
るためには回転数に関係なくBDC以降で開閉弁を閉じ
る必要がある。
In other words, in order to definitely increase the compression effect of the intake air, it is desirable to increase the opening negative pressure of the on-off valve, but the negative pressure generated inside the cylinder is proportional to the amount of leakage intake air flowing into the cylinder from around the piston, etc. The engine speed is low due to
[It tends to become smaller as the For this reason, for example, if the valve-opening negative pressure is set to a certain degree so that a good compression effect can be obtained in the rotation speed range above idling speed, the negative pressure in the cylinder will be lower than the valve-opening negative pressure during cranking at a low engine speed. The pressure may not be reached, and the on-off valve may no longer open, which may prevent the intake air from being compressed or filling the intake air. In addition, even if the opening operation is performed, the rotation speed is low and the intake period is long, so
Once metered, the on-off valve closes before BDC, adiabatic expansion occurs, and the intake air temperature decreases, causing problems such as insufficient intake air volume and smoke generation. To explain this specifically, using the measurement results of the relationship between the engine speed during motoring and the average temperature inside the cylinder shown in Fig. 9, when one on-off valve is used with the above settings. The average temperature inside the cylinder is as shown by line A, and compared to the case without using an on-off valve (line B), the effect of increasing the intake air temperature is obtained above the idle speed, but as a result, the above effect cannot be obtained at low speeds. do not have. This is BD below the idle speed.
It is considered that the on-off valve closes before C and the temperature decreases due to adiabatic expansion. Therefore, in order to obtain a sufficient compression effect, it is necessary to close the on-off valve after BDC regardless of the rotation speed.

また、開閉弁がクランキング時等の低回転時に確実に開
作動し得る程度に開弁負圧を小さく設定すると、通常運
転時に回転数がある程度高くなっても、吸気の断然圧縮
効果が低く抑えられてしまうことになる。
In addition, if the opening/closing valve negative pressure is set small enough to ensure that the opening/closing valve opens at low rotation speeds such as during cranking, the compression effect of the intake air can be kept low even if the rotation speed increases to a certain extent during normal operation. You will end up getting hurt.

なお、このような問題を解決する手段として、上記開閉
弁の開弁負圧を調整可能とし、エンジン回転数に応じて
開弁負圧を制御することが考えられるが、このようにす
ると開弁負圧を調整するための機構およびこれを制御す
る手段の構造がWINになる。
As a means to solve this problem, it is possible to adjust the opening negative pressure of the on-off valve and control the opening negative pressure according to the engine speed. The structure of the mechanism for adjusting the negative pressure and the means for controlling it is WIN.

(発明の目的) 本発明はこのような事情に鑑み、広い回転数域にわたっ
て良好な吸気の断然圧縮効果を発揮させることができ、
回転数が低い始動時の始動促進および通常運転時の比較
的高回転域にまでわたっての白煙やHC等の低減を充分
に達成することのできるディーゼルエンジンの吸気装置
を提供するものである。
(Objective of the Invention) In view of the above circumstances, the present invention is capable of exhibiting an excellent compression effect of intake air over a wide rotation speed range, and
To provide an intake system for a diesel engine that can sufficiently achieve startup acceleration when starting at a low rotation speed and sufficient reduction of white smoke, HC, etc. even in a relatively high rotation range during normal operation. .

(発明の構成) 本発明は、エンジンの各シリンダ別の吸気通路に開閉弁
を設け、この開閉弁を、シリンダ内の負圧が開弁負圧に
達したときに開作動する負圧応動弁によって構成し、こ
の開閉弁の作動により吸気行程途中までは燃焼室への吸
気導入を制限し、吸気行程途中から急激に吸気を燃焼室
に導入して断然圧縮を行わせるようにしたディーゼルエ
ンジンの吸気装置において、上記開閉弁を上記吸気通路
に複数個並設し、かつこの各開閉弁の開弁負圧を異なる
値に設定したものである この構成により、開弁負圧の異なる複数個の開閉弁がエ
ンジン回転数に応じて働き、広い回転数域にわたって良
好に吸気の断然圧縮が行なわれることとなる。
(Structure of the Invention) The present invention provides an on-off valve in the intake passage for each cylinder of an engine, and the on-off valve is a negative pressure responsive valve that opens when the negative pressure in the cylinder reaches the valve opening negative pressure. This is a diesel engine that is configured by the on-off valve, which restricts the intake air into the combustion chamber until the middle of the intake stroke, and suddenly introduces the intake air into the combustion chamber from the middle of the intake stroke to ensure compression. In the intake system, a plurality of the on-off valves are arranged in parallel in the intake passage, and the opening negative pressure of each on-off valve is set to a different value.With this configuration, a plurality of on-off valves with different opening negative pressures can be set. The on-off valve operates according to the engine speed, and the intake air is compressed well over a wide range of engine speeds.

(実施例) 第1図および第2図は本発明の第1の実施例を示す。こ
れらの図において、1はディーゼルエンジンのシリンダ
で、その内部のピストン2上方には燃焼室3が形成され
ており、この燃焼室3には、吸気弁4を備えた吸気ボー
ト5と排気弁6を備えた排気ボート7とが開口するとと
もに、燃料噴射弁8が臨設されている。上記吸気ボート
5には吸気通路9が連通され、また排気ボート7には排
気通路10が連通されている。そして吸気ボート5に連
通ずるシリンダ別の吸気通路9には、負圧応動弁からな
る開閉弁11.12によって吸気行程途中までは燃焼室
3への吸気導入を制限し、吸気行程途中から急激に吸気
を燃焼室3に導入して断然圧縮を行なわせる吸気導入装
置が設けられている。そしてこの吸気導入装置において
上記開閉弁は複数並設され、例えば2個の開閉弁11.
12が並設されている。
(Embodiment) FIGS. 1 and 2 show a first embodiment of the present invention. In these figures, 1 is a cylinder of a diesel engine, and a combustion chamber 3 is formed above a piston 2 inside the cylinder.This combustion chamber 3 includes an intake boat 5 with an intake valve 4 and an exhaust valve 6. An exhaust boat 7 equipped with a fuel injection valve 8 is opened, and a fuel injection valve 8 is provided. An intake passage 9 is communicated with the intake boat 5, and an exhaust passage 10 is communicated with the exhaust boat 7. In the intake passage 9 for each cylinder that communicates with the intake boat 5, on-off valves 11 and 12, which are negative pressure responsive valves, restrict the introduction of intake air into the combustion chamber 3 until the middle of the intake stroke. An intake air introduction device is provided which introduces intake air into the combustion chamber 3 and causes it to be compressed. In this intake air introduction device, a plurality of on-off valves are arranged in parallel, for example, two on-off valves 11.
12 are arranged in parallel.

当実施例ではこの吸気導入装置は、主吸気通路9aと副
吸気通路9bとで各シリンダ別の吸気通路9が形成され
るとともに、主吸気通路9aに吸気絞り弁13が設けら
れ、この吸気絞り弁13より下流側に副吸気通路9bが
開口し、この副吸気通路9bに2個の開閉弁11.12
が並設されることにより構成されている。なお、上記主
吸気通路9aおよび副吸気通路9bはサージタンク14
を介して図外のエアクリーナに接続されている。
In this embodiment, the intake air introduction device has a main intake passage 9a and a sub-intake passage 9b forming an intake passage 9 for each cylinder, and an intake throttle valve 13 is provided in the main intake passage 9a. A sub-intake passage 9b opens downstream from the valve 13, and two on-off valves 11 and 12 are installed in this sub-intake passage 9b.
are arranged in parallel. Note that the main intake passage 9a and the auxiliary intake passage 9b are connected to the surge tank 14.
It is connected to an air cleaner (not shown) via.

上記各開閉弁11.12は、主吸気通路9aが吸気絞り
弁13によって閉鎖された状態にあるときに吸気行程で
シリンダ1内に生じる負圧に応じ、この負圧が各開閉弁
11.12の開弁負圧に達した時に自動的に開作動する
構造となっており、具体的には第2図に示すような構造
となっている。
Each of the above-mentioned on-off valves 11.12 responds to the negative pressure generated in the cylinder 1 during the intake stroke when the main intake passage 9a is closed by the intake throttle valve 13. The structure is such that the valve opens automatically when the opening negative pressure is reached, and specifically, the structure is as shown in FIG. 2.

寸なわら開閉弁11 (in閉弁12も同様)は、弁室
15内に設けられて弁座16に上流側から当接する弁体
17と、この弁体17に連結軸18を介して連結された
ダイヤフラム19と、このダイヤフラム19により仕切
られた2つの室20,21と、その一方の室20内に設
けられて弁体17を開弁方向に付勢するリターンスプリ
ング22とを備えている。そして上記一方の室20は弁
体17、連結軸18およびダイヤフラム19を貫通した
連通孔23を介して弁体17より下流側に連通し、他方
の室21は開口24を介して弁体17より上流側に連通
してほぼ大気圧に保たれている。
The on-off valve 11 (the same goes for the in-close valve 12) includes a valve body 17 provided in the valve chamber 15 and abutting the valve seat 16 from the upstream side, and a valve body 17 connected to the valve body 17 via a connecting shaft 18. diaphragm 19, two chambers 20 and 21 partitioned by this diaphragm 19, and a return spring 22 provided in one of the chambers 20 and urging the valve body 17 in the valve opening direction. . The one chamber 20 communicates with the downstream side of the valve body 17 through a communication hole 23 passing through the valve body 17, the connecting shaft 18, and the diaphragm 19, and the other chamber 21 communicates with the valve body 17 through an opening 24. It communicates with the upstream side and is maintained at approximately atmospheric pressure.

この構造により開閉弁10.11は、副吸気通路9bの
下流側から上記一方の室20に導入される負圧がリター
ンスプリング22の付勢力と弁体17およびダイヤフラ
ム19の各受圧面積とによって決まる設定負圧に達した
とき、つまり上記負圧によってダイヤフラム19に作用
する力がリターンスプリング22と弁体17自体に作用
する負圧とによる抵抗力より大きくなったとき、弁体1
7が開かれる。また開弁模は、上記負圧が充分に小さく
なったとき弁体17が閉じられるようになっている。な
お、主吸気通路9aの吸気絞り弁13が開かれると殆ど
吸気負圧が生じなくなるので、開閉弁11.12の開閉
作動は停止される。
With this structure, in the on-off valve 10.11, the negative pressure introduced into the one chamber 20 from the downstream side of the auxiliary intake passage 9b is determined by the biasing force of the return spring 22 and the pressure receiving areas of the valve body 17 and the diaphragm 19. When the set negative pressure is reached, that is, when the force acting on the diaphragm 19 due to the negative pressure becomes greater than the resistance force due to the return spring 22 and the negative pressure acting on the valve body 17 itself, the valve body 1
7 will be held. Further, the valve opening model is such that the valve body 17 is closed when the negative pressure becomes sufficiently small. Note that when the intake throttle valve 13 of the main intake passage 9a is opened, almost no intake negative pressure is generated, so the opening and closing operations of the on-off valves 11 and 12 are stopped.

上記各開閉弁11.12は、それぞれのリターンスプリ
ング22の付勢力を異ならせる等により、開弁負圧が異
なるように設定されており、後に詳述するJ:うに一方
の開閉弁(以下「第1開閉弁」と呼ぶ)11は低回転の
運転領域で適正に開閉作動するように開弁負圧が比較的
低く設定され、他方の開閉弁12(以下「第2開閉弁」
と呼ぶ)12はある程度高回転側の運転領域で開閉作動
するように、開弁負圧が第1開閉弁11より高く設定さ
れている。ざらに当実施例では、両開閉弁11゜12の
開口面積も異ならせ、第1開閉弁11よりも第2開閉弁
12の開口面積を大ぎくしでいる。
The above-mentioned on-off valves 11 and 12 are set to have different opening negative pressures by making the biasing force of each return spring 22 different. The opening/closing valve 11 (hereinafter referred to as the "first on-off valve") is set to have a relatively low opening negative pressure so that it opens and closes properly in the low-speed operating range, and the other on-off valve 12 (hereinafter referred to as the "second on-off valve")
) 12 is set to have a negative opening pressure higher than that of the first on-off valve 11 so that it opens and closes in a somewhat high-speed operating range. Roughly speaking, in this embodiment, the opening areas of the opening/closing valves 11 and 12 are made different, and the opening area of the second opening/closing valve 12 is made larger than that of the first opening/closing valve 11.

一方、吸気絞り弁13に対しては、第1図に示すように
、この吸気絞り弁13を開閉作動するダイヤフラム装置
により形成されたアクチュエータ26と、このアクチュ
エータ26を働かせるための通路27、真空ポンプ28
および切替弁29などで構成された駆動手段が設けられ
、この駆動手段により、吸気絞り弁13を閉じて開閉弁
11゜12を作動可能とする状態と吸気絞り弁13を開
いて主吸気通路9a@開通させることにより開閉弁11
.12の作動機能を停止させる状態とに吸気系を切替可
能としている。またエンジン回転数および負荷等の検出
手段(図示せず)からの信号を受けるマイクロコンピュ
ータ箸を用いた制御回路30により、始動運転時および
通常運転時のある程度高運転側にまでわたる運転領域で
は開閉弁11.12を作動可能とする状態とし、吸気の
断然圧縮を行なう必要のない高回転、高負荷側の運転領
域では開閉弁11.12の作動機能を停止させる状態と
するように、上記駆動手段が制御されている。
On the other hand, for the intake throttle valve 13, as shown in FIG. 28
A driving means including a switching valve 29 and the like is provided, and this driving means closes the intake throttle valve 13 and enables the on-off valves 11 and 12, and opens the intake throttle valve 13 and operates the main intake passage 9a. @By opening the on-off valve 11
.. The intake system can be switched between a state in which 12 operating functions are stopped. In addition, a control circuit 30 using a microcomputer that receives signals from detecting means (not shown) for detecting engine speed, load, etc. opens and closes the engine during starting operation and during normal operation in an operating range that extends to a certain level of high operation. The above drive is configured so that the valves 11 and 12 are enabled to operate, and the operating function of the on-off valves 11 and 12 is stopped in a high-speed, high-load operation region where there is no need to completely compress the intake air. Means are controlled.

このように構成された吸気装とによると、吸気絞り弁1
3によって主吸気通路9aが閉鎖されている状態にある
とき、吸気行程でピストン2の下降に伴ってシリンダ1
内に生じる負圧に応じ、エンジン回転数との関係で11
のみが開作動するか、または両開閉弁11.12が開作
動する。これにより吸気行程途中から急激に吸気が副吸
気通路9bを通して燃焼室3に導入されて吸気の断然圧
縮が行なわれる。
According to the intake system configured in this way, the intake throttle valve 1
3, when the main intake passage 9a is closed, the cylinder 1 is closed as the piston 2 descends during the intake stroke.
11 in relation to the engine speed depending on the negative pressure generated within the engine.
Only one or both on-off valves 11,12 are opened. As a result, the intake air is rapidly introduced into the combustion chamber 3 through the sub-intake passage 9b during the intake stroke, and the intake air is definitely compressed.

この場合2個の開閉弁11.12のエンジン回転数に応
じた働きについては後に詳述することとし、先ず基本的
な断然圧縮による効果を第3図によって説明する。この
図は、4気筒エンジンにおいて、主吸気通路9aが開通
されて開閉弁の作動が停止されている状態から少なくと
も1個の開閉弁が作動される状態に切替ったときの、各
シリンダの排気ガス温度を測定したときのデータを示し
たもので、線T1〜T4は各シリンダの排気ガス温度の
変化を示している。この図から解るように、開閉弁の作
動機能が停止されている状態から開閉弁が作動される状
態に切替えられたとき、吸気の断然圧縮効果で燃焼性が
改善されるため、各シリンダの排気ガス温度が上昇し、
とくに燃焼状態が著しく悪かったシリンダの排気ガス温
度(線T4 )は、燃焼室内に残っている未燃焼ガスが
燃焼されるため大きく上昇する。そして、開閉弁の作動
による吸気の断然圧縮が適正に行なわれればこのような
効果が得られるが、前述のように1個の開閉弁では広い
回数域にわたって適正に断然圧縮を行なわせることは難
しいく第9図参照)。
In this case, the functions of the two on-off valves 11 and 12 depending on the engine speed will be described in detail later, and first the basic effect of absolute compression will be explained with reference to FIG. This diagram shows the exhaust gas from each cylinder in a four-cylinder engine when the main intake passage 9a is opened and the operation of the on-off valves is stopped, to the state where at least one on-off valve is activated. It shows data when gas temperature was measured, and lines T1 to T4 show changes in exhaust gas temperature of each cylinder. As can be seen from this figure, when switching from a state in which the operating function of the on-off valve is stopped to a state in which the on-off valve is activated, combustibility is improved due to the compression effect of the intake air, so the exhaust gas from each cylinder The gas temperature increases,
In particular, the exhaust gas temperature (line T4) of the cylinder in which the combustion condition was extremely poor increases significantly because the unburned gas remaining in the combustion chamber is combusted. This effect can be obtained if the intake air is compressed properly through the operation of the on-off valve, but as mentioned above, it is difficult to ensure proper compression over a wide range of times with a single on-off valve. (See Figure 9).

次に、開弁負圧が異なる2個の開閉弁11.12を用い
た当実施例装置のエンジン回転数に応じた作用を第4図
および第5図によって説明する。
Next, the operation according to the engine speed of the present embodiment device using two on-off valves 11 and 12 with different opening negative pressures will be explained with reference to FIGS. 4 and 5.

吸気絞り弁13が閉じられている状態で吸気行程におい
てシリンダ1内に生じる負圧は、クランキング時等の低
回転時には第4図(a)のようになり、比較的高速時に
は第4図(b)のようになる。
The negative pressure generated in the cylinder 1 during the intake stroke with the intake throttle valve 13 closed is as shown in Figure 4 (a) at low rotation speeds such as during cranking, and as shown in Figure 4 (a) at relatively high speeds. b)

これらの図に示すように、吸気行程初期からシリンダ1
内の圧力が低下する(負圧が大きくなる)が、ピストン
2の下降速度が遅い低回転時には、ピストン2まわり等
からシリンダ1内に流入するリーク吸気母が多くなるた
め、シリンダ1内に発生する負圧は高目時と比べて小さ
くなる。このときもシリンダ1内の負圧は、予め比較的
小さく設定された第1開閉弁11の開弁負圧P1には達
し、これにより第1開閉弁11が吸気行程途中(時点1
1)で開作動し、この第1開閉弁11を通してシリンダ
1内に吸気が導入される。そして、低速時には開口面積
が比較的小さい第1開閉弁11が開かれるだけでも負圧
が減少し゛Cシリンダ1内に吸気が充填されるとともに
、この間に吸気の断然圧縮が行なわれる。またこのとき
に、吸気が急激に導入され過ぎると吸気行程終期のBD
C時点より前に負圧が減少して第1開閉弁11が閉じら
れ、閉弁後に再び負圧が生じてしまうが、第1開閉弁1
1の開口面積を適度に設定しておくことによってこのよ
うな事態が防止され、断然圧縮効果および吸気充填量が
確保される。
As shown in these figures, cylinder 1 starts from the beginning of the intake stroke.
The internal pressure decreases (negative pressure increases), but at low rotation speeds when the descending speed of the piston 2 is slow, a large amount of leak intake air flows into the cylinder 1 from around the piston 2, etc., which causes leakage to occur inside the cylinder 1. The negative pressure generated will be smaller than when the pressure is high. At this time as well, the negative pressure inside the cylinder 1 reaches the valve opening negative pressure P1 of the first on-off valve 11, which has been set relatively small in advance, and this causes the first on-off valve 11 to close during the intake stroke (time 1
1), the intake air is introduced into the cylinder 1 through the first on-off valve 11. At low speeds, even if the first on-off valve 11, which has a relatively small opening area, is opened, the negative pressure is reduced, and the C cylinder 1 is filled with intake air, and during this period, the intake air is definitely compressed. Also, at this time, if intake air is introduced too rapidly, BD at the end of the intake stroke
Before time C, the negative pressure decreases and the first on-off valve 11 is closed, and after the valve is closed, negative pressure occurs again, but the first on-off valve 1
By appropriately setting the area of the opening 1, such a situation can be prevented, and the compression effect and intake air filling amount can definitely be ensured.

一方、比較的高回転時にはシリンダ1内に生じる負圧が
大きくなり、とくにピストン2が急速に下降するので第
1開閉弁11が開作動(時点t1′)シてからでもこれ
だけでは充分に吸気を導入しきれず、負圧がざらに大き
くなって第2開閉弁12の開弁負圧P2にまで達し、第
2開閉弁12も開作動する(時点t2)。そしてその後
は、両開閉弁11.12を通して多回の吸気が導入され
ることにより、シリンダ1内の負圧が減少して充IMf
flが確保されるとともに、大きな断然圧縮効果が得ら
れる。
On the other hand, when the rotation speed is relatively high, the negative pressure generated in the cylinder 1 becomes large, and the piston 2 in particular descends rapidly. The negative pressure gradually increases and reaches the opening negative pressure P2 of the second on-off valve 12, and the second on-off valve 12 also opens (time t2). After that, as intake air is introduced multiple times through both on-off valves 11 and 12, the negative pressure inside the cylinder 1 decreases and the charging IMf
fl is secured, and a significant compression effect can be obtained.

このような作動によってエンジン回転数と単位時間当た
りの吸入空気囚との関係は第5図に実線で示すようにな
り、第1開閉弁11のみが作動される低回転域N1から
両開閉弁11.12が作動される高回転域N2へとエン
ジン回転数が移行するにつれ、充分に吸入空気量が増大
して要求される吸気充填量を確保することができる。ま
たエンジン回転数とシリンダ内平均温度との関係は第6
図に実線Cで丞すようになり、低回転域N1から高回転
域N2にまでわたり、gl11111弁を用いない場合
(破線B)と比べて吸気温度が高められる。
Due to this operation, the relationship between the engine speed and the intake air intake per unit time becomes as shown by the solid line in FIG. As the engine speed shifts to the high speed range N2 where .12 is activated, the amount of intake air increases sufficiently to ensure the required amount of intake air filling. Also, the relationship between engine speed and average cylinder temperature is the sixth
As shown by the solid line C in the figure, the intake air temperature is increased from the low rotation range N1 to the high rotation range N2 compared to the case where the gl11111 valve is not used (broken line B).

第7図は本発明の第2の実施例を示す。この実施例では
、各シリンダ1別に主吸気通路9aと、それぞれの下流
端が相対向して主吸気通路9aに開口する2つの副吸気
通路9G、9dとを備え、この副吸気通路9c、9dに
第1開閉弁31および第2開閉弁32がそれぞれ設けら
れている。この各開閉弁31.32は第1実施例の開閉
弁11゜12と同様のWTI造であって、第1開閉弁3
1は開弁負圧が比較的小さく、かつ開口面積も小さく、
第2開閉弁32は第1開閉弁31と比べて開弁負圧が大
きく、かつ開口面積がかなり大きくなっている。また主
吸気通路9a内の、両副吸気通路9 −c、9dの下流
端が対向する位置に吸気絞り弁33が配置されている。
FIG. 7 shows a second embodiment of the invention. In this embodiment, each cylinder 1 is provided with a main intake passage 9a and two auxiliary intake passages 9G and 9d whose downstream ends face each other and open into the main intake passage 9a. A first on-off valve 31 and a second on-off valve 32 are provided, respectively. Each of the on-off valves 31 and 32 is of WTI construction similar to the on-off valves 11 and 12 of the first embodiment.
1 has a relatively small opening negative pressure and a small opening area.
The second on-off valve 32 has a larger opening negative pressure and a considerably larger opening area than the first on-off valve 31. Further, an intake throttle valve 33 is arranged in the main intake passage 9a at a position where the downstream ends of both the sub-intake passages 9-c and 9d face each other.

この吸気絞り弁33は、図外の駆動手段および制御手段
により、低回転域では燃焼室3に対し主吸気通路9aお
よび第2n閉弁32側の副吸気通路9dを遮断して第1
開閉弁31側のa1吸気通路9Cを開く位置(2点鎖線
イ)に作動され、比較的高回転域では燃焼室3に対し主
吸気通路9aおよび第1開閉弁31側の副吸気通路9C
@−遮断して第2開閉弁32側の副吸気通路9dを開く
位置(2点鎖線口)に作動され、また吸気の断然圧縮を
行なう必要のない高回転高負荷域では主吸気通路9aを
開通する中立位置(実線ハ)に作動されるようになって
いる。
This intake throttle valve 33 is operated by a driving means and a control means (not shown) to shut off the main intake passage 9a and the auxiliary intake passage 9d on the second n-th closing valve 32 side with respect to the combustion chamber 3 in the low rotation range.
It is operated to the position where the a1 intake passage 9C on the on-off valve 31 side is opened (double-dashed line A), and in a relatively high rotation range, the main intake passage 9a and the auxiliary intake passage 9C on the first on-off valve 31 side are opened with respect to the combustion chamber 3.
@ - It is operated to the position (double-dashed line opening) where the auxiliary intake passage 9d on the second on-off valve 32 side is opened by shutting off, and the main intake passage 9a is opened in the high rotation and high load range where there is no need to completely compress the intake air. It is operated to the neutral position (solid line c) where it opens.

この構造によれば、低回転域では吸気絞り弁33が2点
鎖線イの位置とされることにより、第8図(a)に示す
ように、シリンダ1内の負圧が第1開閉弁31の開弁負
圧P1に達したときに第1開閉弁31が開作動されて副
吸気通路9Cから吸気が導入され、また比較的高回転域
では吸気絞り弁33が2点鎖線口の位置とされることに
より、第8図(b)に示すように、シリンダ1内の負圧
が第2開閉弁32の開弁負圧P2に達したとぎ第2開閉
弁32が開作動されて副吸気通路9dから吸気が導入さ
れる。
According to this structure, in the low rotation range, the intake throttle valve 33 is placed in the position indicated by the two-dot chain line A, so that the negative pressure in the cylinder 1 is reduced to the first opening/closing valve 31, as shown in FIG. 8(a). When the valve-opening negative pressure P1 is reached, the first on-off valve 31 is opened and intake air is introduced from the auxiliary intake passage 9C, and in a relatively high rotation range, the intake throttle valve 33 is at the position indicated by the chain double-dashed line. As a result, as shown in FIG. 8(b), when the negative pressure in the cylinder 1 reaches the opening negative pressure P2 of the second on-off valve 32, the second on-off valve 32 is opened and the sub-intake is opened. Intake air is introduced from the passage 9d.

この場合も、両開閉弁31.32の開弁負圧および間口
面積が異なるため、低回転域と比較的高回転域とに応じ
、各開閉弁31.32が適正に作動して良好な断然圧縮
効果が得られるとともに吸気充填量も確保される。
In this case as well, since the opening negative pressure and opening area of both the on-off valves 31 and 32 are different, each on-off valve 31 and 32 operates properly depending on the low rotation range and the relatively high rotation range. A compression effect is obtained and the intake air filling amount is also secured.

なお、上記各実施例ではシリンダ別の吸気通路を主吸気
通路と副吸気通路とに分けて副吸気通路に、2個の開閉
弁を配設しているが、シリンダごとに1つずつの吸気通
路を設けてこの吸気通路に両開閉弁を並設しておいても
よく、この場合、吸気の断然圧縮を行なう必要のないと
きは両開閉弁を吸気通路から退避する位置に移動させる
ことができるようにしておけばよい。
In each of the above embodiments, the intake passage for each cylinder is divided into the main intake passage and the auxiliary intake passage, and two on-off valves are provided in the auxiliary intake passage. A passage may be provided and both on-off valves may be arranged side by side in this intake passage. In this case, when there is no need to absolutely compress the intake air, both on-off valves may be moved to a position where they are evacuated from the intake passage. All you have to do is make it possible.

また上記実施例では2個の開閉弁を設けているが、それ
ぞれ開弁負圧が異なる3個以上の負圧応動弁からなる開
開弁を吸気通路に並設してもよい。
Further, in the above embodiment, two on-off valves are provided, but three or more on-off valves each having a different opening negative pressure may be arranged in parallel in the intake passage.

(発明の効果) 以上のように本発明は、それぞれ開弁負圧が異なる負圧
応動弁からなる複数の1111Il弁を吸気通路に並設
しているため、開弁負圧を高くすると開閉弁が作動しな
くなるクランキング時等の低回転時から、開閉弁の開弁
負圧を高くすることが望ましい比較的高回転側にまでわ
たり、開開弁を有効に働かせて良好な吸気の熱圧縮効果
をもたせることができる。このため、始動性の向上なら
び通常運転時の広い回転数域にわたっての白煙やトIC
等の低域を、複数の開閉弁を用いるだけの簡単な構造に
よって達成することができるものである。
(Effects of the Invention) As described above, in the present invention, since a plurality of 1111Il valves each consisting of negative pressure responsive valves with different valve opening negative pressures are arranged in parallel in the intake passage, when the valve opening negative pressure is increased, the opening/closing valve is This ranges from low rotation speeds such as during cranking, where the valve does not operate, to relatively high rotation speeds, where it is desirable to increase the opening negative pressure of the opening/closing valve. It can be effective. This improves startability and eliminates white smoke and ignition over a wide rotation speed range during normal operation.
This low frequency range can be achieved with a simple structure using a plurality of on-off valves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す概略図、第2図は負
圧応動弁からなる開閉弁の拡大断面図、第3図は開閉弁
が停止状態から作動状態に切替ったときの各シリンダの
排気ガス温度の変化を示すグラフ、第4図 (a) (
b)は第1実施例の装置による場合の低回転時と高回転
時とにおける吸気行程でのシリンダ内圧力の変化を示づ
説明図、第5図は同装置による場合のエンジン回転数と
吸入空気口との関係説明図、第6図はエンジン回転数と
シリンダ内平均温度との関係説明図、第7図は第2実施
例を示す概略図、第8図は第2実施例の装置による場合
の低回転時と高回転時とにおける吸気行程でのシリンダ
内圧力の変化を示す説明図、第9図は従来の一般的なデ
ィーげルエンジンの吸気装置と1個の開閉弁を用いた従
来装置とによる場合のエンジン回転数とシリンダ内平均
温度との関係を調べた測定結果を示すグラフである。 1・・・シリンダ1.9・・・吸気通路、11.31・
・・第1開閉弁、12.32・・・第2開閉弁。 特許出願人     マ ツ ダ 株式会社第  1 
 図 第  2  図 第  3  図 第  4  図 (a)         (ky) 第  5  図 エンジンロ私政 第  6  図 シ エンジ’ycr鯨 第  7  図 デC 第  8  図 (こ)         (瀝) 第  9  図
Fig. 1 is a schematic diagram showing a first embodiment of the present invention, Fig. 2 is an enlarged cross-sectional view of an on-off valve consisting of a negative pressure responsive valve, and Fig. 3 shows when the on-off valve is switched from a stopped state to an operating state. Graph showing changes in exhaust gas temperature of each cylinder, Figure 4 (a) (
b) is an explanatory diagram showing the change in cylinder internal pressure during the intake stroke at low and high revolutions when using the device of the first embodiment, and Fig. 5 shows the engine speed and intake when using the same device. Figure 6 is an explanatory diagram of the relationship between the engine speed and average cylinder temperature, Figure 7 is a schematic diagram showing the second embodiment, and Figure 8 is based on the device of the second embodiment. Figure 9 is an explanatory diagram showing the change in cylinder pressure during the intake stroke at low and high revolutions in the case of a conventional Diegel engine using the intake system and one on-off valve. It is a graph which shows the measurement result which investigated the relationship between engine rotation speed and the average temperature in a cylinder in the case of a conventional device. 1... Cylinder 1.9... Intake passage, 11.31.
...First on-off valve, 12.32...Second on-off valve. Patent applicant Mazda Corporation No. 1
Fig. 2 Fig. 3 Fig. 4 (a) (ky) Fig. 5 Engine private administration Fig. 6 Shienji'ycr whale Fig. 7 DeC Fig. 8 (ko) (death) Fig. 9

Claims (1)

【特許請求の範囲】[Claims] 1、エンジンの各シリンダ別の吸気通路に開閉弁を設け
、この開閉弁を、シリンダ内の負圧が開弁負圧に達した
ときに開作動する負圧応動弁によって構成し、この開閉
弁の作動により吸気行程途中までは燃焼室への吸気導入
を制限し、吸気行程途中から急激に吸気を燃焼室に導入
して断然圧縮を行わせるようにしたディーゼルエンジン
の吸気装置において、上記開閉弁を上記吸気通路に複数
個並設し、かつこの各開閉弁の開弁負圧を異なる値に設
定したことを特徴とするディーゼルエンジンの吸気装置
1. An on-off valve is provided in the intake passage for each cylinder of the engine, and this on-off valve is configured with a negative pressure responsive valve that opens when the negative pressure in the cylinder reaches the valve opening negative pressure. In the intake system of a diesel engine, the intake air is restricted from being introduced into the combustion chamber until the middle of the intake stroke by the operation of the valve, and the intake air is rapidly introduced into the combustion chamber from the middle of the intake stroke to perform compression. An intake system for a diesel engine, characterized in that a plurality of on-off valves are arranged in parallel in the intake passage, and the opening negative pressure of each on-off valve is set to a different value.
JP16044085A 1985-07-20 1985-07-20 Suction device for diesel engine Granted JPS6220626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16044085A JPS6220626A (en) 1985-07-20 1985-07-20 Suction device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16044085A JPS6220626A (en) 1985-07-20 1985-07-20 Suction device for diesel engine

Publications (2)

Publication Number Publication Date
JPS6220626A true JPS6220626A (en) 1987-01-29
JPH0562211B2 JPH0562211B2 (en) 1993-09-08

Family

ID=15714977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16044085A Granted JPS6220626A (en) 1985-07-20 1985-07-20 Suction device for diesel engine

Country Status (1)

Country Link
JP (1) JPS6220626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079131B2 (en) 2010-12-10 2015-07-14 Alstom Technology Ltd Wet scrubber and a method of cleaning a process gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079131B2 (en) 2010-12-10 2015-07-14 Alstom Technology Ltd Wet scrubber and a method of cleaning a process gas

Also Published As

Publication number Publication date
JPH0562211B2 (en) 1993-09-08

Similar Documents

Publication Publication Date Title
JPH0656106B2 (en) Intake device for supercharged engine
EP2162604A1 (en) Control device of an internal combustion engine
JP2004245126A (en) Operation mode controller of high compression ratio supercharging type lean burn engine
JPS6220626A (en) Suction device for diesel engine
JPS5862319A (en) Supercharger of internal-combustion engine
JPS60178933A (en) Supercharging pressure control device for exhaust turbosupercharger
JP3401047B2 (en) Engine intake system
JPS5823245A (en) Internal combustion engine having loss of suction resistance reduced
JPH0229849B2 (en)
JPH05340290A (en) Contorol device for engine having supercharger
JPH05187327A (en) Conbustion control device for engine
JPS6161918A (en) Air intake device of internal-combustion engine
JPH0571775B2 (en)
JPS62253923A (en) Intake controller of engine
JPH0519010B2 (en)
JPH10141072A (en) Control device for engine with mechanical supercharger
JPH0568612B2 (en)
JPH0574690B2 (en)
JPS61126320A (en) Intake-air device in internal combustion engine
JPH0213134B2 (en)
JPS61291722A (en) Air intake device of diesel engine
JPS58167820A (en) Intake device of internal-combustion engine
JPH0251046B2 (en)
JP2000234523A (en) Control apparatus for engine with supercharger
JPS623124A (en) Air intake device for diesel engine