JPS61197719A - Intake device for internal-combustion engine - Google Patents
Intake device for internal-combustion engineInfo
- Publication number
- JPS61197719A JPS61197719A JP60034485A JP3448585A JPS61197719A JP S61197719 A JPS61197719 A JP S61197719A JP 60034485 A JP60034485 A JP 60034485A JP 3448585 A JP3448585 A JP 3448585A JP S61197719 A JPS61197719 A JP S61197719A
- Authority
- JP
- Japan
- Prior art keywords
- speed
- intake
- valve
- high speed
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 22
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 abstract description 13
- 230000000694 effects Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
- F02B31/08—Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
- F02B31/085—Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Characterised By The Charging Evacuation (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野)
本発明は、気筒毎に2つの吸気弁を備えた内燃機関の吸
気系の改善技術に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a technique for improving the intake system of an internal combustion engine having two intake valves for each cylinder.
〈従来の技術〉
この種の内燃機関の吸気系としては、例えば、第4図に
示すようなものがある(特願昭59−60918号)。<Prior Art> An example of an intake system for this type of internal combustion engine is shown in FIG. 4 (Japanese Patent Application No. 60918/1982).
これについて説明すると、各気筒毎に備えられた低速用
吸気弁1及び高速用吸気弁2の開時期を変え、これら各
吸気弁1,2に通じる低速用吸気ポート3及び高速用吸
気ポート4を独立して設けると共に、排気弁5とのオー
バーラツプの大きな高速用吸気弁2が装着された高速用
吸気ポート4に開閉弁6が設けてあり、低速用及び高速
用の両吸気ポート3,4上流側の吸気通路7には吸気絞
り弁8が1つ介装されている。To explain this, the opening timing of the low-speed intake valve 1 and high-speed intake valve 2 provided for each cylinder is changed, and the low-speed intake port 3 and high-speed intake port 4 that communicate with these intake valves 1 and 2 are changed. An on-off valve 6 is provided at the high-speed intake port 4, which is installed independently and has a high-speed intake valve 2 that overlaps greatly with the exhaust valve 5. One intake throttle valve 8 is interposed in the intake passage 7 on the side.
そして、吸入空気流量が所定値未満の運転領域では、開
閉弁6を全開とすることにより低速用吸気ポート3のみ
から燃焼室周壁に沿って流入する空気流を利用して燃焼
室内に強いスワール流を発生させて燃焼性改善を図って
いる。In an operating range where the intake air flow rate is less than a predetermined value, the on-off valve 6 is fully opened to create a strong swirl inside the combustion chamber by utilizing the airflow flowing only from the low-speed intake port 3 along the peripheral wall of the combustion chamber. The aim is to improve flammability by generating
一方、吸入空気流量が所定値以上になると、該流量が増
大するにしたがって、即ち、回転速度。On the other hand, when the intake air flow rate exceeds a predetermined value, as the flow rate increases, that is, the rotational speed.
負荷が増大するにしたがって開閉弁6の開度を徐々に増
大させて高速用吸気ポート4の開口薗積を漸増させ、機
関の最大出力域で開閉弁6を略全開とすることにより、
開□閉弁6開直後の未燃HC排 ゛出量増大を抑制しつ
つ吸気充填効率の向上を図っている。As the load increases, the opening degree of the on-off valve 6 is gradually increased to gradually increase the opening area of the high-speed intake port 4, and the on-off valve 6 is approximately fully opened in the maximum output range of the engine.
Open□Close Valve 6 is aimed at improving intake air filling efficiency while suppressing an increase in the amount of unburned HC discharged immediately after opening.
ところで、上述のものにおいては、開閉弁6の閉時、そ
の下流側の高速用吸気ポート4部分にオリフィスを介装
した新気導入通路9を介して吸気絞り弁8上流側の大気
圧に近い新気を高速用吸気弁2が閉じてから次に開くま
での間龜吸入させ、排気圧との差圧を小さくし□て続く
排気弁5とのオーバーラッ□プ期間に排気が高速用−気
ポート4内に流入するのを阻止し、混合気に混入する既
燃ガス量を大幅に低減して燃焼性能の改善を図っている
。By the way, in the above-mentioned device, when the on-off valve 6 is closed, the air pressure close to the atmospheric pressure on the upstream side of the intake throttle valve 8 is passed through the fresh air introduction passage 9 in which an orifice is inserted in the high-speed intake port 4 portion on the downstream side. Fresh air is sucked in from when the high-speed intake valve 2 closes to when it next opens, and the differential pressure with the exhaust pressure is reduced.Then, during the overlap period with the subsequent exhaust valve 5, the exhaust is This prevents the gas from flowing into the air port 4, significantly reducing the amount of burned gas mixed in the air-fuel mixture, and improving combustion performance.
(発明が解決しようとする問題点〉
しかしながら、上述のように、新気導入によって排気の
逆流阻止を図ったものにおいても、以下に示すように、
なお改善の余地があった。(Problems to be Solved by the Invention) However, as described above, even in the case where the backflow of exhaust gas is prevented by introducing fresh air, as shown below,
However, there was room for improvement.
即ち、前記構成のものは、低速用及び高速用の吸気ポー
ト3.4が共に吸気絞り弁8の下流に設けられているた
め、アイドリング時には開閉弁6の上流圧は吸気負圧に
等しくなる。That is, in the configuration described above, since both the low-speed and high-speed intake ports 3.4 are provided downstream of the intake throttle valve 8, the upstream pressure of the on-off valve 6 becomes equal to the intake negative pressure during idling.
このため、高速用吸気ポート4内に新気を導入して該吸
気ポート4内を大気圧近くまで昇圧させると開閉弁6の
前後差圧が大となり、開閉弁6の、シール性が問題とな
ってくる。For this reason, when fresh air is introduced into the high-speed intake port 4 and the pressure inside the intake port 4 is increased to near atmospheric pressure, the differential pressure across the on-off valve 6 becomes large, and the sealing performance of the on-off valve 6 becomes a problem. It's coming.
ところで、複数の気筒の開閉弁6が同一の回転軸10に
よって開閉制御される場合、開閉弁6のシール性能を高
めていくと次のような問題が発生する。By the way, when the on-off valves 6 of a plurality of cylinders are controlled to open and close by the same rotating shaft 10, the following problem occurs when the sealing performance of the on-off valves 6 is improved.
一般に、シリンダヘッドはアルミ製であり、また、開閉
弁6のハウジングも軽量化のためにはアルミ材を用いる
のが望ましい。Generally, the cylinder head is made of aluminum, and the housing of the on-off valve 6 is also preferably made of aluminum in order to reduce weight.
しかしながら、前記回転軸10は、その径を十分大きく
採ることが困難である(吸気の抵抗となる)上、開閉弁
6を取り付けるために平面に削り落とし、取付ネジの孔
まで形成することからアルミ材では強度的に困難で、鉄
系の材料を用いることが・必要となる。However, it is difficult to make the rotating shaft 10 sufficiently large in diameter (which creates resistance to air intake), and the rotating shaft 10 is made of aluminum because it has to be ground down to a flat surface in order to install the on-off valve 6 and holes for the mounting screws are formed. It is difficult to use steel in terms of strength, and it is necessary to use iron-based materials.
゛ この場合、機関の運転状態によって・、シリンダ
ヘッドを始めとする各構成部品の温度は、例えば冬期の
スタート時の一20℃から高速走行時の+130℃付近
まで150 ”前後の範囲で変化し、従って、前記各構
成部品は熱による影響を受けることになる。 ・
そして、鉄とアルミとでは熱膨張率は倍程1度異なり、
常温で開閉弁6を回転軸10に高速用吸気ポート4との
間に殆ど隙間のない状態で取り付けると、温度の上昇す
る運転領域である高速時に、熱、 膨張による
回転軸10の軸線方向の伸び量と開閉弁6のハウジング
の同方向の伸び量との相違が大きくなり、それに伴って
開閉弁6が高速用吸気ポート4の壁面に食い込み、開弁
不能となって機関の出力が低下してしまうという問題が
発生する。゛ In this case, depending on the operating condition of the engine, the temperature of each component, including the cylinder head, changes over a range of about 150 degrees, from -20 degrees Celsius at the start in winter to around +130 degrees Celsius when running at high speed. , Therefore, each of the above components is affected by heat. ・The thermal expansion coefficients of iron and aluminum differ by about 1 degree,
If the on-off valve 6 is attached to the rotating shaft 10 at room temperature with almost no gap between it and the high-speed intake port 4, the axial direction of the rotating shaft 10 due to heat and expansion will occur at high speeds where the temperature increases. The difference between the amount of elongation and the amount of elongation of the housing of the on-off valve 6 in the same direction becomes large, and as a result, the on-off valve 6 bites into the wall of the high-speed intake port 4, making it impossible to open and reducing engine output. The problem arises that the
このため、開閉弁6と高速用吸気ポート4壁との間に予
めある程度の隙間を設けて・おく必要があり、どうして
もシール性が低下してしまう。For this reason, it is necessary to provide a certain amount of clearance in advance between the on-off valve 6 and the wall of the high-speed intake port 4, which inevitably reduces the sealing performance.
十分なシール性が得られない場合には、導入された新気
が開閉弁6から上流側の吸気通路7内に漏れ、各気筒の
高速用吸気ポート4内の圧力にバラツキが生じることに
なる。If sufficient sealing performance is not achieved, the introduced fresh air will leak from the on-off valve 6 into the intake passage 7 on the upstream side, causing variations in the pressure in the high-speed intake port 4 of each cylinder. .
この場合、各気筒毎に残留ガス割合が異なることになる
ため、燃焼にバラツキを生じ、回転が不安定となる可能
性がある。In this case, the proportion of residual gas differs for each cylinder, which may cause variations in combustion and unstable rotation.
本発明はこのような従来の問題点に鑑み為されたもので
、開閉弁上・下流間の圧力差を減少することにより開閉
弁下流側に導入された新気の漏出を抑制し、以て排気の
吹き返し防止効果を高めることにより、アイドリング時
などの燃焼性能を可及的に改善した内燃機関の吸気装置
を提供することを目的とする。The present invention was developed in view of these conventional problems, and by reducing the pressure difference between the upper and downstream sides of the on-off valve, the leakage of fresh air introduced downstream of the on-off valve is suppressed. An object of the present invention is to provide an intake device for an internal combustion engine that improves combustion performance during idling as much as possible by increasing the effect of preventing blowback of exhaust gas.
く問題点を解決1するための手段)
このため本発明は、吸気通路の下流部分を、低速用絞り
弁を有し低速用吸気弁に通じる低速用吸気通路と、高速
用絞り弁を有し高速用吸気弁に通じる高速用吸気通路と
、に分岐して設け、少なくともアイドリングを含む低速
領域で閉じ高速領域で運転条件変化に応じて開閉制御さ
れる開閉弁を高速用吸気通路の各気筒の高速用吸気弁近
傍のポート部分に設ける一方、前記開閉弁の開弁領域に
おいて機関吸入空気流量の増減に応じて前記高速用絞り
弁の開度を増減制御する制御手段を設けた構成とした。(Means for Solving Problems 1) For this reason, the present invention provides a structure in which the downstream portion of the intake passage has a low-speed intake passage having a low-speed throttle valve and communicating with the low-speed intake valve, and a high-speed throttle valve. A high-speed intake passage leading to a high-speed intake valve is provided, and an open/close valve is provided for each cylinder in the high-speed intake passage, which closes at least in the low-speed range including idling and is controlled to open and close in the high-speed range according to changes in operating conditions. A control means is provided in a port near the high-speed intake valve, and controls the opening degree of the high-speed throttle valve to increase or decrease in accordance with an increase or decrease in the engine intake air flow rate in the opening region of the on-off valve.
く作用〉 次に、かかる構成による作用を説明する。Effect〉 Next, the effect of this configuration will be explained.
アイドリング時を含む低速運転時においては、開閉弁と
高速用絞り弁は最小開度となっており、低速用絞り弁の
みが開いている。During low-speed operation, including idling, the on-off valve and the high-speed throttle valve are at their minimum opening degrees, and only the low-speed throttle valve is open.
この状態で圧縮行程半ば近くで高速用吸気弁が閉じた時
は、開閉弁下流側の高速用吸気ポート内は負圧状態とな
っており、一方、開閉弁上流側は高速用絞り弁を介して
大気に通じている。In this state, when the high-speed intake valve closes near the middle of the compression stroke, the inside of the high-speed intake port on the downstream side of the on-off valve is in a negative pressure state, while the upstream side of the on-off valve is in a negative pressure state through the high-speed throttle valve. It communicates with the atmosphere.
このため大気圧に近い新気が、開閉弁と高速用吸気ポー
トとの間の隙間から高速用吸気ポート内に流入し、これ
により高速用吸気ポート内の圧力は徐々に上昇して次に
高速用吸気弁が開くまでに大気圧近くまで上昇する。For this reason, fresh air close to atmospheric pressure flows into the high-speed intake port through the gap between the on-off valve and the high-speed intake port, and as a result, the pressure inside the high-speed intake port gradually increases until the next high-speed By the time the air intake valve opens, the pressure rises to near atmospheric pressure.
一方、高速用吸気弁が開かれる時、燃焼室内は残留排気
が略大気圧に近い状態で満たされている。On the other hand, when the high-speed intake valve is opened, the combustion chamber is filled with residual exhaust gas at approximately atmospheric pressure.
従って、引き続き排気行程上死点に至るまでに燃焼室内
の残留排気は開閉弁で封じ込まれた高速用吸気ポート内
への吹き返しを抑制され、大部分は排気ポートへ排出さ
れる。Therefore, until the exhaust stroke reaches the top dead center of the exhaust stroke, the residual exhaust gas in the combustion chamber is prevented from blowing back into the high-speed intake port sealed by the on-off valve, and most of it is discharged to the exhaust port.
また、高速運転時には、開閉弁が閉から開に切り換えら
れ、これ以後、吸入空気流量の増大に応じて高速用絞り
弁が制御手段により制御されて徐々に開き始め、高速用
吸気ポートからも吸気が行われる。In addition, during high-speed operation, the on-off valve is switched from closed to open, and after that, the high-speed throttle valve is controlled by the control means and gradually begins to open according to the increase in the intake air flow rate, and the intake air is also drawn from the high-speed intake port. will be held.
〈実施例〉
以下に第1図〜第3図に示す実施例の説明を行う。尚、
従来例と同一要素については第4図と同一符号を附して
説明する。<Example> The example shown in FIGS. 1 to 3 will be described below. still,
Elements that are the same as those in the conventional example will be described with the same reference numerals as in FIG. 4.
機関の各気筒の燃焼室には、開閉時期の等しい一対の排
気弁5の閉弁時期より早く開弁する高速用吸気弁2と、
これよりも開弁時期を遅らせた低速用吸気弁1と、が備
えられている。In the combustion chamber of each cylinder of the engine, there is a high-speed intake valve 2 that opens earlier than the closing timing of a pair of exhaust valves 5 whose opening and closing timings are equal;
A low-speed intake valve 1 whose opening timing is later than this is provided.
そして、低速用及び高速用吸気弁1,2に至る吸気通路
は次のように構成されている。The intake passages leading to the low-speed and high-speed intake valves 1 and 2 are configured as follows.
即ち、上流端が図示しないエアクリーナに接続された吸
気管11の下流端部が2又に分岐し、その2つの下流端
に夫々低速用マニホールド12と高速用マニホールド1
3とが接続される。That is, the downstream end of the intake pipe 11 whose upstream end is connected to an air cleaner (not shown) branches into two, and a low-speed manifold 12 and a high-speed manifold 1 are installed at the two downstream ends, respectively.
3 is connected.
吸気管11の低速用マニホールド12が接続される側の
下流端部には低速用絞り弁14が、高速用マニホールド
13が接続される側の下流端部には高速用絞り弁15が
それぞれ介装される。A low-speed throttle valve 14 is installed at the downstream end of the intake pipe 11 to which the low-speed manifold 12 is connected, and a high-speed throttle valve 15 is installed to the downstream end of the intake pipe 11 to which the high-speed manifold 13 is connected. be done.
また、低速用マニホールド12と高速用マニホールド1
3とから気筒数ずつ分岐する各ブランチ部が、夫々各気
筒の低速用吸気弁1に至る低速用吸気ポート16と、高
速用吸気弁2に至る高速用吸気ポート17とに接続され
る。In addition, low speed manifold 12 and high speed manifold 1
3, each branch part is connected to a low-speed intake port 16 leading to the low-speed intake valve 1 of each cylinder, and a high-speed intake port 17 leading to the high-speed intake valve 2 of each cylinder.
これにより、吸気管11の分岐部から低速用マニホール
ド12及び低速用吸気ポート16を経て低速用吸気弁1
に至る低速用吸気通路と、同じく吸気管11の分岐部か
ら高速用マニホールド13及び高速用吸気ポート17を
経て高速用吸気弁2に至る高速用吸気通路と、が独立し
て設けられる。As a result, the low speed intake valve 1 is passed from the branch part of the intake pipe 11 to the low speed manifold 12 and the low speed intake port 16.
A low-speed intake passage leading to the high-speed intake valve 2 is provided independently, and a high-speed intake passage similarly extends from the branch portion of the intake pipe 11 to the high-speed intake valve 2 via the high-speed manifold 13 and the high-speed intake port 17.
また、高速用吸気ポート17には、少なくともアイドリ
ングを含む低速領域で閉じ高速領域で運転条件変化に応
じて開閉制御される開閉弁6が設けられる。Further, the high-speed intake port 17 is provided with an on-off valve 6 that closes in a low-speed range including at least idling and is controlled to open and close in a high-speed range according to changes in operating conditions.
この開閉弁6は、高速用吸気ポート17との間に予め所
定の漏れ量(差圧500mmHgで40〜60 It
/l1in程度の漏れ量)を与えるように、隙間を形成
して取り付けられている。This on-off valve 6 has a predetermined leakage amount (40 to 60 It at a differential pressure of 500 mmHg) between it and the high-speed intake port 17.
It is installed with a gap formed so as to provide a leakage amount of about /l1in.
ここで、低速用絞り弁14の支軸21はアクセルペダル
に連動し運転者の意志にしたがって開度が調整される。Here, the support shaft 21 of the low-speed throttle valve 14 is linked to the accelerator pedal, and the opening degree is adjusted according to the driver's intention.
また、高速用絞り弁15の支軸22はステッピングモー
タ23に接続され、該ステッピングモータ23は、機関
運転状態を入力した制御回路24からの出力信号により
例えば第3図に示すように駆動制御される。Further, the support shaft 22 of the high-speed throttle valve 15 is connected to a stepping motor 23, and the stepping motor 23 is driven and controlled, for example, as shown in FIG. Ru.
この場合、開閉弁6が閉の低速領域では高速用絞り弁1
5は最小開度(但し、開閉弁6よりは十分に大きな開度
とする。)であるが、開閉弁6が半ば0N−OFF的に
開弁する時点から開度を徐々に増していき、吸入空気流
量の増大に応じて高速領域で全開となる特性を与える。In this case, in the low speed region where the on-off valve 6 is closed, the high speed throttle valve 1
5 is the minimum opening degree (however, the opening degree should be sufficiently larger than that of the on-off valve 6), but the opening degree is gradually increased from the point when the on-off valve 6 opens half way in the 0N-OFF state. It has the characteristic of fully opening in the high speed range as the intake air flow rate increases.
尚、ステッピングモータ23及び制・御回路24により
制御手段が構成される。Note that the stepping motor 23 and the control/control circuit 24 constitute a control means.
次に、かかる構成による作用を説明する。Next, the effect of this configuration will be explained.
圧力センサによって検出される吸気負圧と速度センサに
よって検出される機関回転速度とによって検出されるア
イドリング時を含む低速運転時においては、開閉弁6と
高速用絞り弁15は最小開度となっており、低速用絞り
弁14のみが開いている。During low-speed operation, including idling, which is detected by the intake negative pressure detected by the pressure sensor and the engine rotational speed detected by the speed sensor, the on-off valve 6 and the high-speed throttle valve 15 are at their minimum opening degrees. Therefore, only the low speed throttle valve 14 is open.
この状態で圧縮行程半ば近くで高速用吸気弁2が閉じた
時は、開閉弁6下流側の高速用吸気ポート17内は負圧
状態となっており、一方、開閉弁6上流側は高速用絞り
弁15を介して図示しないエアクリーナに通じている。In this state, when the high-speed intake valve 2 closes near the middle of the compression stroke, the interior of the high-speed intake port 17 on the downstream side of the on-off valve 6 is in a negative pressure state, while the upstream side of the on-off valve 6 is in a high-speed intake port 17. It communicates with an air cleaner (not shown) via a throttle valve 15.
このため大気圧に近い新気が、開閉弁6と高速用吸気ポ
ート17との間の隙間から高速用吸気ポート17内に流
入し、これにより高速用吸気ポート17内の圧力は徐々
に上昇して次に高速用吸気弁2が開くまでに大気圧近く
まで上昇する。Therefore, fresh air close to atmospheric pressure flows into the high-speed intake port 17 through the gap between the on-off valve 6 and the high-speed intake port 17, and as a result, the pressure inside the high-speed intake port 17 gradually increases. The pressure then rises to near atmospheric pressure by the time the high-speed intake valve 2 opens.
一方、高速用吸気弁2が開かれる時、燃焼室内は残留排
気が略大気圧に近い状態で満たされている。On the other hand, when the high-speed intake valve 2 is opened, the combustion chamber is filled with residual exhaust gas at approximately atmospheric pressure.
従って、引き続き排気行程上死点に至るまでに燃焼室内
の残留排気は開閉弁6で封じ込まれた高速用吸気ポート
17内への吹き返しを抑制され、大部分は排気ポートへ
排出される。Therefore, until reaching the top dead center of the exhaust stroke, the residual exhaust gas in the combustion chamber is prevented from blowing back into the high-speed intake port 17 sealed by the on-off valve 6, and most of it is discharged to the exhaust port.
この結果、引き続く吸気行程において燃焼室内に混入す
る残留排気の割合を可及的に減少でき燃焼改善効果を十
分高めることができる。As a result, the proportion of residual exhaust gas that enters the combustion chamber in the subsequent intake stroke can be reduced as much as possible, and the combustion improvement effect can be sufficiently enhanced.
そして、吸気管11の下流端部を2又に分岐し、アクセ
ルペダルに連動する低速用絞り弁14を低速用吸気通路
に設けたことにより、開閉弁6上流側は低速時でも大気
圧近くに保たれ、従って、開閉弁6下流側から上流側へ
の新気の漏出を防止できる。By bifurcating the downstream end of the intake pipe 11 into two and installing a low-speed throttle valve 14 in conjunction with the accelerator pedal in the low-speed intake passage, the upstream side of the on-off valve 6 is kept close to atmospheric pressure even at low speeds. Therefore, leakage of fresh air from the downstream side of the on-off valve 6 to the upstream side can be prevented.
このように、開閉弁6め上流側への新気の漏出防止によ
り下流側の高速用吸気ポート17内の圧力のバラツキを
抑制でき、以て、気筒毎の残留排気割合が均一化して燃
焼のバラツキを解消でき、アイドリング等の回転の安定
性が保たれる。In this way, by preventing the leakage of fresh air to the upstream side of the on-off valve 6, it is possible to suppress variations in the pressure inside the high-speed intake port 17 on the downstream side, and thereby equalize the proportion of residual exhaust gas in each cylinder and improve combustion. Variations can be eliminated and rotational stability such as idling can be maintained.
詳細には、このように高速用マニホールド13の開閉弁
6上流側を高速用絞り弁15を介して大気に連通した場
合ミ吸気行程時には高速用吸気弁2が開くため、開閉弁
6下流側は吸気負圧となっで上流側との差圧は大とな為
が喚気行程は全行程の1/4に過ぎず、残り3への行程
で差圧を鹸消し得る。Specifically, when the upstream side of the on-off valve 6 of the high-speed manifold 13 is communicated with the atmosphere via the high-speed throttle valve 15, the high-speed intake valve 2 opens during the intake stroke, so the downstream side of the on-off valve 6 opens. Since the intake pressure is negative and the differential pressure with the upstream side is large, the ventilation stroke is only 1/4 of the total stroke, and the differential pressure can be eliminated in the remaining three strokes.
また、吸気1テ程時は低速用吸気弁lも開いているから
、開閉弁6下流の高速用吸気ポート17は低速用マニホ
ールド12とは連通しており、ガスの出入りがあるため
、気筒毎の圧力のバラツキは解消される。In addition, since the low-speed intake valve l is also open during one intake stroke, the high-speed intake port 17 downstream of the on-off valve 6 communicates with the low-speed manifold 12, and gas enters and exits from cylinder to cylinder. The variation in pressure is eliminated.
さらに、開閉弁6と高速用吸気ポート17との間に隙間
を形成しただけで下流側に新−を導入できる利点を有し
、従来のような連通管を設ける必要がないため、コスト
及びレイアウトの面でも有利である。Furthermore, it has the advantage that a new valve can be introduced downstream by simply forming a gap between the on-off valve 6 and the high-speed intake port 17, and there is no need to provide a communication pipe like in the past, reducing costs and layout. It is also advantageous in terms of
また、低速用マニホールド12及び低速用吸気ボー)1
6を長くし、高速用マニホールV13及び高速用吸気ポ
ート17を短くすること社より、低速時・高速時の吸気
脈動特性をそれぞれの運転領域にマツチさせ、充填率の
向上を図ることも可能であり、これについても高速用絞
り弁1邑の開度調整により微妙にfltlJfalする
ことができる。In addition, low speed manifold 12 and low speed intake bow) 1
6 and shorten the high-speed manifold V13 and high-speed intake port 17, it is possible to match the intake pulsation characteristics at low speeds and high speeds to the respective operating ranges and improve the filling rate. This can also be finely adjusted by adjusting the opening of one high-speed throttle valve.
ニオ、吸気負圧と機関回転速度とにより検出される所定
以上の高速迩転時には、図示しないアクチュエータによ
り開閉弁6が閉から開に切り換えられ、これ以後、吸入
空気流量の増大に応じて制御回路24からステッピング
モータ23に信号が送られて、高速用絞り弁15が徐々
に開き始める。During high-speed rotation exceeding a predetermined value, which is detected based on the intake air negative pressure and the engine rotational speed, the on-off valve 6 is switched from closed to open by an actuator (not shown), and from then on, the control circuit opens according to the increase in the intake air flow rate. 24 sends a signal to the stepping motor 23, and the high speed throttle valve 15 begins to gradually open.
このようにして、高速用吸気ポート17が開通すると、
低連用吸気弁1に比べて開時期が早く、閉時期は大幅に
遅くした高速用吸気弁2を併用して吸気が行われるため
、有効圧縮比の減少により吸気の圧縮上死点温度、圧力
の上昇を抑制してノッキングの発生を抑制し、また、高
速用吸気ポートi7の開通による吸気流通抵抗減少効果
とにより、充填効率を向上させて出力の向上を図ること
ができる。In this way, when the high-speed intake port 17 is opened,
Since intake is performed using the high-speed intake valve 2, which opens earlier than the low-speed intake valve 1 and closes much later than the low-speed intake valve 1, the compression top dead center temperature and pressure of the intake air decrease due to a decrease in the effective compression ratio. It is possible to suppress the rise in the engine speed, thereby suppressing the occurrence of knocking, and to reduce the intake air circulation resistance by opening the high-speed intake port i7, thereby improving the filling efficiency and increasing the output.
ここで、本実施例においては、高速用絞り弁15は、機
関運転条件の変化に対して徐々に開度を変化させるよう
にしているため、高速用吸気ポート17からの吸入空気
流量が一気に増えることが抑制されるので、低速用吸気
ポート16の空燃比が過濃化して未燃HCの発生が増大
することを防止でき、機関のトルク変動は防止され、安
定した特性を得ることができる。Here, in this embodiment, since the high-speed throttle valve 15 gradually changes its opening degree in response to changes in engine operating conditions, the intake air flow rate from the high-speed intake port 17 increases all at once. Therefore, it is possible to prevent the air-fuel ratio of the low-speed intake port 16 from becoming excessively enriched and the generation of unburned HC to increase, preventing engine torque fluctuations, and achieving stable characteristics.
尚、高速用絞り弁15を省略して開閉弁6を徐々に開く
ことも考えられるが、この場合、複数個の開閉弁6の開
度の小さい初期に気筒間の開度のバラツキを生じ、これ
により吸入空気流量のバラツキを生じる。It is also possible to omit the high-speed throttle valve 15 and gradually open the on-off valves 6, but in this case, the openings of the plurality of on-off valves 6 may vary at the beginning when the openings are small, and This causes variations in the intake air flow rate.
この点、本実施例では、1個の高速用絞り弁15を開度
制御するため、気筒間のバラツキが解消される。In this regard, in this embodiment, since the opening degree of one high-speed throttle valve 15 is controlled, variations among the cylinders are eliminated.
〈発明の効果〉
以上説明したように本発明によれば、アイドリング特等
低速領域では開閉弁を閉じると共に、開閉弁下流側に上
流側の新気を導入して大気圧近くまで上昇させるように
したため、排気の吹き返しを防止して燃費、出力特性を
高めることができ、また、高速用絞り弁を開度制御する
ことにより、気筒毎の開閉弁下流側圧力のバラツキ、従
って、燃焼性のバラツキが解消され、安定した回転性が
得られる。<Effects of the Invention> As explained above, according to the present invention, in the idling special low speed region, the on-off valve is closed, and fresh air on the upstream side is introduced into the downstream side of the on-off valve to raise it to near atmospheric pressure. , it is possible to prevent exhaust gas from blowing back and improve fuel efficiency and output characteristics.Also, by controlling the opening of the high-speed throttle valve, variations in the downstream pressure of the opening/closing valve for each cylinder, and therefore variations in combustibility, can be reduced. This problem is resolved and stable rotation performance is obtained.
第1図(A)及び(B)は夫々本発明の一実施例を示し
、(A)は機関低速時の状態を示す平面断面図、 (B
)は機関高速時の状態を示す平面断面図、第2図は同上
実施例において使用される高速用及び低速用の絞り弁部
分の構造を示す図、第3図は高速用絞り弁の開弁特性を
示す図、第4図は従来の内燃機関の吸気装置を示す平面
断面図である。1 (A) and (B) respectively show an embodiment of the present invention, (A) is a plan sectional view showing the state at low engine speed, (B
) is a plan cross-sectional view showing the state at high engine speed, Figure 2 is a diagram showing the structure of the high-speed and low-speed throttle valve parts used in the above embodiment, and Figure 3 is the opening of the high-speed throttle valve. FIG. 4, a diagram showing the characteristics, is a plan sectional view showing a conventional intake system for an internal combustion engine.
Claims (1)
た内燃機関の吸気装置において、 吸気通路の下流部分を、低速用絞り弁を有し前記低速用
吸気弁に通じる低速用吸気通路と、高速用絞り弁を有し
前記高速用吸気弁に通じる高速用吸気通路と、に分岐し
て設け、少なくともアイドリングを含む低速領域で閉じ
高速領域で運転条件変化に応じて開閉制御される開閉弁
を高速用吸気通路の各気筒の高速用吸気弁近傍のポート
部分に設ける一方、前記開閉弁の開弁領域において機関
吸入空気流量の増減に応じて前記高速用絞り弁の開度を
増減制御する制御手段を設けたことを特徴とする内燃機
関の吸気装置。[Scope of Claims] An intake system for an internal combustion engine including a high-speed intake valve and a low-speed intake valve for each cylinder, wherein a downstream portion of the intake passage is provided with a low-speed throttle valve; A low-speed intake passage leading to the intake valve and a high-speed intake passage having a high-speed throttle valve and leading to the high-speed intake valve are branched and are closed in a low-speed range including at least idling, and are closed in a high-speed range when operating conditions change. An on-off valve that is controlled to open and close according to the engine intake air flow rate is provided at a port near the high-speed intake valve of each cylinder in the high-speed intake passage, and the high-speed An intake system for an internal combustion engine, comprising a control means for increasing and decreasing the opening degree of a throttle valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60034485A JPS61197719A (en) | 1985-02-25 | 1985-02-25 | Intake device for internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60034485A JPS61197719A (en) | 1985-02-25 | 1985-02-25 | Intake device for internal-combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61197719A true JPS61197719A (en) | 1986-09-02 |
JPH0574690B2 JPH0574690B2 (en) | 1993-10-19 |
Family
ID=12415545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60034485A Granted JPS61197719A (en) | 1985-02-25 | 1985-02-25 | Intake device for internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61197719A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61277815A (en) * | 1985-05-31 | 1986-12-08 | Ishikawajima Shibaura Kikai Kk | Intake apparatus of direct injection type diesel engine |
FR2768774A1 (en) * | 1997-09-22 | 1999-03-26 | Nissan Diesel Motor Company | INTERNAL COMBUSTION ENGINE INTAKE APPARATUS |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS595769A (en) * | 1982-07-01 | 1984-01-12 | Nec Corp | Testing system for subscriber line |
JPS59108821A (en) * | 1982-12-14 | 1984-06-23 | Daihatsu Motor Co Ltd | Double intake valve type 4-cycle engine |
-
1985
- 1985-02-25 JP JP60034485A patent/JPS61197719A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS595769A (en) * | 1982-07-01 | 1984-01-12 | Nec Corp | Testing system for subscriber line |
JPS59108821A (en) * | 1982-12-14 | 1984-06-23 | Daihatsu Motor Co Ltd | Double intake valve type 4-cycle engine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61277815A (en) * | 1985-05-31 | 1986-12-08 | Ishikawajima Shibaura Kikai Kk | Intake apparatus of direct injection type diesel engine |
FR2768774A1 (en) * | 1997-09-22 | 1999-03-26 | Nissan Diesel Motor Company | INTERNAL COMBUSTION ENGINE INTAKE APPARATUS |
Also Published As
Publication number | Publication date |
---|---|
JPH0574690B2 (en) | 1993-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4660530A (en) | Intake system for internal combustion engine | |
JPS61197719A (en) | Intake device for internal-combustion engine | |
JP3401047B2 (en) | Engine intake system | |
JPH0332770Y2 (en) | ||
JPS62288318A (en) | Suction device for 4-stroke engine | |
JPS62103415A (en) | Suction device for multicylinder engine | |
JPS6161918A (en) | Air intake device of internal-combustion engine | |
JPH03225059A (en) | Intake temperature control device for internal combustion engine | |
JPS6350427Y2 (en) | ||
JPS5913343Y2 (en) | Vehicle internal combustion engine | |
JPH0410336Y2 (en) | ||
JPH04194318A (en) | Suction device for engine | |
JPS61205327A (en) | Intake device of internal-combustion engine | |
JPH0634581Y2 (en) | Double intake valve engine | |
JP2587230B2 (en) | Intake device for supercharged engine | |
JP2606285Y2 (en) | Swirl control device for diesel engine | |
JPS633398Y2 (en) | ||
JPH0635835B2 (en) | Internal combustion engine intake system | |
JPS64587B2 (en) | ||
JPS5862317A (en) | Suction system of multicylinder internal-combustion engine | |
JPS63266124A (en) | Intake device for engine | |
JPH0338411B2 (en) | ||
JPH03138452A (en) | Intake device for multicylinder engine | |
JPS63179132A (en) | Rotary piston engine with pumping loss reducing device | |
JPS58144643A (en) | Intake-air controlling apparatus for internal-combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |