JPS61126320A - Intake-air device in internal combustion engine - Google Patents
Intake-air device in internal combustion engineInfo
- Publication number
- JPS61126320A JPS61126320A JP59246153A JP24615384A JPS61126320A JP S61126320 A JPS61126320 A JP S61126320A JP 59246153 A JP59246153 A JP 59246153A JP 24615384 A JP24615384 A JP 24615384A JP S61126320 A JPS61126320 A JP S61126320A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- intake
- opening
- opening degree
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 19
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000000446 fuel Substances 0.000 description 14
- 230000006835 compression Effects 0.000 description 13
- 238000007906 compression Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 7
- 238000010791 quenching Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 244000171726 Scotch broom Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/02—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
- F02B31/08—Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
- F02B31/085—Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、気筒毎に2つの吸気弁を備えた内燃機関の吸
気系の改善技術に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a technology for improving the intake system of an internal combustion engine having two intake valves for each cylinder.
〈従来の技術〉
この種の内燃機関の吸気系の先行技術としては、例えば
、第5図に示すようなものがある(特願昭58−225
356号)。<Prior art> As a prior art of the intake system of this type of internal combustion engine, there is, for example, the one shown in FIG.
No. 356).
このものは、気筒毎に閉時期の遅れ大の高速型吸気弁I
Aと閉時期の遅れ小の低速型吸気弁IBとを備えると共
に、高速型吸気弁IAを介装した吸気ポート2Aに開閉
弁3を備え、該開閉弁3を機関の低速域では閉じ、高速
域では開くようにしている。This is a high-speed intake valve I with a large delay in closing timing for each cylinder.
A and a low-speed intake valve IB with a small delay in closing timing, and an on-off valve 3 is provided at the intake port 2A in which a high-speed intake valve IA is inserted, and the on-off valve 3 is closed in the low speed range of the engine and is closed in the high speed range. We are trying to open it in the area.
即ち、低速域では、閉時期の遅れが小さな低速型吸気弁
lBを介装した吸気ポート2Bのみを通じて吸気を行う
ことにより、実質的な圧縮比(以下実圧縮比という)を
高めて吸気充填効率を高めると共に、接線方向に流入す
る吸気流を利用して燃焼室4内にスワールを大きく発生
することにより、低速時の燃焼性改善を図り、一方、高
速域では閉時期の遅れが大きな高速型吸気弁IAを併用
して吸気を行うことにより、吸気の慣性効果を有効に利
用し、かつ、2つの吸気ポートを開通させることにより
吸気抵抗を減少させて吸気充填効率を高め、出力向上を
図っている。That is, in the low speed range, air is taken only through the intake port 2B equipped with the low speed intake valve IB with a small delay in closing timing, thereby increasing the effective compression ratio (hereinafter referred to as the actual compression ratio) and improving the intake air filling efficiency. In addition, by generating a large swirl in the combustion chamber 4 using the intake air flowing in the tangential direction, we aim to improve combustibility at low speeds. By using the intake valve IA in conjunction with the intake valve, the inertia effect of the intake air is effectively used, and by opening the two intake ports, the intake resistance is reduced and the intake air filling efficiency is increased, leading to improved output. ing.
また、開閉弁3は常用運転領域では開く頻度は少ないた
め、安定した空燃比制御の応答性を得るためにフューエ
ルインジェクタ5を常時開通している吸気ボート2A側
に設けている。Further, since the on-off valve 3 is opened less frequently in the normal operating range, the fuel injector 5 is provided on the side of the intake boat 2A, which is always open, in order to obtain stable air-fuel ratio control responsiveness.
尚、排気弁6A、6Bと排気ポート7A、7Bも2つず
つ備えられている。Note that two exhaust valves 6A, 6B and two exhaust ports 7A, 7B are also provided.
〈発明が解決しようとする問題点〉
ところで、かかる吸気系においては、中速域で開閉弁3
が全閉状態から瞬時に最大開度まで開かれると、吸気ボ
ート断面積が倍増するため、吸気の流速が一気に半減す
ると共に、2つの吸気ボート2A、2Bから平行に略等
量ずつ吸気が燃焼室4内に導入されるため、燃焼室4内
でのスワール生成が消滅する。<Problem to be solved by the invention> By the way, in such an intake system, the on-off valve 3 is closed in the medium speed range.
When the opening is instantaneously opened from the fully closed state to the maximum opening, the cross-sectional area of the intake boat doubles, so the flow velocity of the intake air is halved at once, and the intake air is combusted in approximately equal amounts from the two intake boats 2A and 2B in parallel. Since it is introduced into the combustion chamber 4, swirl generation within the combustion chamber 4 disappears.
このため、燃料噴霧の燃焼室4内での拡散及び空気との
混合が良好に行われず、燃料が燃焼室4壁面に付着して
形成されるクエンチ層がフューエルインジェクタ5装着
側の吸気ボート2Bに介装される吸気弁IB付近に偏り
易く、厚いクエンチ層により未燃のまま排出されるHC
(炭化水素)が増大するという問題を生じる。特に排気
ターボ過給機付内燃機関の場合、タービンロータの耐熱
上、排気温度を下げるため゛に空燃比を濃くせざるを得
ないので、クエンチ層が増大し、HC排出量の増加は顕
著なものとなる。For this reason, the diffusion of the fuel spray and the mixing with the air within the combustion chamber 4 are not performed well, and a quench layer formed by the fuel adhering to the wall surface of the combustion chamber 4 is deposited on the intake boat 2B on the side where the fuel injector 5 is installed. HC tends to be concentrated near the interposed intake valve IB, and is discharged unburnt due to the thick quench layer.
(hydrocarbons) increases. Especially in the case of an internal combustion engine with an exhaust turbo supercharger, the air-fuel ratio must be enriched to lower the exhaust temperature due to the heat resistance of the turbine rotor, which increases the quench layer and causes a noticeable increase in HC emissions. Become something.
この点に鑑み、開閉弁3を広い速度範囲に亘って徐々に
開弁させることにより、開弁時に吸気ポート2B側から
の吸気量が一気に半減されることを防止し、燃焼室4内
の燃料のクエンチ層の偏在によるHCの増加防止を図っ
たものが本出願人により提案されている。In view of this, by gradually opening the on-off valve 3 over a wide speed range, the amount of intake air from the intake port 2B side is prevented from being halved all at once when the valve is opened, and the fuel in the combustion chamber 4 is The present applicant has proposed a method for preventing an increase in HC due to uneven distribution of the quench layer.
第6図は、開閉弁3の開度を徐々に増大させた時の低速
側の吸気ボート2B及び高速側の吸気ボート2Aの吸気
量の分担率、低速側の吸気ボート2Bの空燃比及びHC
発生濃度(機関回転速度一定)の特性を示す。FIG. 6 shows the sharing ratio of the intake air amount between the low-speed side intake boat 2B and the high-speed side intake boat 2A, the air-fuel ratio of the low-speed side intake boat 2B, and the HC when the opening degree of the on-off valve 3 is gradually increased.
Shows the characteristics of generated concentration (constant engine speed).
図示のように、開閉弁3開度の増大につれて吸気ボー)
2Bの空燃比は濃化するが、HCrM度はある程度の開
度まで開弁した時点から立ち上がる i特性と
なり、開弁初期においてはHC?!1度は殆ど変化しな
い。As shown in the figure, as the opening degree of the on-off valve 3 increases, the intake bow)
The air-fuel ratio of 2B becomes enriched, but the HCrM degree rises from the moment the valve opens to a certain degree. ! Once in a while, there is almost no change.
一方、高速型吸気弁LAの閉時期が低速型吸気弁IBの
閉時期より遅く、圧縮行程半ば付近に設定しであるため
、開閉弁3が開弁に切り換わる中速域では、未だ吸気慣
性も小さいので、圧縮行程初期に高速型吸気弁IAから
開閉弁3を通じて吸気の逆流を生じ、実圧縮比が低下す
る。On the other hand, the closing timing of the high-speed intake valve LA is later than the closing timing of the low-speed intake valve IB, and is set near the middle of the compression stroke. Since the intake air is also small, a backflow of intake air occurs from the high-speed intake valve IA through the on-off valve 3 at the beginning of the compression stroke, and the actual compression ratio decreases.
この場合、低速型吸気弁IBは既に閉じているため、高
速型吸気弁IAからはピストンの上昇によって昇圧した
吸気が逆流してくるので、開閉弁3の開度増大に伴い急
激に逆流量が増大し、これにより実圧縮比も開閉弁3の
開弁初期に急激に低下する特性となる。In this case, since the low-speed intake valve IB is already closed, the intake air whose pressure has increased due to the rise of the piston flows backward from the high-speed intake valve IA, so that the reverse flow rate increases rapidly as the opening of the on-off valve 3 increases. As a result, the actual compression ratio also has a characteristic of rapidly decreasing at the beginning of opening of the on-off valve 3.
また、開閉弁3の開度を増大すると、高速用吸気ポート
2Aの吸気量の分担率が増大し、これに伴ってスワール
強度が徐々に低下する。Furthermore, when the opening degree of the on-off valve 3 is increased, the share of the intake air amount of the high-speed intake port 2A increases, and the swirl strength gradually decreases accordingly.
前記実圧縮比の低下及びスワール強度の低下は、燃焼速
度の減少につながり、したがって燃焼速度が減少する程
点火時朋を早める必要があるので、点火時期は第7図に
示すように実圧縮比の低下が大きい開閉弁3の開弁初期
に大きく進角させ、その後は、開閉弁3の開度増大に応
じて徐々に進角させる特性が要求される。The decrease in the actual compression ratio and the decrease in the swirl strength lead to a decrease in the combustion speed, and therefore, as the combustion speed decreases, it is necessary to advance the ignition timing, so the ignition timing is adjusted according to the actual compression ratio as shown in Fig. 7. A characteristic is required in which the angle is greatly advanced at the beginning of the opening of the on-off valve 3, where the decrease in the opening is large, and thereafter, the angle is gradually advanced as the opening degree of the on-off valve 3 increases.
しかし開閉弁3の開弁初期において、開閉弁3の開度に
応じて点火時期を急激に変化させるのは高精度な制御を
要求され、しかも、例えば気筒間で開閉弁3の開度にバ
ラツキを生じると(特に開度小領域ではバラツキ度が大
きくなり易い)、点火時期が進み過ぎてノンキングを発
生したり、逆に点火時期が遅過ぎて出力不足を生じたり
する。However, rapidly changing the ignition timing according to the opening degree of the on-off valve 3 at the initial stage of opening of the on-off valve 3 requires highly accurate control, and moreover, for example, the opening degree of the on-off valve 3 varies between cylinders. If this occurs (particularly in the small opening range, the degree of variation tends to increase), the ignition timing will be too advanced, causing non-king, or conversely, the ignition timing will be too late, resulting in insufficient output.
このように、開閉弁3を開閉初期でも徐々に変化させる
ことは、前記したようにHC排出量低減の上では殆ど効
果がな(、点火時期、開閉弁3開度制御の精度管理を難
しくするだけである。In this way, gradually changing the opening/closing valve 3 even in the early stages of opening/closing has little effect on reducing HC emissions as described above (it makes it difficult to control the accuracy of ignition timing and opening degree control of the opening/closing valve 3). Only.
本発明は、上記の問題点に鑑みなされたもので、開閉弁
の開度制御方式の変更により、未燃HCの低減機能を十
分溝たしつつ簡易で信頼性の高い点火制御等を行え、ひ
いては安定した運転性が得られるようにした内燃機関の
吸気装置を提供することを目的とする。The present invention has been made in view of the above-mentioned problems, and by changing the opening control method of the on-off valve, it is possible to perform simple and reliable ignition control while sufficiently achieving the function of reducing unburned HC. Further, it is an object of the present invention to provide an intake system for an internal combustion engine that allows stable drivability to be obtained.
く問題点を解決するための手段)
このため、本発明は、開閉弁を最小開度と所定開度との
間は瞬時に開動作させ、前記所定角度と最大開度との間
は段階的または連続的に開動作させる弁開度制御手段を
設けた構成とする。Therefore, the present invention opens the on-off valve instantly between the minimum opening degree and a predetermined opening degree, and gradually opens the on-off valve between the predetermined angle and the maximum opening degree. Alternatively, a configuration is provided in which a valve opening degree control means for continuously opening the valve is provided.
く作用〉
かかる構成とすることにより、開閉弁の開弁初期での弁
開度に応じた高精度の点火制御が不要となると共に、弁
開度のバラツキによるノッキングの発生や出力不足等の
問題も回避される。With this configuration, there is no need for highly accurate ignition control according to the opening degree of the on-off valve at the initial stage of opening, and problems such as knocking and insufficient output due to variations in the opening degree of the valve are eliminated. is also avoided.
〈実施例〉 以下、本発明の実施例を図に基づいて説明する。<Example> Embodiments of the present invention will be described below with reference to the drawings.
第1図〜第3図は第1の実施例を示し、図示しない排気
ターボ過給機を備えた内燃機関の各気筒毎に高速型吸気
弁11A、低速型吸気弁11B及びこれらを介装した吸
気ボート12A、12Bと2つの排気弁13A、13B
及びこれらを介装した排気ポート14A、14Bとが設
けられ、吸気ボート12Aには開閉弁15、吸気ポート
12Bにはフューエルインジェクタ16が夫々装着され
る。17は燃焼室である。1 to 3 show a first embodiment, in which a high-speed intake valve 11A, a low-speed intake valve 11B, and these are interposed in each cylinder of an internal combustion engine equipped with an exhaust turbocharger (not shown). Intake boats 12A, 12B and two exhaust valves 13A, 13B
and exhaust ports 14A and 14B are provided, and the intake boat 12A is equipped with an on-off valve 15, and the intake port 12B is equipped with a fuel injector 16, respectively. 17 is a combustion chamber.
ここで、高速型吸気弁11A、低速型吸気弁11B及び
排気弁13A、13Bの開閉特性は第4図に示すように
なっており、高速型吸気弁11Aの閉時期は圧縮行程半
ばに遅らせて設定してあり、低速型吸気弁11Bの閉時
期はこれより早く圧縮行程下死点付近に設定しである。Here, the opening/closing characteristics of the high-speed intake valve 11A, the low-speed intake valve 11B, and the exhaust valves 13A and 13B are as shown in FIG. 4, and the closing timing of the high-speed intake valve 11A is delayed to the middle of the compression stroke. The closing timing of the low-speed intake valve 11B is set earlier than this, near the bottom dead center of the compression stroke.
そして、本発明にかかる構成として、開閉弁15の開度
制御手段が次のように設けられている。各気筒の開閉弁
15は、一本のロッド18に固定され、該ロッド18の
両端には、開閉弁15を所定の中間間′度まで駆動する
アクチュエータ19と、開閉弁15を全開まで駆動する
アクチュエータ20とが連結され、この2つのアクチュ
エータ19.20の使い分けにより、開閉弁15を全閉
(最小開度)−中間開度(30゜程度)−全開く最大開
度ニア0°〜90°)の3段階の開度に選択的に制御す
るようになっている。As a configuration according to the present invention, an opening control means for the on-off valve 15 is provided as follows. The on-off valve 15 of each cylinder is fixed to a single rod 18, and at both ends of the rod 18 there are actuators 19 for driving the on-off valve 15 to a predetermined intermediate degree, and actuators 19 for driving the on-off valve 15 to a predetermined intermediate degree. The on-off valve 15 is connected to the actuator 20, and by properly using these two actuators 19 and 20, the on-off valve 15 can be fully closed (minimum opening) - intermediate opening (approximately 30°) - fully open and maximum opening near 0° to 90°. ) The opening degree is selectively controlled in three stages.
即ち、中間開度用のアクチュエータ19はその出”O−
/F19°”’ O−/ F 1B(7)−01″′″
1877° ;レート21に偏心して軸支されたレ
バー22の長孔22aに係合し、出力ロッド19aを固
定したダイアフラム19に画成される負圧作動室19c
の負圧導入口が電磁弁23のボー)a++1)+を介し
てバキュームタンク24に接続される。That is, the actuator 19 for intermediate opening is
/F19°"' O-/F 1B(7)-01"'"
1877°; Negative pressure working chamber 19c defined by the diaphragm 19 that engages with the elongated hole 22a of the lever 22 eccentrically supported by the rate 21 and fixes the output rod 19a.
A negative pressure inlet of the solenoid valve 23 is connected to the vacuum tank 24 via the a)a++1)+ of the solenoid valve 23.
前記バキュームタンク24はチェックバルブ25を介し
て図示しない吸気マニホールドから吸気負圧を導入して
蓄圧する。The vacuum tank 24 introduces negative intake pressure from an intake manifold (not shown) via a check valve 25 and accumulates the intake pressure.
一方、開閉弁15の全開用のアクチェエータ20も中間
開度用のアクチュエータ19と同様の構造を有するが、
出力ロット20aとロッド18の他端部に固定されたプ
レート26とがレバー27によって遊びなく連結される
。該アクチュエータ20のダイアフラム20bで画成さ
れる負圧作動室20cは、電磁弁28のボートaZ、b
2を介して中間開度用アクチュエータ19と電磁弁23
とを結ぶ配管に接続される。On the other hand, the actuator 20 for fully opening the on-off valve 15 has the same structure as the actuator 19 for intermediate opening.
The output rod 20a and the plate 26 fixed to the other end of the rod 18 are connected by a lever 27 without any play. The negative pressure working chamber 20c defined by the diaphragm 20b of the actuator 20 is connected to the boats aZ, b of the solenoid valve 28.
2 to the intermediate opening actuator 19 and the solenoid valve 23
It is connected to the piping that connects the
一方、吸気ボート12A、12Bの合流部の吸気圧信号
を検出する吸気圧センサ29を設け、この吸気圧センサ
29からの吸気圧信号と、図示しないクランク角センサ
等からの回転速度信号を入力するコントロールユニット
30により、前記2つの電磁弁23、28を機関運転領
域に応じてON・OFF制御することにより、開閉弁1
5を開度制御する。On the other hand, an intake pressure sensor 29 is provided to detect the intake pressure signal at the confluence of the intake boats 12A and 12B, and the intake pressure signal from this intake pressure sensor 29 and the rotational speed signal from a crank angle sensor (not shown) are input. The control unit 30 controls the on-off valve 1 by controlling the two solenoid valves 23 and 28 to turn on and off according to the engine operating range.
5 to control the opening.
即ち、吸気圧が所定値(20On+mHg)未満、また
は機関回転速度が所定値(例えば2800rp+m )
未満の低負荷、低速域では、電磁弁23.28への通電
をOFFとしてボートal+a2を大気圧ボートCI+
’2に連通ずることにより、アクチュエータ19.20
の負圧作動室19c、20C内を大気圧に保持する。こ
れにより、負圧作動室19c、2Oc内に介装されたリ
ターンスプリング19d、20dの付勢力により、出力
ロット19a、20aが延び出した位置にあり、この状
態で開閉弁15は全閉(最小開度)に保持される。That is, the intake pressure is less than a predetermined value (20On+mHg), or the engine rotation speed is a predetermined value (for example, 2800 rpm+m2).
In the low load and low speed range below
By communicating with '2, actuator 19.20
The insides of the negative pressure working chambers 19c and 20C are maintained at atmospheric pressure. As a result, the output rods 19a and 20a are in the extended position due to the urging force of the return springs 19d and 20d installed in the negative pressure working chambers 19c and 2Oc, and in this state, the on-off valve 15 is fully closed (minimum (opening).
吸気圧が所定値以上で機関回転速度が所定値以上の中負
荷、中速域では電磁弁23はONとし、電磁弁28はO
FFに保持する。When the intake pressure is above a predetermined value and the engine rotational speed is above a predetermined value, the solenoid valve 23 is turned ON and the solenoid valve 28 is turned O.
Hold in FF.
これにより、電磁弁23のボートa+ がボートb1と
連通するように切り換えられ、アクチュエータ19の負
圧作動室19cにバキュームタンク24からの負圧が導
入され、リターンスプリング19dの付勢力に抗して出
力ロッド19aが引き込まれる。この場合、レバー22
の長孔22aの遊び分だけプレート26及びこれと一体
のロッド18の回動量が減少し、開閉弁■5は所定の中
間開度(例えば30°)まで瞬時に開かれる。以後、回
転速度が400Orpm程度に達するまでの中速域にお
いては、開閉弁15はこの中間開度で精度よく一定に保
たれる。As a result, the boat a+ of the solenoid valve 23 is switched to communicate with the boat b1, and negative pressure from the vacuum tank 24 is introduced into the negative pressure working chamber 19c of the actuator 19, against the biasing force of the return spring 19d. Output rod 19a is retracted. In this case, lever 22
The amount of rotation of the plate 26 and the rod 18 integral therewith is reduced by the amount of play in the elongated hole 22a, and the on-off valve 5 is instantly opened to a predetermined intermediate opening degree (for example, 30 degrees). Thereafter, in the medium speed range until the rotational speed reaches about 400 rpm, the on-off valve 15 is kept precisely constant at this medium opening degree.
このように、開閉弁15が全閉から中間開度まで一気に
開かれることにより、点火時期をステップ的に進角制御
すればよく、開度変化に応じた高精度な進角制御及び開
閉弁15開度の高精度な管理が不要となる一方、簡易に
して信頬性の高い進角制御が行われ、開閉弁15開度の
バラツキによるノッキングの発生や出力不足を回避でき
安定した運転性を維持できる。In this way, by opening the opening/closing valve 15 from fully closed to intermediate opening at once, the ignition timing can be advanced in steps, and the opening/closing valve 15 can be controlled with high accuracy in accordance with changes in opening. While highly accurate management of the opening degree is no longer required, advance angle control is performed simply and with high reliability, and it is possible to avoid knocking and insufficient output due to variations in the opening degree of the on-off valve 15, and to ensure stable drivability. Can be maintained.
そして、中間開度を適切に設定することにより、未燃H
Cの増大を良好に抑制することができる。By appropriately setting the intermediate opening, unburned H
The increase in C can be suppressed well.
さらに、回転速度が上昇して所定の高速値(4000r
pm程度)以上に達すると、電磁弁28もONとされ、
ポートaz、bz間が連通し、ハキニームタンク24か
らの負圧が電磁弁23のボー)a+、b+及び電磁弁2
8のポートaz、bzを介してアクチュエータ20の負
圧作動室20cにも導入され、出力ロッド20aが引き
込まれる。これにより、レバー27.プレート26.ロ
ッド18を介して開閉弁15が前記中間開度から全開(
最大開度)まで−気に開かれる。Furthermore, the rotation speed increases to a predetermined high speed value (4000r
When the temperature reaches above pm), the solenoid valve 28 is also turned on.
Ports az and bz communicate with each other, and the negative pressure from the hakinem tank 24 is applied to the solenoid valves 23 (a+, b+) and the solenoid valve 2.
It is also introduced into the negative pressure working chamber 20c of the actuator 20 through ports az and bz of No. 8, and the output rod 20a is drawn in. As a result, the lever 27. Plate 26. The on-off valve 15 is switched from the intermediate opening degree to the fully open position via the rod 18 (
Maximum opening degree) - open to the air.
かかる高速域では、吸気流速の増大により、吸気ポート
内及び燃焼室内での燃料と空気との混合。In such a high-speed range, the increase in intake flow velocity causes mixing of fuel and air within the intake port and combustion chamber.
気化性が良化するので、未燃HCの排出量は十分低く抑
えられる。Since the vaporization property is improved, the amount of unburned HC discharged can be suppressed to a sufficiently low level.
尚、以上のようにして、開閉弁開度を制御することによ
り、低速域ではスワールの利用と実圧縮比とを高めるこ
とによる燃費、出力の向上を図れ、高速域では慣性過給
を利用してノッキングの発生を抑制しつつ出力、燃費の
向上を図れることは勿論である。By controlling the opening degree of the on-off valve as described above, it is possible to improve fuel efficiency and output by using swirl and increasing the actual compression ratio in the low speed range, and by using inertial supercharging in the high speed range. Of course, it is possible to improve output and fuel efficiency while suppressing the occurrence of knocking.
また、本実施例では、開閉弁開度を3段階に分けた構成
としたが、これ以上の多段階に分けた制御を行ってもよ
く、さらに問題となる最小開度と中間開度との間だけを
瞬時に開閉し、中間開度か ′)ら最大開度ま
では回転速度変化に応じて連続的に開閉する構成として
もよい。In addition, in this embodiment, the on-off valve opening degree is divided into three stages, but control may be performed in more stages than this, and furthermore, the minimum opening degree and the intermediate opening degree may become problematic. It may be configured such that only the opening between the two openings is instantaneously opened and closed, and the opening between the intermediate opening and the maximum opening is opened and closed continuously according to changes in the rotational speed.
〈発明の効果〉
以上説明したように、本発明によれば、開閉弁の開度変
化に対する実圧縮比の変化が大きな最小開度から所定の
中間開度までを瞬時に開閉制御する構成としたため、未
燃HCの排出量増大を抑制しつつ、簡易な点火進角制御
を行って開閉弁開度のバラツキ等によるノッキングを発
生させることなく良好な出力制御を行えるものである。<Effects of the Invention> As explained above, according to the present invention, the structure is such that the change in the actual compression ratio with respect to the change in the opening of the on-off valve is instantaneously controlled from the minimum opening to a predetermined intermediate opening. , while suppressing an increase in the amount of unburned HC discharged, simple ignition advance control is performed, and good output control can be performed without causing knocking due to variations in opening/closing valve openings, etc.
第1図は本発明の一実施例の全体構成を示す断面図、第
2図は第1図のA矢視図、第3図は第1図のB矢視図、
第4図は同上実施例の吸・排気弁開度特性を示す線図、
第5図は本出願人による先願の概要を示す断面図、第6
図は同上先願における開閉弁開度に対する2つの吸気ポ
ートの吸気量分担率、低速側吸気ポートの空燃比、Hc
濃度特性を示す線図、第7図は同じく開閉弁開度に対す
る点火進角制御値及び実圧縮比特性を示す線図である。
11A・・・高速型吸気弁 11B・・・低速型吸気
弁12A、12B・・・吸気ポート15・・・開閉弁
18・・・ロッド 19・・・アクチュエータ(開
閉弁中間開度用)20・・・アクチュエータ(開閉弁全
開用)21、26・・・プレート 22.27・・・
レバー 22a・・・長孔 23.28・・・電磁
弁 24・・・バキュームタンク 29・・・吸気
圧センサ 30・・・コントロールユニット
特許出願人 日産自動車株式会社
代理人 弁理士 笹 島 冨二雄
漏2図
箒3図
第4図
第5図
X6図
t″ 閘閘千閘友 閑度友。
第7図
縛 19閉度 藺私FIG. 1 is a sectional view showing the overall configuration of an embodiment of the present invention, FIG. 2 is a view taken in the direction of arrow A in FIG. 1, and FIG. 3 is a view taken in the direction of arrow B in FIG. 1.
FIG. 4 is a diagram showing the intake/exhaust valve opening characteristics of the same example as above;
Figure 5 is a sectional view showing the outline of the earlier application filed by the present applicant;
The figure shows the intake air volume sharing ratio of the two intake ports with respect to the opening/closing valve opening degree, the air-fuel ratio of the low-speed intake port, and the Hc
FIG. 7 is a diagram showing the concentration characteristics, and FIG. 7 is a diagram showing the ignition advance control value and actual compression ratio characteristics with respect to the opening degree of the on-off valve. 11A...High-speed intake valve 11B...Low-speed intake valve 12A, 12B...Intake port 15...Open/close valve
18... Rod 19... Actuator (for on-off valve intermediate opening) 20... Actuator (for on-off valve fully open) 21, 26... Plate 22.27...
Lever 22a... Long hole 23. 28... Solenoid valve 24... Vacuum tank 29... Intake pressure sensor 30... Control unit patent applicant Nissan Motor Co., Ltd. agent Patent attorney Fujio Sasashima Figure 2 Broom 3 Figure 4 Figure 5
Claims (1)
、同じく相対的に小さな低速型吸気弁と、これら吸気弁
を介装した2つの吸気ポートとを備えると共に、高速型
吸気弁を介装した吸気ポートに機関運転条件に応じて開
閉する開閉弁を備えた内燃機関の吸気装置において、前
記開閉弁を最小開度と所定開度との間は瞬時に開動作さ
せ、前記所定開度と最大角度との間は段階的または連続
的に開動作させる弁開度制御手段を設けたことを特徴と
する内燃機関の吸気装置。Each cylinder is equipped with a high-speed intake valve with a relatively large closing timing delay, a low-speed intake valve with a relatively small closing timing, and two intake ports in which these intake valves are interposed. In an intake system for an internal combustion engine, in which an interposed intake port is provided with an on-off valve that opens and closes according to engine operating conditions, the on-off valve is instantaneously opened between a minimum opening degree and a predetermined opening degree, and 1. An intake system for an internal combustion engine, comprising a valve opening control means that opens the valve in stages or continuously between the maximum angle and the maximum angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59246153A JPS61126320A (en) | 1984-11-22 | 1984-11-22 | Intake-air device in internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59246153A JPS61126320A (en) | 1984-11-22 | 1984-11-22 | Intake-air device in internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61126320A true JPS61126320A (en) | 1986-06-13 |
Family
ID=17144278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59246153A Pending JPS61126320A (en) | 1984-11-22 | 1984-11-22 | Intake-air device in internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61126320A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4823748A (en) * | 1986-09-06 | 1989-04-25 | Dr. Ing. H.C.F. Porsche Aktiengesellschaft | Actuating arrangement |
WO2014058953A1 (en) * | 2012-10-11 | 2014-04-17 | Norgren Gt Development Corporation | Inlet throttle |
-
1984
- 1984-11-22 JP JP59246153A patent/JPS61126320A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4823748A (en) * | 1986-09-06 | 1989-04-25 | Dr. Ing. H.C.F. Porsche Aktiengesellschaft | Actuating arrangement |
WO2014058953A1 (en) * | 2012-10-11 | 2014-04-17 | Norgren Gt Development Corporation | Inlet throttle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3894089B2 (en) | Control device for spark ignition engine | |
US7182075B2 (en) | EGR system | |
JP2009513875A (en) | Exhaust gas recirculation system | |
JP6816833B2 (en) | Internal combustion engine and its control method | |
JPS641656B2 (en) | ||
US10584655B2 (en) | Engine exhaust device | |
JPH10274064A (en) | Engine with mechanical supercharger | |
JP2002332877A (en) | Four-stroke engine for car | |
JPS61126320A (en) | Intake-air device in internal combustion engine | |
JP2002221036A (en) | Intake system for engine | |
JP3538860B2 (en) | Engine intake system | |
JP2620259B2 (en) | Engine intake system | |
JP3412644B2 (en) | Engine intake air control system | |
US11686268B2 (en) | Internal combustion engine control method and control device | |
JPS6161918A (en) | Air intake device of internal-combustion engine | |
JP2008057463A (en) | Intake control device and control method for engine | |
JPS62291434A (en) | Air intake device for internal combustion engine | |
JP4021384B2 (en) | Control method for internal combustion engine | |
JPS6187939A (en) | Suction device for internal-combusion engine | |
JPH10141072A (en) | Control device for engine with mechanical supercharger | |
JPS62159728A (en) | Intake device for multi-cylinder internal combustion engine | |
JP4037377B2 (en) | Internal combustion engine | |
JPS6229721A (en) | Suction device for internal-combustion engine | |
JPH0396651A (en) | Exhaust gas reflux controller of diesel engine | |
JPS6220626A (en) | Suction device for diesel engine |