JPS62205669A - Manufacture of thin film solar cell - Google Patents

Manufacture of thin film solar cell

Info

Publication number
JPS62205669A
JPS62205669A JP61049184A JP4918486A JPS62205669A JP S62205669 A JPS62205669 A JP S62205669A JP 61049184 A JP61049184 A JP 61049184A JP 4918486 A JP4918486 A JP 4918486A JP S62205669 A JPS62205669 A JP S62205669A
Authority
JP
Japan
Prior art keywords
layer
solar cell
thin film
ultrasonic wave
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61049184A
Other languages
Japanese (ja)
Other versions
JPH0535582B2 (en
Inventor
Yukimi Ichikawa
幸美 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61049184A priority Critical patent/JPS62205669A/en
Publication of JPS62205669A publication Critical patent/JPS62205669A/en
Publication of JPH0535582B2 publication Critical patent/JPH0535582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To make it possible to ensure cutting of a layer to be machined, without giving effects to a lower layer, by contacting the tip part of an ultrasonic wave machining tool to the layer to be machined, relatively moving the tip part with respect to the layer to be machined, and cutting the layer. CONSTITUTION:An ultrasonic wave vibrator 51 comprising a piezoelectric element such as barium titanate is attached to a supporting body 7. The ultrasonic wave, which is generated by the vibrator 5, is converged at the tip part of a cutting tool 6 through a horn 52. A layer to be machined 10 on a solar cell substrate 1, to which said tip is contacted, is broken and separated with the energy of the ultrasonic wave. In the patterning of a metal layer, the metal layer comprising Al, Ag, Cu and the like can be cut with good selectivity without damaging an amorphous layer by adjusting the output of the ultrasonic wave vibrator 51 and a sweeping speed with respect to the substrate 1.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、一枚の透光性絶縁載板上に一列に配置された
複数の透明電極上に半導体薄膜および金属電極層を積層
し、それぞれを平行な切断部により分割して直列接続さ
れた複数個のユニットセルよりなる薄膜太陽電池を製造
する方法に関する。
In the present invention, a semiconductor thin film and a metal electrode layer are laminated on a plurality of transparent electrodes arranged in a row on a single translucent insulating plate, and each is divided by parallel cut parts and connected in series. The present invention relates to a method for manufacturing a thin film solar cell comprising a plurality of unit cells.

【従来技術とその問題点】[Prior art and its problems]

原料ガスのグロー放電分解や光CVDにより形成される
アモルファス半導体膜は気相成長であるため、原理的に
大面積化が容易であり、低コスト大間電池材料として期
待されている。こうしたアモルファス太陽電池から発電
した電力を効率よく取り出すためには、太陽電池の”I
t Tlを、例えば第3図に示すような形状とし、ユニ
ットセルが直列接続されるような構造にすることが望ま
しい。この構造は、ガラス基板等の透明絶縁基板1上に
透明電極21.22.23.24・・・を短冊状に形成
し、その上に光起電力発生部であるアモルファス半導体
膜31、32.33.34・・・、次いで金属電極41
.42.43゜44・・・の順に形成する。そして一つ
のユニットセルの透明?Itiが隣接するユニットセル
の金属電極と一部接触する構造となるように両電極およ
びアモルファス層のパターンを構成する。 こうしたパターンの形成には、レーザスクライブ技術が
最近用いられるようになってきた。これにより従来のフ
ォトエツチングを用いる場合に比べてパターニングの工
程数が減り、コストの低減が図れるという利点が生ずる
。 レーザスクライブを用いたパターニングでは、まず基板
1の全面に形成された透明導電膜上に通常YAGレーザ
を用いるレーザからの光を集光したビームを掃引し、短
冊状の透明型i21.22.23・・・を形成する。そ
の上にアモルファス層を全面に形成し、そののち同様に
集光されたレーザビームを掃引することにより分割して
短冊状のアモルファスi領域31.32.33・・・を
形成する。 第4図は、パターニングされた透明電極21.22゜2
3上にアモルファスMi3を全面に被着したのち、切断
部8を形成した状態を示す、しかしこの場合、レーザ出
力が小さくてA部に示すようにアモルファス層3を完全
に切断しきれないと、その上に設けられろ金属i極42
が透明電極23と接続されず、ユニットセルの直列接続
が遮断されるため太陽電池の出力が生しない。また、レ
ーザ出力が大きすぎるとB部に示すように透明ii1極
24を切断してしまい、このあと形成される金属′電極
43と透明電極24との接駐面禎が小さくなって低抵抗
の接続ができない。一方、第5図に示すようにパターニ
ングされた透明電極及びアモルファス層に金属層4を全
面に形成し、YAGレーザを用いて金属層を分割する場
合、レーザビーム出力の調整はアモルファス層切断の場
合よりもさらに困難である。すなわち、レーザ出力が小
さいと金属層4は完全には切断されずに0部に示すよう
に隣合ったユニットセルが短絡されてしまい、また出力
が大き過ぎるとD部に示すように透明型123まで同時
に切断され、そこでユニットセル間の接続が遮断される
という問題が生じるので、金属層4のみが切断されるレ
ーザ出力の最適条件を捜し出さねばならないが、これが
大変困難である。またす産を目的とする場合には、各太
陽電池装置ごとに異なるレーザ出力の最適条1牛を見出
しながら加工を行わなければならないということは大き
な欠点となる。さらに金DX F5の厚さや反射率にば
らつきがあると、一定の出力のレーザで掃引した場合に
も切断できない部分、あるいは透明N、桟まで切断して
しまう部分が生ずる。
Since the amorphous semiconductor film formed by glow discharge decomposition of raw material gas or photo-CVD is grown in a vapor phase, it is theoretically easy to increase the area, and it is expected to be used as a low-cost Ohma battery material. In order to efficiently extract the power generated from these amorphous solar cells, it is necessary to
It is desirable that t Tl has a shape as shown in FIG. 3, for example, and a structure in which unit cells are connected in series. In this structure, transparent electrodes 21, 22, 23, 24, . 33, 34..., then metal electrode 41
.. Form in the order of 42, 43°, 44... And the transparency of one unit cell? The patterns of both electrodes and the amorphous layer are configured so that Iti partially contacts the metal electrode of an adjacent unit cell. Laser scribing technology has recently come to be used to form such patterns. This has the advantage of reducing the number of patterning steps and reducing costs compared to the case of using conventional photoetching. In patterning using a laser scribe, first, a beam of focused light from a laser, usually a YAG laser, is swept over a transparent conductive film formed on the entire surface of the substrate 1, and a rectangular transparent mold i21.22.23 is formed. ... to form. An amorphous layer is formed on the entire surface, and then similarly divided by sweeping a focused laser beam to form strip-shaped amorphous i regions 31, 32, 33, . . . . Figure 4 shows a patterned transparent electrode 21.22°2
The figure shows a state in which amorphous Mi3 is deposited on the entire surface of the layer 3, and then a cut section 8 is formed. However, in this case, the laser output is too small to completely cut the amorphous layer 3 as shown in section A. A metal i-pole 42 is provided thereon.
is not connected to the transparent electrode 23, and the series connection of the unit cells is interrupted, so that no output is produced from the solar cell. In addition, if the laser output is too large, the transparent II1 electrode 24 will be cut as shown in part B, and the contact surface between the metal' electrode 43 and the transparent electrode 24 that will be formed later will become small, resulting in a low resistance. Unable to connect. On the other hand, when the metal layer 4 is formed on the entire surface of the patterned transparent electrode and amorphous layer as shown in FIG. 5, and the metal layer is divided using a YAG laser, the laser beam output is adjusted when cutting the amorphous layer. It is even more difficult than That is, if the laser output is too small, the metal layer 4 will not be completely cut and adjacent unit cells will be short-circuited as shown in section 0, and if the laser output is too large, the transparent mold 123 will be short-circuited as shown in section D. However, it is very difficult to find optimal conditions for the laser output so that only the metal layer 4 is cut. In addition, when the purpose is to produce rice, it is a major drawback that processing must be carried out while finding the optimum laser output for each solar cell device. Furthermore, if there are variations in the thickness or reflectance of the gold DX F5, there will be parts that cannot be cut even when swept with a laser of a constant output, or parts that will cut through the transparent N or crosspiece.

【発明の目的】[Purpose of the invention]

本発明は、上述の問題を解決して金y4電極層あるいは
半導体N IQの分割のための切断加工条件の選定が容
易で、高速で確実にしかも低い費用で行うことのできる
薄膜太陽電池の製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems and facilitates the selection of cutting processing conditions for dividing the gold Y4 electrode layer or the semiconductor NIQ, and manufactures a thin film solar cell that can be performed at high speed, reliably, and at low cost. The purpose is to provide a method.

【発明の要点】[Key points of the invention]

本発明は、?jf数の透明電極の上に積層される半導体
薄膜および金属層の少なくとも一方を、超音波振動子に
連結された超音波加工工具先端部を被加工層に接触さセ
、被加工層に対して相対的に移動させることにより切断
するもので、超音波エネルギーにより波力11工層を下
層に影響を与えることなく確実に切断することができる
ので、上述の目的が達成される。嫂数の超音波加工工具
を一列に配rして同時に液加エル)に接触させて切断す
ることは、より高速に短冊状パターンを形成する上に有
効である。
What is the present invention? At least one of the semiconductor thin film and the metal layer laminated on the transparent electrode of jf number, the tip of an ultrasonic machining tool connected to an ultrasonic vibrator is brought into contact with the layer to be processed, and the layer to be processed is The cutting is performed by relative movement, and the ultrasonic energy can reliably cut the 11th layer of wave power without affecting the underlying layer, so the above-mentioned objective is achieved. It is effective to form a strip-like pattern at a higher speed by arranging several ultrasonic machining tools in a line and simultaneously bringing them into contact with a liquid injection hole for cutting.

【発明の実施例】[Embodiments of the invention]

第1図は本発明の一実施例を示すもので、支持体7に取
付けられたチタン酸バリウムなどの圧電素子からなる超
音波振動子51で発生した超音波は、ホーン52を介し
て切断工具6の先端部に集束される。切断工具53は円
錐状をしており、その先端に接触する太陽電池基板1上
の被加工層10.アモルファス層あるいは金属1!橘層
が超音波のエネルギーにより破砕、剥、Jされる。従っ
て支持体7あるいは基板1を掃引することによりアモル
ファス層あるいは金属電捲層の条状パターンが形成され
る。 超音波振動子の周波数が数十kllz〜百k 11 z
 +出力が数十Wのものを使用することにより、数十μ
m〜数百μm幅のパターンを十〜数十口/秒の速度で切
断することができる。アモルファス大lit池では第3
図に示したようにガラス基+Iix上にSnO□などか
らなる透明電極が21〜24形成される。そのパターニ
ングはYAGレーザなどを用いたレーザスクライブ技術
により容易に行うことができる。しかし、その上に形成
されたアモルファス半導体層を第4図に示したように切
断する場合には、透明電極に損傷を与えず、しかも半導
体層が残らないようにしなければならない。レーザを用
いる場合にはレーザ出力の!Ifが難しいが、本発明に
よれば、例えば周波数20kHz、出力10Wの超音波
振動子を用いて 100μInの幅のアモルファス層を
30c+a/秒の速さで容易に破砕、f#IXMして、
分割されたアモルファス層41〜44が形成でき、しか
もガラス基板1上に形成された5nOtHJなどからな
る透明電極21〜24は超音波エネルギーにより損傷を
受けないことがわかった。このため、アモルファス層の
みを選択性よく切断することが容易に行える。 第5図に示すようにアモルファス半導体右上に全面に形
成された金属層4のバターニングにおいても、本発明に
基づき、超音波振動子の出力および基板に対する掃引速
度をアモルファス層の加工と同様の条件に調整すること
により、A1. Ag、 Cu等の全1.i’i層が下
のアモルファス層に損傷を与えることなく選択性よく切
断されることがわかった。 超音波振動子の出力が大き過ぎたり、掃引速度が遅過ぎ
る場合には、下のアモルファス層も同時に切断されるこ
とになるが、この場合でも上述のように透明電極までは
損傷を受けないため、太陽電池特性の劣化を引起こす原
因とはならない。 第2図は別の実施例で、第1図に示されるような超音波
切断工具61.62.63・・・を支持体7を介して枠
体9に取付け、分割パターン線の数だけ一列に配置し、
−回の掃引で分割線81.82.83・・・のバターニ
ングを同時に行う方法を示したものである。
FIG. 1 shows an embodiment of the present invention, in which ultrasonic waves generated by an ultrasonic vibrator 51 made of a piezoelectric element such as barium titanate attached to a support 7 are transmitted to a cutting tool via a horn 52. It is focused at the tip of 6. The cutting tool 53 has a conical shape, and its tip contacts the layer 10 to be processed on the solar cell substrate 1. Amorphous layer or metal 1! The Tachibana layer is crushed, peeled off, and peeled off by ultrasonic energy. Therefore, by sweeping the support 7 or the substrate 1, a striped pattern of an amorphous layer or a metallic electrode layer is formed. The frequency of the ultrasonic transducer is several tens of kiloz to one hundred k11z
+By using a device with an output of several tens of W, it is possible to
A pattern with a width of m to several hundred μm can be cut at a speed of ten to several tens of cuts/second. 3rd in amorphous large lit pond
As shown in the figure, transparent electrodes 21 to 24 made of SnO□ or the like are formed on the glass substrate +Iix. The patterning can be easily performed by a laser scribing technique using a YAG laser or the like. However, when cutting the amorphous semiconductor layer formed thereon as shown in FIG. 4, it is necessary to ensure that the transparent electrode is not damaged and that no semiconductor layer remains. When using a laser, the laser output! Although If is difficult, according to the present invention, for example, an amorphous layer with a width of 100 μIn is easily crushed at a speed of 30 c+a/sec using an ultrasonic vibrator with a frequency of 20 kHz and an output of 10 W, f#IXM,
It has been found that divided amorphous layers 41 to 44 can be formed, and the transparent electrodes 21 to 24 made of 5nOtHJ or the like formed on the glass substrate 1 are not damaged by ultrasonic energy. Therefore, it is easy to selectively cut only the amorphous layer. As shown in FIG. 5, in the patterning of the metal layer 4 formed entirely on the upper right side of the amorphous semiconductor, the output of the ultrasonic transducer and the sweep speed with respect to the substrate are set under the same conditions as in the processing of the amorphous layer, based on the present invention. By adjusting to A1. All 1. Ag, Cu, etc. It was found that the i'i layer could be cut with good selectivity without damaging the underlying amorphous layer. If the output of the ultrasonic transducer is too large or the sweep speed is too slow, the underlying amorphous layer will also be cut at the same time, but even in this case, the transparent electrode will not be damaged as described above. , does not cause deterioration of solar cell characteristics. FIG. 2 shows another embodiment in which ultrasonic cutting tools 61, 62, 63, etc. as shown in FIG. Place it in
This figure shows a method of simultaneously patterning the dividing lines 81, 82, 83, . . . in - times of sweeps.

【発明の効果】【Effect of the invention】

本発明によれば、直列接続型の薄膜太陽電池の半導体y
l膜および金属TL極層のバターニングにおいて、超音
波加工工具を用いることにより、透明導電膜に比べて半
導体薄膜や金rf47FJが容易に切断されることから
従来より採用されているレーザスクライブ法に比べて選
択性のよい加工が可能となり、ユニットセルの接続の遮
断が起こるおそれがなくなった。切断速度も数十cIa
/秒が容易に実現され、レーザ法に比べて遜色のないも
のである。 また、超音波加工工具そのものはそれ程高価なものでは
なく、それを複数個−列に配置することにより、−回の
掃引でバターニングを可能とする方法を用いても低コス
トの加工が実現されるという利点が得られる。
According to the present invention, semiconductor y of series-connected thin film solar cells
When patterning l films and metal TL pole layers, using an ultrasonic processing tool cuts semiconductor thin films and gold RF47FJ more easily than transparent conductive films, so we recommend using the conventional laser scribing method. Processing with better selectivity is now possible, and there is no risk of disconnection of unit cells. Cutting speed is several tens of cIa
/second is easily achieved and is comparable to the laser method. In addition, the ultrasonic machining tools themselves are not very expensive, and by arranging multiple ultrasonic machining tools in rows, low-cost machining can be achieved even by using a method that enables patterning in -1 sweeps. This gives you the advantage of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は別の
実施例を示す斜視閲、第3図はアモルファス太陽電池の
断面図、第4図、第5図はその製造工程の中間段階を示
す断面図である。 1:太V4 Ti Mk 基’tH151:[音1ti
i+Jr子、52:ホーン、G 、 61.62.63
 :超音波切断工具、81.82゜第1図 B−’tr;rt*nll工兵 第2図
Fig. 1 is a cross-sectional view showing one embodiment of the present invention, Fig. 2 is a perspective view showing another embodiment, Fig. 3 is a cross-sectional view of an amorphous solar cell, and Figs. 4 and 5 are manufacturing steps thereof. FIG. 1: Thick V4 Ti Mk Base'tH151: [Sound 1ti
i+Jr child, 52: Horn, G, 61.62.63
:Ultrasonic cutting tool, 81.82゜Figure 1 B-'tr;rt*nll Engineer Figure 2

Claims (1)

【特許請求の範囲】 1)一枚の透光性絶縁基板上に一列に配置された複数の
透明電極上に半導体薄膜および金属電極層を積層し、そ
れぞれを平行な切断部により分割して直列接続の複数ユ
ニットセルよりなる太陽電池を製造する方法において、
半導体薄膜および金属電極層の少なくとも一方を、超音
波加工工具の先端部を該被加工層に接触させ、被加工層
に対して相対的移動させることにより切断することを特
徴とする薄膜太陽電池の製造方法。 2)特許請求の範囲第1項記載の方法において、複数の
超音波加工工具を一列に配置して被加工層に同時に接触
させて切断することを特徴とする薄膜太陽電池の製造方
法。
[Claims] 1) A semiconductor thin film and a metal electrode layer are stacked on a plurality of transparent electrodes arranged in a row on a single transparent insulating substrate, and each is divided by parallel cut parts and arranged in series. In a method of manufacturing a solar cell comprising a plurality of connected unit cells,
A thin film solar cell characterized in that at least one of a semiconductor thin film and a metal electrode layer is cut by bringing the tip of an ultrasonic processing tool into contact with the layer to be processed and moving it relative to the layer to be processed. Production method. 2) A method for manufacturing a thin film solar cell according to claim 1, characterized in that a plurality of ultrasonic processing tools are arranged in a line and brought into contact with the layer to be processed at the same time to cut it.
JP61049184A 1986-03-06 1986-03-06 Manufacture of thin film solar cell Granted JPS62205669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049184A JPS62205669A (en) 1986-03-06 1986-03-06 Manufacture of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049184A JPS62205669A (en) 1986-03-06 1986-03-06 Manufacture of thin film solar cell

Publications (2)

Publication Number Publication Date
JPS62205669A true JPS62205669A (en) 1987-09-10
JPH0535582B2 JPH0535582B2 (en) 1993-05-26

Family

ID=12823950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049184A Granted JPS62205669A (en) 1986-03-06 1986-03-06 Manufacture of thin film solar cell

Country Status (1)

Country Link
JP (1) JPS62205669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949400B2 (en) * 2002-01-25 2005-09-27 Konarka Technologies, Inc. Ultrasonic slitting of photovoltaic cells and modules
JP2009187981A (en) * 2008-02-01 2009-08-20 Shiraitekku:Kk Scribing tool for solar cell panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949400B2 (en) * 2002-01-25 2005-09-27 Konarka Technologies, Inc. Ultrasonic slitting of photovoltaic cells and modules
JP2009187981A (en) * 2008-02-01 2009-08-20 Shiraitekku:Kk Scribing tool for solar cell panel

Also Published As

Publication number Publication date
JPH0535582B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
JP3129728B2 (en) Thin film semiconductor device
JPS62205669A (en) Manufacture of thin film solar cell
JP2002087836A (en) Method of machining brittle non-metallic material
JP2002033498A (en) Manufacturing method for integrated thin-film solar cell and patterning apparatus
JPH0851229A (en) Integrated solar battery and its manufacture
JPH0582993B2 (en)
JP3393842B2 (en) Method for manufacturing photoelectric conversion device
US6184058B1 (en) Integrated thin film solar battery and method for fabricating the same
JP3111820B2 (en) Manufacturing method of thin film solar cell
JP2010272869A (en) Method of manufacturing photovoltaic module
JP2586654B2 (en) Manufacturing method of thin film solar cell
JPS63274186A (en) Manufacture of thin film solar cell
JPH0758351A (en) Manufacture of thin film solar cell
JP2001210851A (en) Integrated thin-film solar cell
JPS61280680A (en) Manufacture of semiconductor device
JP2001119048A (en) Method for manufacturing integrated thin-film solar cell
JPH0243776A (en) Manufacture of thin film solar cell
JP2000208794A (en) Method of laser patterning pattern-shaped thin film of thin-film solar cell or the like
JPH08116078A (en) Manufacture of thin film solar cell
JPS6095978A (en) Photoelectric conversion semiconductor device
JPH02307278A (en) Manufacture of thin film solar battery
JP2808005B2 (en) Manufacturing method of amorphous solar cell
JPS6486567A (en) Manufacture of amorphous silicon solar cell
JPH0555612A (en) Manufacture of integrated amorphous solar battery
JP2008270560A (en) Working method of laminate and laminate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term