JPH0574690B2 - - Google Patents

Info

Publication number
JPH0574690B2
JPH0574690B2 JP8534485A JP3448585A JPH0574690B2 JP H0574690 B2 JPH0574690 B2 JP H0574690B2 JP 8534485 A JP8534485 A JP 8534485A JP 3448585 A JP3448585 A JP 3448585A JP H0574690 B2 JPH0574690 B2 JP H0574690B2
Authority
JP
Japan
Prior art keywords
speed
valve
intake
low
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8534485A
Other languages
Japanese (ja)
Other versions
JPS61197719A (en
Inventor
Shunichi Aoyama
Takashi Fujii
Manabu Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60034485A priority Critical patent/JPS61197719A/en
Publication of JPS61197719A publication Critical patent/JPS61197719A/en
Publication of JPH0574690B2 publication Critical patent/JPH0574690B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、気筒毎に2つの吸気弁を備えた内燃
機関の吸気系の改善技術に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a technique for improving the intake system of an internal combustion engine having two intake valves for each cylinder.

<従来の技術> この種の内燃機関の吸気系としては、例えば、
第4図に示すようなものがある(特願昭59−
60918号)。
<Prior art> As an intake system of this type of internal combustion engine, for example,
There is something like the one shown in Figure 4 (Patent Application 1983-
No. 60918).

これについて説明すると、各気筒毎に備えられ
た低速用吸気弁1及び高速用吸気弁2の開時期を
変え、これら各吸気弁1,2に通じる低速用吸気
ポート3及び高速用吸気ポート4を独立して設け
ると共に、排気弁5とのオーバーラツプの大きな
高速用吸気弁2が装着された高速用吸気ポート4
に開閉弁6が設けてあり、低速用及び高速用の両
吸気ポート3,4上流側の吸気通路7には吸気絞
り弁8が1つ介装されている。
To explain this, the opening timing of the low-speed intake valve 1 and high-speed intake valve 2 provided for each cylinder is changed, and the low-speed intake port 3 and high-speed intake port 4 that communicate with these intake valves 1 and 2 are changed. A high-speed intake port 4 is provided independently and is equipped with a high-speed intake valve 2 that has a large overlap with the exhaust valve 5.
An on-off valve 6 is provided at the intake port 3, and one intake throttle valve 8 is interposed in the intake passage 7 upstream of both the low-speed and high-speed intake ports 3 and 4.

そして、吸入空気流量が所定値未満の運転領域
では、開閉弁6を全閉とすることにより低速用吸
気ポート3のみから燃焼室周壁に沿つて流入する
空気流を利用して燃焼室内に強いスワール流を発
生させて燃焼性改善を図つている。
In an operating range where the intake air flow rate is less than a predetermined value, the on-off valve 6 is fully closed to create a strong swirl inside the combustion chamber by utilizing the airflow flowing only from the low-speed intake port 3 along the combustion chamber peripheral wall. The aim is to improve combustibility by generating flow.

一方、吸入空気流量が所定値以上になると、該
流量が増大するにしたがつて、即ち、回転速度、
負荷が増大するにしたがつて開閉弁6の開度を
徐々に増大させて高速用吸気ポート4の開口面積
を漸増させ、機関の最大出力域で開閉弁6を略全
開とすることにより、開閉弁6開直後の未燃HC
排出量増大を抑制しつつ吸気充填効率の向上を図
つている。
On the other hand, when the intake air flow rate exceeds a predetermined value, as the flow rate increases, that is, the rotational speed
As the load increases, the opening degree of the on-off valve 6 is gradually increased to gradually increase the opening area of the high-speed intake port 4, and the on-off valve 6 is almost fully opened in the maximum output range of the engine, so that the opening/closing can be performed. Unburnt HC immediately after opening valve 6
The aim is to improve intake air filling efficiency while suppressing increases in emissions.

ところで、上述のものにおいては、開閉弁6の
閉時、その下流側の高速用吸気ポート4部分にオ
リフイスを介装した新気導入通路9を介して吸気
絞り弁8上流側の大気圧に近い新気を高速用吸気
弁2が閉じてから次に開くまでの間に吸入させ、
排気圧との差圧を小さくして続く排気弁5とのオ
ーバーラツプ期間に排気が高速用吸気ポート4内
に流入するのを阻止し、混合気に混入する既燃ガ
ス量を大幅に低減して燃焼性能の改善を図つてい
る。
By the way, in the above-mentioned device, when the on-off valve 6 is closed, the air pressure close to the atmospheric pressure on the upstream side of the intake throttle valve 8 is passed through the fresh air introduction passage 9 in which an orifice is inserted in the high-speed intake port 4 portion on the downstream side. Fresh air is inhaled between the time when the high-speed intake valve 2 closes and the time when it opens again,
The differential pressure with the exhaust pressure is reduced to prevent the exhaust from flowing into the high-speed intake port 4 during the overlap period with the exhaust valve 5, thereby significantly reducing the amount of burnt gas mixed in the air-fuel mixture. Efforts are being made to improve combustion performance.

<発明が解決しようとする問題点> しかしながら、上述のように、新気導入によつ
て排気の逆流阻止を図つたものにおいても、以下
に示すように、なお改善の余地があつた。
<Problems to be Solved by the Invention> However, as described above, even in the case of preventing backflow of exhaust gas by introducing fresh air, there is still room for improvement as described below.

即ち、前記構成のものは、低速用及び高速用の
吸気ポート3,4が共に吸気絞り弁8の下流に設
けられているため、アイドリング時には開閉弁6
の上流圧は吸気負圧に等しくなる。
That is, in the configuration described above, since both the low-speed and high-speed intake ports 3 and 4 are provided downstream of the intake throttle valve 8, the on-off valve 6 is closed during idling.
The upstream pressure of is equal to the intake negative pressure.

このため、高速用吸気ポート4内に新気を導入
して該吸気ポート4内を大気圧近くまで昇圧させ
ると開閉弁6の前後差圧が大となり、開閉弁6の
シール性が問題となつてくる。
For this reason, when fresh air is introduced into the high-speed intake port 4 and the pressure inside the intake port 4 is increased to near atmospheric pressure, the differential pressure across the on-off valve 6 increases, causing problems with the sealing performance of the on-off valve 6. It's coming.

ところで、複数の気筒の開閉弁6が同一の回転
軸10によつて開閉性御される場合、開閉弁6の
シール性能を高めていくと次のような問題が発生
する。
By the way, when the opening/closing properties of the on-off valves 6 of a plurality of cylinders are controlled by the same rotary shaft 10, the following problem occurs when the sealing performance of the on-off valves 6 is improved.

一般に、シリンダヘツドはアルミ製であり、ま
た、開閉弁6のハウジングも軽量化のためにはア
ルミ材を用いるのが望ましい。
Generally, the cylinder head is made of aluminum, and the housing of the on-off valve 6 is also preferably made of aluminum in order to reduce its weight.

しかしながら、前記回転軸10は、その径を十
分大きく採ることが困難である(吸気の抵抗とな
る)上、開閉弁6を取り付けるために平面に削り
落とし、取付ネジの孔まで形成することからアル
ミ材では強度的に困難で、鉄系の材料を用いるこ
とが必要となる。
However, it is difficult to make the rotating shaft 10 sufficiently large in diameter (which creates resistance to air intake), and the rotating shaft 10 is made of aluminum because it has to be ground down to a flat surface in order to install the on-off valve 6 and holes for the mounting screws are formed. It is difficult to use steel in terms of strength, so it is necessary to use iron-based materials.

この場合、機関の運転状態によつて、シリンダ
ヘツドを始めとする各構成部品の温度は、例えば
冬期のスタート時の−20℃から高速走行時の+
130℃付近まで150゜前後の範囲で変化し、従つて、
前記各構成部品は熱による影響を受けることにな
る。
In this case, depending on the operating condition of the engine, the temperature of each component including the cylinder head may vary from -20°C at the start in winter to ++20°C at high speed.
It varies in the range of around 150° up to around 130°C, therefore,
Each of the components will be affected by heat.

そして、鉄とアルミとでは熱膨張率は倍程度異
なり、常温で開閉弁6を回転軸10に高速用吸気
ポート4との間に殆ど隙間のない状態で取り付け
ると、温度の上昇する運転領域である高速時に、
熱膨張による回転軸10の軸線方向の伸び量と開
閉弁6のハウジングの同方向の伸び量との相違が
大きくなり、それに伴つて開閉弁6が高速用吸気
ポート4の壁面に食い込み、開弁不能となつて機
関の出力が低下してしまうという問題が発生す
る。
The coefficient of thermal expansion is about twice as different between iron and aluminum, and if the on-off valve 6 is attached to the rotating shaft 10 with almost no gap between it and the high-speed intake port 4 at room temperature, in the operating region where the temperature rises. At a certain high speed,
The difference between the amount of expansion in the axial direction of the rotating shaft 10 due to thermal expansion and the amount of expansion in the same direction of the housing of the on-off valve 6 increases, and accordingly, the on-off valve 6 bites into the wall surface of the high-speed intake port 4, causing the valve to open. A problem arises in that the engine becomes disabled and the output of the engine decreases.

このため、開閉弁6と高速用吸気ポート4壁と
の間に予めある程度の隙間を設けておく必要があ
り、どうしてもシール性が低下してしまう。
For this reason, it is necessary to provide a certain amount of clearance in advance between the on-off valve 6 and the wall of the high-speed intake port 4, which inevitably deteriorates the sealing performance.

十分なシール性が得られない場合には、導入さ
れた新気が開閉弁6から上流側の吸気通路7内に
漏れ、各気筒の高速用吸気ポート4内の圧力にバ
ラツキが生じることになる。
If sufficient sealing performance is not achieved, the introduced fresh air will leak from the on-off valve 6 into the intake passage 7 on the upstream side, causing variations in the pressure in the high-speed intake port 4 of each cylinder. .

この場合、各気筒毎に残留ガス割合が異なるこ
とになるため、燃焼にバラツキを生じ、回転が不
安定となる可能性がある。
In this case, the proportion of residual gas differs for each cylinder, which may cause variations in combustion and unstable rotation.

本発明はこのような従来の問題点に鑑み為され
たもので、開閉弁上・下流間の圧力差を減少する
ことにより開閉弁下流側に導入された新気の漏出
を抑制し、以て排気の吹き返し防止効果を高める
ことにより、アイドリング時などの燃焼性能を可
及的に改善した内燃機関の吸気装置を提供するこ
とを目的とする。
The present invention was developed in view of these conventional problems, and by reducing the pressure difference between the upper and downstream sides of the on-off valve, the leakage of fresh air introduced downstream of the on-off valve is suppressed. An object of the present invention is to provide an intake device for an internal combustion engine that improves combustion performance during idling as much as possible by increasing the effect of preventing blowback of exhaust gas.

<問題点を解決するための手段> このため本発明は、吸気通路の下流部分を、低
速用絞り弁を有し低速用吸気弁に通じる低速用吸
気通路と、高速用絞り弁を有し高速用吸気弁に通
じる高速用吸気通路と、に分岐して設け、少なく
ともアイドリングを含む低速領域で閉じ高速領域
で運転条件変化に応じて開閉制御される開閉弁を
高速用吸気通路の各気筒の高速用吸気弁近傍のポ
ート部分に設ける一方、前記開閉弁の最小開度よ
り前記高速用絞り弁の最小開度を大きく設定する
と共に、前記開閉弁の開弁領域において機関吸入
空気流量の増減に応じて前記高速用絞り弁の開度
を増減制御する制御手段を設けた構成とした。
<Means for Solving the Problems> For this reason, the present invention provides a low-speed intake passage having a low-speed throttle valve and communicating with the low-speed intake valve, and a high-speed intake passage having a high-speed throttle valve and connecting the downstream portion of the intake passage to the low-speed intake valve. The high-speed intake passage leads to the high-speed intake valve for each cylinder, and the high-speed intake passage is connected to the high-speed intake passage for each cylinder. The minimum opening degree of the high-speed throttle valve is set to be larger than the minimum opening degree of the on-off valve, and the opening area of the on-off valve is adjusted to the increase or decrease in the engine intake air flow rate. The present invention has a configuration in which a control means is provided to increase or decrease the opening degree of the high-speed throttle valve.

<作用> 次に、かかる構成による作用を説明する。<Effect> Next, the effect of this configuration will be explained.

アイドリング時を含む低速運転時においては、
開閉弁と高速用絞り弁は最小開度となつており、
低速用絞り弁のみが開いている。そして、高速用
絞り弁の最小開度は、開閉弁の最小開度より大き
く設定されている。
When driving at low speeds, including idling,
The on-off valve and high-speed throttle valve have a minimum opening degree,
Only the low speed throttle valve is open. The minimum opening degree of the high-speed throttle valve is set larger than the minimum opening degree of the on-off valve.

この状態で圧縮行程半ば近くで高速用吸気弁が
閉じた時は、開閉弁下流側の高速用吸気ポート内
は負圧状態となつており、一方、開閉弁上流側は
高速用絞り弁を介して大気に通じている。
When the high-speed intake valve closes near the middle of the compression stroke in this state, the high-speed intake port on the downstream side of the on-off valve is in a negative pressure state, while the upstream side of the on-off valve is closed via the high-speed throttle valve. It communicates with the atmosphere.

このため大気圧に近い新気が、開閉弁と高速用
吸気ポートとの間の隙間から高速用吸気ポート内
に流入し、これにより高速用吸気ポート内の圧力
は徐々に上昇して次に高速用吸気弁が開くまでに
大気圧近くまで上昇する。
For this reason, fresh air close to atmospheric pressure flows into the high-speed intake port through the gap between the on-off valve and the high-speed intake port, and as a result, the pressure inside the high-speed intake port gradually increases until the next high-speed By the time the air intake valve opens, the pressure rises to near atmospheric pressure.

一方、高速用吸気弁が開かれる時、燃焼室内は
残留排気が略大気圧に近い状態で満たされてい
る。
On the other hand, when the high-speed intake valve is opened, the combustion chamber is filled with residual exhaust gas at approximately atmospheric pressure.

従つて、引き続き排気行程上死点に至るまでに
燃焼室内の残留排気は開閉弁で封じ込まれた高速
用吸気ポート内への吹き返しを抑制され、大部分
は排気ポートへ排出される。
Therefore, until the top dead center of the exhaust stroke is reached, the residual exhaust gas in the combustion chamber is prevented from blowing back into the high-speed intake port sealed by the on-off valve, and most of it is discharged to the exhaust port.

また、高速運転時には、開閉弁が閉から開に切
り換えられ、これ以後、吸入空気流量の増大に応
じて高速用絞り弁が制御手段により制御されて
徐々に開き始め、高速用吸気ポートからも吸気が
行われる。
In addition, during high-speed operation, the on-off valve is switched from closed to open, and after that, the high-speed throttle valve is controlled by the control means and gradually begins to open according to the increase in the intake air flow rate, and the intake air is also drawn from the high-speed intake port. will be held.

<実施例> 以下に第1図〜第3図に示す実施例の説明を行
う。尚、従来例と同一要素については第4図と同
一符号を附して説明する。
<Example> The example shown in FIGS. 1 to 3 will be described below. The same elements as those in the conventional example will be described with the same reference numerals as in FIG. 4.

機関の各気筒の燃焼室には、開閉時期の等しい
一対の排気弁5の閉弁時期より早く開弁する高速
用吸気弁2と、これよりも開弁時期を遅らせた低
速用吸気弁1と、が備えられている。
In the combustion chamber of each cylinder of the engine, there are a pair of high-speed intake valves 2 that open earlier than the closing timing of a pair of exhaust valves 5 with equal opening and closing timings, and a low-speed intake valve 1 that opens later than the opening timing of the exhaust valves 5. , is provided.

そして、低速用及び高速用吸気弁1,2に至る
吸気通路は次のように構成されている。
The intake passages leading to the low-speed and high-speed intake valves 1 and 2 are configured as follows.

即ち、上流端が図示しないエアクリーナに接続
された吸気管11の下流端部が2又に分岐し、そ
の2つの下流端に夫々低速用マニホールド12と
高速用マニホールド13とが接続される。
That is, the downstream end of the intake pipe 11 whose upstream end is connected to an air cleaner (not shown) branches into two, and a low-speed manifold 12 and a high-speed manifold 13 are connected to the two downstream ends, respectively.

吸気管11の低速用マニホールド12が接続さ
れる側の下流端部には低速用絞り弁14が、高速
用マニホールド13が接続される側の下流端部に
は高速用絞り弁15がそれぞれ介装される。
A low-speed throttle valve 14 is installed at the downstream end of the intake pipe 11 to which the low-speed manifold 12 is connected, and a high-speed throttle valve 15 is installed to the downstream end of the intake pipe 11 to which the high-speed manifold 13 is connected. be done.

また、低速用マニホールド12と高速用マニホ
ールド13とから切筒数ずつ分岐する各ブランチ
部が、夫々各気筒の低速用吸気弁1に至る低速用
吸気ポート16と、高速用吸気弁2に至る高速用
吸気ポート17とに接続される。
In addition, each branch part that branches from the low-speed manifold 12 and the high-speed manifold 13 by the number of cylinders has a low-speed intake port 16 leading to the low-speed intake valve 1 of each cylinder, and a high-speed intake port leading to the high-speed intake valve 2 of each cylinder. It is connected to the air intake port 17.

これにより、吸気管11の分岐部から低速用マ
ニホールド12及び低速用吸気ポート16を経て
低速用吸気弁1に至る低速用吸気通路と、同じく
吸気管11の分岐部から高速用マニホールド13
及び高速用吸気ポート17を経て高速用吸気弁2
に至る高速用吸気通路と、が独立して設けられ
る。
As a result, a low-speed intake passage from a branch part of the intake pipe 11 to a low-speed intake valve 1 via a low-speed manifold 12 and a low-speed intake port 16, and a high-speed intake passage from a branch part of the intake pipe 11 to a high-speed manifold 13.
and the high-speed intake valve 2 via the high-speed intake port 17.
A high-speed intake passage leading to the high-speed intake passage is provided independently.

また、高速用吸気ポート17には、少なくとも
アイドリングを含む低速領域で閉じ高速領域で運
転条件変化に応じて開閉制御される開閉弁6が設
けられる。
Further, the high-speed intake port 17 is provided with an on-off valve 6 that closes in a low-speed range including at least idling and is controlled to open and close in a high-speed range according to changes in operating conditions.

この開閉弁6は、高速用吸気ポート17との間
に予め所定の漏れ量(差圧500mmHgで40〜60/
min程度の漏れ量)を与えるように、隙間を形成
して取り付けられている。
This on-off valve 6 is connected to the high-speed intake port 17 with a predetermined leakage amount (40 to 60/min at a differential pressure of 500 mmHg).
It is installed with a gap formed so as to provide a leakage amount of about min.

ここで、低速用絞り弁14の支軸21はアクセ
ルペダルに連動し運転者の意志にしたがつて開度
が調整される。また、高速用絞り弁15の支軸2
2はステツピングモータ23に接続され、該ステ
ツピングモータ23は、機関運転状態を入力した
制御回路24からの出力信号により例えば第3図
に示すように駆動制御される。
Here, the opening degree of the support shaft 21 of the low-speed throttle valve 14 is adjusted in conjunction with the accelerator pedal according to the driver's intention. In addition, the support shaft 2 of the high-speed throttle valve 15
2 is connected to a stepping motor 23, and the stepping motor 23 is driven and controlled, for example, as shown in FIG. 3, by an output signal from a control circuit 24 inputting the engine operating state.

この場合、開閉弁6が閉の低速領域では高速用
絞り弁15は最小開度(但し、開閉弁6閉時の最
小開度よりは十分に大きな開度とする。)である
が、開閉弁6が半ばON・OFF的に開弁する時点
から開度を徐々に増していき、吸入空気流量の増
大に応じて高速領域で全開となる特性を与える。
In this case, in the low speed range when the on-off valve 6 is closed, the high-speed throttle valve 15 is at the minimum opening (however, the opening is sufficiently larger than the minimum opening when the on-off valve 6 is closed); The opening degree is gradually increased from the point where the valve 6 opens halfway on and off, giving the characteristic that it becomes fully open in the high speed region as the intake air flow rate increases.

尚、ステツピングモータ23及び制御回路24
により制御手段が構成される。
In addition, the stepping motor 23 and the control circuit 24
The control means is constituted by:

次に、かかる構成による作用を説明する。 Next, the effect of this configuration will be explained.

圧力センサによつて検出される吸気負圧と速度
センサによつて検出される機関回転速度とによつ
て検出されるアイドリング時を含む低速運転時に
おいては、開閉弁6と高速用絞り弁15は最小開
度となつており、低速用絞り弁14のみが開いて
いる。そして、高速用絞り弁15の最小開度は、
開閉弁6の最小開度より大きく設定されている。
During low-speed operation, including idling, which is detected by the intake negative pressure detected by the pressure sensor and the engine rotational speed detected by the speed sensor, the on-off valve 6 and the high-speed throttle valve 15 are The opening degree is the minimum, and only the low speed throttle valve 14 is open. The minimum opening degree of the high-speed throttle valve 15 is
The opening degree is set larger than the minimum opening degree of the on-off valve 6.

この状態で圧縮行程半ば近くで高速用吸気弁2
が閉じた時は、開閉弁6下流側の高速用吸気ポー
ト17内は負圧状態となつており、一方、開閉弁
6上流側は高速用絞り弁15を介して図示しない
エアクリーナに通じている。
In this state, near the middle of the compression stroke, the high-speed intake valve 2
When closed, the high-speed intake port 17 on the downstream side of the on-off valve 6 is in a negative pressure state, while the upstream side of the on-off valve 6 communicates with an air cleaner (not shown) via the high-speed throttle valve 15. .

このため大気圧に近い新気が、開閉弁6と高速
用吸気ポート17との間の隙間から高速用吸気ポ
ート17内に流入し、これにより高速用吸気ポー
ト17内の圧力は徐々に上昇して次に高速用吸気
弁2が開くまでに大気圧近くまで上昇する。
Therefore, fresh air close to atmospheric pressure flows into the high-speed intake port 17 through the gap between the on-off valve 6 and the high-speed intake port 17, and as a result, the pressure inside the high-speed intake port 17 gradually increases. The pressure then rises to near atmospheric pressure by the time the high-speed intake valve 2 opens.

一方、高速用吸気弁2が開かれる時、燃焼室内
は残留排気が略大気圧に近い状態で満たされてい
る。
On the other hand, when the high-speed intake valve 2 is opened, the combustion chamber is filled with residual exhaust gas at approximately atmospheric pressure.

従つて、引き続き排気行程上死点に至るまでに
燃焼室内の残留排気は開閉弁6で封じ込まれた高
速用吸気ポート17内への吹き換しを抑制され、
大部分は排気ポートへ排出される。
Therefore, until reaching the top dead center of the exhaust stroke, the residual exhaust gas in the combustion chamber is prevented from blowing into the high-speed intake port 17 sealed by the on-off valve 6.
Most of it is discharged to the exhaust port.

この結果、引き続く吸気行程において燃焼室内
に混入する残排気の割合を可及的に減少でき燃焼
改善効果を十分高めることができる。
As a result, the proportion of residual exhaust gas that enters the combustion chamber in the subsequent intake stroke can be reduced as much as possible, and the combustion improvement effect can be sufficiently enhanced.

そして、吸気管11の下流端部を2又に分岐
し、アクセルペダルに連動する低速用絞り弁14
を低速用吸気通路に設けたことにより、開閉弁6
上流側は低速時でも大気圧近くに保たれ、従つ
て、開閉弁6下流側から上流側への新気の漏出を
防止できる。
The downstream end of the intake pipe 11 is branched into two, and a low speed throttle valve 14 is linked to the accelerator pedal.
By providing this in the low-speed intake passage, the on-off valve 6
The upstream side is kept close to atmospheric pressure even at low speeds, and therefore fresh air can be prevented from leaking from the downstream side of the on-off valve 6 to the upstream side.

このように、開閉弁6の上流側への新気の漏出
防止により下流側の高速用吸気ポート17内の圧
力のバラツキを抑制でき、以て、気筒毎の残留排
気割合が均一化して燃焼のバラツキを解消でき、
アイドリング等の回転の安定性が保たれる。
In this way, by preventing the leakage of fresh air to the upstream side of the on-off valve 6, it is possible to suppress variations in the pressure inside the high-speed intake port 17 on the downstream side, which equalizes the proportion of residual exhaust gas in each cylinder and improves combustion. Variations can be eliminated,
Rotational stability such as idling is maintained.

詳細には、このように高速用マニホールド13
の開閉弁6上流側を高速用絞り弁15を介して大
気に連通した場合、吸気行程時には高速用吸気弁
2が開くため、開閉弁6下流側は吸気負圧となつ
て上流側との差圧は大となるが吸気行程は全行程
の1/4に過ぎず、残り3/4の行程で差圧を解消し得
る。また、ある気筒の吸気弁が閉じてから次に開
くまでの間に他の気筒が順次吸気行程となり当該
吸気行程にある気筒の開閉弁6の〓間を介して吸
入負圧の影響を受けることになるが、高速用絞り
弁15の最小開度を開閉弁6の最小介度より大き
く設定することにより、大気圧の影響を大きくし
て大気圧付近までの上昇を確保することができ
る。更に、開閉弁の上流に高速用絞り弁を備えて
いるので、吹き返しにより堆積物が開閉弁に付着
して最小開度が大きくなつてもその上流の高速用
絞り弁によつて燃焼室内のスワールの生成が乱さ
れることがない。
In detail, the high speed manifold 13
When the upstream side of the on-off valve 6 is communicated with the atmosphere via the high-speed throttle valve 15, the high-speed intake valve 2 opens during the intake stroke, so the downstream side of the on-off valve 6 becomes negative intake pressure, and the difference with the upstream side increases. Although the pressure increases, the intake stroke is only 1/4 of the total stroke, and the differential pressure can be resolved in the remaining 3/4 stroke. In addition, from when the intake valve of a certain cylinder closes until the next one opens, other cylinders sequentially undergo their intake strokes, and are affected by negative intake pressure through the opening/closing valve 6 of the cylinder in the intake stroke. However, by setting the minimum opening degree of the high-speed throttle valve 15 to be larger than the minimum opening degree of the on-off valve 6, it is possible to increase the influence of atmospheric pressure and ensure a rise to near atmospheric pressure. Furthermore, since a high-speed throttle valve is provided upstream of the on-off valve, even if deposits adhere to the on-off valve due to blowback and the minimum opening becomes large, the high-speed throttle valve upstream will prevent swirl in the combustion chamber. generation is not disturbed.

また、吸気行程時は低速用吸気弁1も開いてい
るから、開閉弁6下流の高速用吸気ポート17は
低速用マニホールド12とは連通しており、ガス
の出入りがあるため、気筒毎の圧力のバラツキは
解消される。
In addition, since the low-speed intake valve 1 is also open during the intake stroke, the high-speed intake port 17 downstream of the on-off valve 6 is in communication with the low-speed manifold 12, and gas enters and exits, so the pressure for each cylinder is This will eliminate the variation in .

さらに、開閉弁6と高速用吸気ポート17との
間に隙間を形成しただけで下流側に新気を導入で
きる利点を有し、従来のような連通管を設ける必
要がないため、コスト及びレイアウトの面でも有
利である。
Furthermore, it has the advantage that fresh air can be introduced downstream by simply forming a gap between the on-off valve 6 and the high-speed intake port 17, and there is no need to provide a communication pipe like in the past, reducing costs and layout. It is also advantageous in terms of

また、低速用マニホールド12及び低速用吸気
ポート16を長くし、高速用マニホールド13及
び高速用吸気ポート17を短くすることにより、
低速時・高速時の吸気脈動特性をそれぞれの運転
領域にマツチさせ、充填率の向上を図ることも可
能であり、これについても高速用絞り弁15の開
度調整により微妙に制御することができる。
In addition, by lengthening the low-speed manifold 12 and low-speed intake port 16 and shortening the high-speed manifold 13 and high-speed intake port 17,
It is also possible to improve the filling rate by matching the intake pulsation characteristics at low speeds and high speeds to the respective operating ranges, and this can also be delicately controlled by adjusting the opening of the high speed throttle valve 15. .

一方、吸気負圧と機関回転速度とにより検出さ
れる所定以上の高速運転時には、図示しないアク
チユエータにより開閉弁6が閉から開に切り換え
られ、これ以後、吸入空気流量の増大に応じて制
御回路24からステツピングモータ23に信号が
送られて、高速用絞り弁15が徐々に開き始め
る。
On the other hand, during high-speed operation exceeding a predetermined value detected by intake negative pressure and engine rotational speed, the on-off valve 6 is switched from closed to open by an actuator (not shown), and from then on, the control circuit 2 A signal is sent to the stepping motor 23, and the high-speed throttle valve 15 begins to gradually open.

このようにして、高速用吸気ポート17が開通
すると、低速用吸気弁1に比べて開時期が早く、
閉時期は大幅に遅くした高速用吸気弁2を併用し
て吸気が行われるため、有効圧縮比の減少により
吸気の圧縮上死点温度、圧力の上昇を抑制してノ
ツキングの発生を抑制し、また、高速用吸気ポー
ト17の開通による吸気流通抵抗減少効果とによ
り、充填効率を向上させて出力の向上を図ること
ができる。
In this way, when the high-speed intake port 17 opens, the opening timing is earlier than that of the low-speed intake valve 1.
Since intake is performed in conjunction with the high-speed intake valve 2 whose closing timing is significantly delayed, the reduction in the effective compression ratio suppresses the rise in the compression top dead center temperature and pressure of the intake air, thereby suppressing the occurrence of knocking. Further, due to the effect of reducing the intake air flow resistance due to the opening of the high-speed intake port 17, it is possible to improve the filling efficiency and improve the output.

ここで、本実施例においては、高速用絞り弁1
5は、機関運転条件の変化に対して徐々に開度を
変化させるようにしているため、高速用吸気ポー
ト17からの吸入空気流量が一気に増えることが
抑制されるので、低速用吸気ポート16の空燃比
が過濃化して未燃HCの発生が増大することを防
止でき、機関のトルク変動は防止され、安定した
特性を得ることができる。
Here, in this embodiment, the high speed throttle valve 1
5, the opening degree is gradually changed in response to changes in engine operating conditions, so that the intake air flow rate from the high-speed intake port 17 is suppressed from increasing all at once. It is possible to prevent the air-fuel ratio from becoming excessively enriched and increase the generation of unburned HC, prevent engine torque fluctuations, and obtain stable characteristics.

尚、高速用絞り弁15を省略して開閉弁6を
徐々に開くことも考えられるが、この場合、複数
個の開閉弁6の開度の小さい初期に気筒間の開度
のバラツキを生じ、これにより吸入空気流量のバ
ラツキを生じる。
It is also possible to omit the high-speed throttle valve 15 and gradually open the on-off valves 6, but in this case, the openings of the plurality of on-off valves 6 may vary at the beginning when the openings are small, and This causes variations in the intake air flow rate.

この点、本実施例では、1個の高速用絞り弁1
5を開度制御するため、気筒間のバラツキが解消
される。
In this regard, in this embodiment, one high-speed throttle valve 1
5, the opening degree is controlled, so variations between cylinders are eliminated.

<発明の効果> 以上説明したように本発明によれば、アイドリ
ング時等低速領域では開閉弁を閉じ、高速用吸気
通路を低速用吸気通路とは独立して設けているた
め、低速用吸気通路の負圧の影響を受けることな
く大気圧近傍に維持されている高速用絞り弁上流
の新気が、高速用絞り弁の〓間を介して下流側に
流入し、更に開閉弁の〓間を介して下流側に導入
して大気圧近くまで上昇させるようにしたため、
排気の吹き返しを防止して燃費、出力特性を高め
ることができる。また、ある気筒の吸気弁が閉じ
てから次に開くまでの間に他の気筒が順次吸気行
程となり当該吸気行程にある気筒の開閉弁の〓間
を介して吸入負圧の影響を受けることになるが、
高速用絞り弁の最小開度を開閉弁の最小開度より
大きく設定することにより、大気圧の影響を大き
くして大気圧付近までの上昇を確保することがで
きる。更に、開閉弁の上流に高速用絞り弁を備え
ているので、吹き返しにより堆積物が開閉弁に付
着して最小開度が大きくなつてもその上流の高速
用絞り弁によつて燃焼室内のスワールの生成が乱
されることがない。また、高速用絞り弁を開度制
御することにより、気筒毎の開閉弁下流側圧力の
バラツキ、従つて、燃焼性のバラツキが解消さ
れ、安定した回転性が得られる。
<Effects of the Invention> As explained above, according to the present invention, the on-off valve is closed in a low speed region such as during idling, and the high speed intake passage is provided independently from the low speed intake passage. The fresh air upstream of the high-speed throttle valve, which is maintained at near atmospheric pressure without being affected by the negative pressure of In this way, the pressure was raised to near atmospheric pressure by introducing it downstream through the
It prevents exhaust gas from blowing back and improves fuel efficiency and output characteristics. Also, from when the intake valve of a certain cylinder closes until the next one opens, other cylinders undergo their intake strokes one after another, and are affected by negative intake pressure through the gap between the opening and closing valves of the cylinders in the intake stroke. However,
By setting the minimum opening degree of the high-speed throttle valve to be larger than the minimum opening degree of the on-off valve, it is possible to increase the influence of atmospheric pressure and ensure a rise to near atmospheric pressure. Furthermore, since a high-speed throttle valve is provided upstream of the on-off valve, even if deposits adhere to the on-off valve due to blowback and the minimum opening becomes large, the high-speed throttle valve upstream will prevent swirl in the combustion chamber. generation is not disturbed. In addition, by controlling the opening of the high-speed throttle valve, variations in the pressure on the downstream side of the opening/closing valve for each cylinder, and therefore variations in combustibility, are eliminated, and stable rotational performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A及びBは夫々本発明の一実施例を示
し、Aは機関低速時の状態を示す平面断面図、B
は機関高速時の状態を示す平面断面図、第2図は
同上実施例において使用される高速用及び低速用
の絞り弁部分の構造を示す図、第3図は高速用絞
り弁の開弁特性を示す図、第4図は従来の内燃機
関の吸気装置を示す平面断面図である。 1……低速用吸気弁、2……高速用吸気弁、5
……排気弁、6……開閉弁、11……吸気管、1
2……低速用マニホールド、13……高速用マニ
ホールド、14……低速用絞り弁、15……高速
用絞り弁、16……低速用吸気ポート、17……
高速用吸気ポート、23……ステツピングモー
タ、24……制御回路。
Figures 1A and 1B each show an embodiment of the present invention, where A is a plan sectional view showing the state at low engine speed, and B
2 is a cross-sectional plan view showing the state of the engine at high speed, FIG. 2 is a diagram showing the structure of the high-speed and low-speed throttle valve parts used in the above embodiment, and FIG. 3 is the opening characteristics of the high-speed throttle valve. FIG. 4 is a plan sectional view showing a conventional intake system for an internal combustion engine. 1...Intake valve for low speed, 2...Intake valve for high speed, 5
...Exhaust valve, 6...Opening/closing valve, 11...Intake pipe, 1
2...Low speed manifold, 13...High speed manifold, 14...Low speed throttle valve, 15...High speed throttle valve, 16...Low speed intake port, 17...
High-speed intake port, 23...stepping motor, 24...control circuit.

Claims (1)

【特許請求の範囲】 1 各気筒毎に、高速用吸気弁と、低速用吸気弁
と、を備えた内燃機関の吸気装置において、 吸気通路の下流部分を、低速用絞り弁を有し前
記低速用吸気弁に通じる低速用吸気通路と、高速
用絞り弁を有し前記高速用吸気弁に通じる高速用
吸気通路と、に分岐して設け、 少なくともアイドリングを含む低速領域で閉じ
高速領域で運転条件変化に応じて開閉制御される
開閉弁を高速用吸気通路の各気筒の高速用吸気弁
近傍のポート部分に設ける一方、 前記開閉弁の最小開度より前記高速用絞り弁の
最小開度を大きく設定すると共に、 前記開閉弁の開弁領域において機関吸入空気流
量の増減に応じて前記高速用絞り弁の開度を増減
制御する制御手段を設けたことを特徴とする内燃
機関の吸気装置。
[Scope of Claims] 1. An intake system for an internal combustion engine including a high-speed intake valve and a low-speed intake valve for each cylinder, wherein a downstream portion of the intake passage is provided with a low-speed throttle valve and a low-speed intake valve. A low-speed intake passage leading to the high-speed intake valve and a high-speed intake passage having a high-speed throttle valve and leading to the high-speed intake valve are branched and are closed in a low-speed range including at least idling, and are closed in a high-speed range under operating conditions. An on-off valve that is controlled to open and close according to the change in speed is provided at a port near the high-speed intake valve of each cylinder of the high-speed intake passage, and the minimum opening of the high-speed throttle valve is set larger than the minimum opening of the on-off valve. An intake system for an internal combustion engine, further comprising a control means for controlling the opening degree of the high-speed throttle valve to increase or decrease in accordance with an increase or decrease in the engine intake air flow rate in the opening region of the on-off valve.
JP60034485A 1985-02-25 1985-02-25 Intake device for internal-combustion engine Granted JPS61197719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60034485A JPS61197719A (en) 1985-02-25 1985-02-25 Intake device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60034485A JPS61197719A (en) 1985-02-25 1985-02-25 Intake device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS61197719A JPS61197719A (en) 1986-09-02
JPH0574690B2 true JPH0574690B2 (en) 1993-10-19

Family

ID=12415545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60034485A Granted JPS61197719A (en) 1985-02-25 1985-02-25 Intake device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61197719A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277815A (en) * 1985-05-31 1986-12-08 Ishikawajima Shibaura Kikai Kk Intake apparatus of direct injection type diesel engine
JP4006789B2 (en) * 1997-09-22 2007-11-14 日産自動車株式会社 Intake device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595769A (en) * 1982-07-01 1984-01-12 Nec Corp Testing system for subscriber line
JPS59108821A (en) * 1982-12-14 1984-06-23 Daihatsu Motor Co Ltd Double intake valve type 4-cycle engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595769A (en) * 1982-07-01 1984-01-12 Nec Corp Testing system for subscriber line
JPS59108821A (en) * 1982-12-14 1984-06-23 Daihatsu Motor Co Ltd Double intake valve type 4-cycle engine

Also Published As

Publication number Publication date
JPS61197719A (en) 1986-09-02

Similar Documents

Publication Publication Date Title
JPS641656B2 (en)
US4660530A (en) Intake system for internal combustion engine
JPH0324838Y2 (en)
JP3357450B2 (en) Engine control device
JPH0574690B2 (en)
JPS6345490B2 (en)
JP3538860B2 (en) Engine intake system
JPS6364616B2 (en)
JPH0332770Y2 (en)
JPH0519010B2 (en)
JPS6161918A (en) Air intake device of internal-combustion engine
JPS6313392Y2 (en)
JPS62288318A (en) Suction device for 4-stroke engine
JPH03225059A (en) Intake temperature control device for internal combustion engine
JPS6350427Y2 (en)
JPH0410336Y2 (en)
JPS61205327A (en) Intake device of internal-combustion engine
JPH0635835B2 (en) Internal combustion engine intake system
JPS6337476Y2 (en)
JP2587230B2 (en) Intake device for supercharged engine
JPS64587B2 (en)
JPH0338411B2 (en)
JPH03124921A (en) Suction device of multi-cylinder engine
JPH0562211B2 (en)
JPH0689663B2 (en) Engine intake system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees