JPS6220462B2 - - Google Patents

Info

Publication number
JPS6220462B2
JPS6220462B2 JP53074139A JP7413978A JPS6220462B2 JP S6220462 B2 JPS6220462 B2 JP S6220462B2 JP 53074139 A JP53074139 A JP 53074139A JP 7413978 A JP7413978 A JP 7413978A JP S6220462 B2 JPS6220462 B2 JP S6220462B2
Authority
JP
Japan
Prior art keywords
function
air
change
speed
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53074139A
Other languages
Japanese (ja)
Other versions
JPS553503A (en
Inventor
Katsumi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP7413978A priority Critical patent/JPS553503A/en
Publication of JPS553503A publication Critical patent/JPS553503A/en
Publication of JPS6220462B2 publication Critical patent/JPS6220462B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は空調(空気調和)装置等における送風
制御方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for controlling air blowing in an air conditioner or the like.

従来家庭などにおいて使用する冷房装置などの
空調装置において、強風、弱風、微風のような限
定された送風速度から選んだ一定の風速による空
調運転を実行する場合には、一定の風速で一定の
方向に常時空気流を吐出しているため空調しよう
とする室内には風速や温度の定在的分布を生成す
る傾向があつた。このことは空調効果を高めるた
め空調装置運転中は一般に室内は閉鎖するので一
層顕著となり不快であるばかりか、例えばこのよ
うに空調された室内で比較的新陳代謝を要しない
読書や就寝状態の時は温度分布差が大きく最適条
件の領域が少いため部分的ではあつても冷え過ぎ
となり、かえつて健康を害したり、室内が有効に
使用できないため不経済であり、また最適条件の
設定や選定が困難であるなどの欠点があつた。
Conventionally, in air conditioners such as air conditioners used in homes, when performing air conditioning operation at a fixed wind speed selected from limited air blowing speeds such as strong wind, weak wind, and breeze, it is necessary to Since the airflow is constantly discharged in the same direction, there is a tendency to generate a stationary distribution of wind speed and temperature in the room to be air-conditioned. This is not only more noticeable and uncomfortable because the room is generally closed when the air conditioner is running to increase the air conditioning effect, but also when reading or sleeping in an air conditioned room, which does not require a relatively high metabolic rate. Because there is a large difference in temperature distribution and the area under optimal conditions is small, it may become too cold even in some areas, which may endanger your health or make it impossible to use the indoor space effectively, making it uneconomical, and it is difficult to set and select optimal conditions. There were drawbacks such as:

第1図は一般家屋に設けられた空調装置の概略
説明図で、aは空調装置、bは空調対象の空間
(室内)、cは熱交換器、dは送風フアン付モー
タ、eは整風制御板である。
Figure 1 is a schematic explanatory diagram of an air conditioner installed in a general house, where a is the air conditioner, b is the space to be air-conditioned (indoor), c is the heat exchanger, d is the motor with a blower fan, and e is the air conditioning control. It is a board.

本発明は、上記の決点を除くために、比較的均
一化された最適条件エリアを多く得るようにした
むらなし送風制御方法を提供するものである。
In order to eliminate the above-mentioned decision point, the present invention provides a uniform air blowing control method that obtains a large number of relatively uniform optimum condition areas.

この目的達成のために、本発明は送風速度が高
いときは比較的遠方まで送風され、送風速度が低
いときは比較的近距離にとどまり、送風到達距離
はほぼ送風速度または送風機モータ回転数に比例
した関係を示すことに注目し、時間の進行と共に
風速またはモータ回転数を変化可能な範囲内で平
滑に変化させることにより、吐出口の整風制御板
の拡散角度調整の作用効果と相乗し得るようにし
ている。
In order to achieve this objective, the present invention blows air to a relatively long distance when the blowing speed is high, and stays at a relatively short distance when the blowing speed is low, and the air reaching distance is approximately proportional to the blowing speed or the number of rotations of the blower motor. By paying attention to the relationship shown above, and smoothly changing the wind speed or motor rotation speed within a changeable range as time progresses, we hope to synergize with the effect of adjusting the diffusion angle of the air conditioning control plate at the discharge port. I have to.

すなわち、本発明においては空調対象の空間を
支障ない程度で常に撹乱された過度状態とするこ
とで空調対象の空間を比較的均一な空調状態にす
ることを図つている。その具体的な手段として送
風速度を時間との関係において送風速度制御範囲
内の最高値(Hi)から最低値(Lo)の間または
この間の2つの高低設定値間をあらかじめ定めた
割合の時間的変化(時間変化率)で比較的ゆつく
りと一定方向に変化するように制御し、その終端
値に達すると一定時間その終端値に保つた後風速
変化の増減の方向を逆転させて反転前と異なる時
間変化率で変化させる制御をするようにすること
を周期的に操返して行つている。
That is, the present invention aims to bring the space to be air-conditioned into a relatively uniform air-conditioned state by bringing the space to be air-conditioned into a transient state where it is constantly disturbed to an extent that does not cause any trouble. As a specific means, the air blowing speed can be changed in relation to time between the highest value (Hi) and the lowest value (Lo) within the air blowing speed control range, or between two high and low set values in between. The change (temporal rate of change) is controlled so that it changes relatively slowly in a constant direction, and when the terminal value is reached, it is maintained at that terminal value for a certain period of time, and then the direction of increase/decrease in the wind speed change is reversed to the same as before the reversal. Controlling changes at different time change rates is periodically repeated.

以下図面により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第2図は本発明を実施した空調装置の吐出口送
風速度と時間との関係を示す図で、A,B共に横
軸に時間、縦軸に送風速度(またはフアンモータ
回転数)をとつている。風速変化は時間的にt1
間内は増加しt2時間内は減少しているが、第2図
Bでは風速変化の終端値に達すると直ちに風速変
化の方向を反転させているのに対して、第2図A
では直ちに反転せずに一定時間tHまたはtLの間
終端値に保留させるものである。なおt5は風速変
化特性の一周期の時間である。またA,Bのよう
な風速の単一方向連続変化ではなく、第2図C,
D,Eのように複合的な動きを行わせて同期性を
排除する効果を加えることも可能である。
Figure 2 is a diagram showing the relationship between the outlet air blowing speed and time of an air conditioner embodying the present invention; both A and B have time on the horizontal axis and air blowing speed (or fan motor rotation speed) on the vertical axis. There is. The wind speed change temporally increases within t 1 hours and decreases within t 2 hours, whereas in Figure 2 B, the direction of the wind speed change is immediately reversed as soon as the terminal value of the wind speed change is reached. So, Figure 2A
In this case, the terminal value is held at the terminal value for a certain period of time t H or t L without being immediately reversed. Note that t 5 is the time of one cycle of the wind speed change characteristics. Also, instead of a continuous change in wind speed in a single direction as in A and B, C,
It is also possible to add the effect of eliminating synchrony by performing complex movements like D and E.

次に上記のような空調を行わせるための本発明
を実施した空調装置内の送風制御装置について説
明する。第3図は送風制御装置の構成例図であ
る。この図において14は商用電源入力端、13
は定電圧直流電源部、1〜12は制御装置の主体
となる部分でいわゆるマイクロコンピユータ機能
を行う部分である。1は零相検出制御回路、2は
中央制御処理部12(以下CPU12と略記す
る)の第1の入力端、3は操作設定制御回路、4
はCPU12の第2の入力端、5はアナログ−デ
イジタル(A−D)変換制御回路、6はCPU1
2の第3の入力端、7はクロツク発振回路、8は
その入力端、9は外部装置制御回路、10,11
はCPU12の第1、第2の制御出力端である。
さらに詳しくいえば零相検出制御回路1は、電源
電圧または電流の波形の零相時期(零交叉点)を
検出して送風器(フアン)モータの回転数を制御
するため、モータと電源との間に直列に挿入した
サイリスタの点弧位相を制御したり時間計測制御
の起点となるパルスを零相時点毎に発生し入力端
2に出力する回路である。操作設定制御回路3は
空調装置の停止や運転等の操作や機能の変更を設
定する回路で、これらはスイツチ、抵抗器、半導
体等で構成される。信号変換回路5は図示省略し
てあるが、空調室内や空調装置などに配設したサ
ーミスタなどによるセンサよりの検出温度値や設
定ボリウムコントロールの設定抵抗値等に比例す
るアナログ電流(または電圧)を処理効果の高い
デイジタルデータに変換する回路で、追従形A−
D変換回路や積分形A−D変換回路として構成す
る。また外部装置制御回路9は上記サイリスタの
位相制御や温度制御、温度表示制御等を行う目的
でサイリスタ、リレー等の制御素子や抵抗器およ
び半導体回路で構成する。さらにクロツク発振器
7は一般にMHz台の小晶発振子にて安定化され
たクロツクパルスを発生する。CPU12の第2
の制御出力11は1,3,5等の回路よりCPU
12への入力端2,4,6においていわゆるマト
リツクス入力や同期入力や区別入力等を必要に応
じて行うことを目的としている。
Next, an explanation will be given of an air blowing control device in an air conditioner implementing the present invention for performing the above air conditioning. FIG. 3 is a diagram showing an example of the configuration of the ventilation control device. In this figure, 14 is the commercial power input terminal, 13
1 is a constant voltage DC power supply section, and 1 to 12 are the main parts of the control device, which perform a so-called microcomputer function. 1 is a zero-phase detection control circuit, 2 is a first input terminal of the central control processing unit 12 (hereinafter abbreviated as CPU 12), 3 is an operation setting control circuit, 4
is the second input terminal of the CPU 12, 5 is the analog-digital (A-D) conversion control circuit, and 6 is the CPU 1
2, 7 is a clock oscillation circuit, 8 is its input terminal, 9 is an external device control circuit, 10, 11
are the first and second control output terminals of the CPU 12.
More specifically, the zero-phase detection control circuit 1 detects the zero-phase timing (zero-crossing point) of the power supply voltage or current waveform and controls the rotation speed of the fan motor. This is a circuit that controls the firing phase of a thyristor inserted in series between them, and generates a pulse that is the starting point of time measurement control at each zero-phase time point and outputs it to the input terminal 2. The operation setting control circuit 3 is a circuit for setting operations such as stopping and running the air conditioner, and changes in functions, and is composed of switches, resistors, semiconductors, and the like. Although the signal conversion circuit 5 is not shown, it converts an analog current (or voltage) proportional to the temperature value detected by a sensor such as a thermistor installed in an air-conditioned room or an air conditioner, or the set resistance value of a set volume control. A circuit that converts into digital data with high processing efficiency.
It is configured as a D conversion circuit or an integral type A-D conversion circuit. The external device control circuit 9 is composed of control elements such as thyristors, relays, resistors, and semiconductor circuits for the purpose of performing phase control, temperature control, temperature display control, etc. of the thyristor. Furthermore, the clock oscillator 7 generates a stabilized clock pulse using a small crystal oscillator, generally on the order of MHz. 2nd of CPU12
The control output 11 is sent to the CPU from circuits 1, 3, 5, etc.
The purpose is to perform so-called matrix input, synchronization input, discrimination input, etc. at the input terminals 2, 4, and 6 to 12 as necessary.

さて第3図のように入、出力回路を備え、いわ
ゆるマイクロコンピユータやLSI等で構成する
CPU12の動作を次に説明する。なおCPU12
の動作は第4図およびその変形である第5図のフ
ローチヤートにも示してあるが、その機能を順に
説明する。まず第3図の回路の電源投入に同期し
てCPU内部(または外部)の記憶部(ランダム
アクセスメモリRAM)の内容をクリアし、また
端子2よりの入力によつて電源周波数があらかじ
め定めてある周波数であることの判定処理を行
い、さらに空調装置をあらかじめ定めた初期状態
にセツトするいわゆるイニシヤライズ処理を行う
(第1の機能)、次に第1の入力端2よりの信号に
よつて電源電圧波の零相時期の検出が完了したこ
とを判定するまで待機する(第2の機能)、次に
フアンモータ回転数を最小単位で変化させるため
の動作基本時間t0(第2図参照)の経過したこと
を判定する(第3の機能)、次にフアンモータの
回転数の変化方向が減少方向であることを判定す
る(第4の機能)、次にフアンモータの回転数は
現在最低値L0でないことを判定し次の動作に進
む(第5の機能)、このときはあらかじめ定めた
割合だけフアンモータの回転数を下降させるため
データ値を修正(−1)する(第6の機能)、他
方第4の機能のときに減少方向ではなく増加方向
であると判定したならばフアンモータの回転数が
最高値Hiではないことを判定し次に進む(第7
の機能)、このときはあらかじめ定めた割合だけ
フアンモータの回転数を上昇させるためデータ値
を修正(+1)する(第8の機能)、さらに第5
の機能(の段階)においてフアンモータの回転数
がL0であると判定した場合にはあらかじめ定め
た最低値持続時間TLの経過したことを判定する
(第9の機能)、その判定出力によつてフアンモー
タの回転数の変化方向を反転させる(第10の機
能)、また第7の機能のステツプにおいてフアン
モータ回転数が最高値Hiに等しいと判定したと
きにはあらかじめ定めた最高値持続時間tHの経
過したことを判定する(第11の機能)、その判定
出力によつてフアンモータの回転数の変化方向を
反転させる(第12の機能)。
Now, as shown in Figure 3, it is equipped with an input and output circuit, and is composed of a so-called microcomputer, LSI, etc.
The operation of the CPU 12 will be explained next. In addition, CPU12
The operation is also shown in the flowchart of FIG. 4 and its modification, FIG. 5, and its functions will be explained in order. First, in synchronization with the power-on of the circuit shown in Figure 3, the contents of the CPU's internal (or external) storage section (random access memory RAM) are cleared, and the power supply frequency is predetermined by the input from terminal 2. The frequency is determined, and the air conditioner is set to a predetermined initial state (first function), and then the power supply voltage is determined by the signal from the first input terminal 2. Wait until it is determined that the detection of the zero-phase period of the wave has been completed (second function), then change the basic operation time t 0 (see Figure 2) to change the fan motor rotation speed in the minimum unit. It is determined that the number of rotations of the fan motor has passed (third function), then it is determined that the direction of change in the rotation speed of the fan motor is in the decreasing direction (fourth function), and then the rotation speed of the fan motor is currently at its lowest value. Determines that L is not 0 and proceeds to the next operation (fifth function). At this time, the data value is corrected (-1) to decrease the rotation speed of the fan motor by a predetermined percentage (sixth function) ), on the other hand, if it is determined that the rotation speed of the fan motor is not in the decreasing direction but in the increasing direction at the time of the fourth function, it is determined that the rotation speed of the fan motor is not the maximum value Hi, and the process proceeds to the next step (seventh function).
function), at this time, the data value is corrected (+1) in order to increase the rotation speed of the fan motor by a predetermined percentage (eighth function), and the fifth function
If it is determined that the rotation speed of the fan motor is L 0 in the function (stage), it is determined that a predetermined minimum value duration T L has elapsed (ninth function), and the determination output is Therefore, the direction of change in the rotation speed of the fan motor is reversed (10th function), and when it is determined that the fan motor rotation speed is equal to the maximum value H i in the step of the 7th function, the maximum value duration is determined in advance. It is determined that t H has elapsed (eleventh function), and the direction of change in the rotational speed of the fan motor is reversed based on the determination output (twelfth function).

次に上記第3の機能の段階において動作基本時
間t0を経過しないと判定した第1の場合と、上記
第9の機能の段階において時間tLが経過しない
と判定した第2の場合と、上記第11の機能の段階
において時間tHが経過しないと判定した第3の
場合と、上記第10の機能の段階が終了した第4の
場合と、上記第12の機能の段階が終了した第5の
場合および上記第6の機能の段階が終了した第6
の場合のそれぞれの場合に応じて作成されたデー
タ値をそれぞれの場合の前記サイリスタ位相制御
を実行するためのデータとしてセツトする(第13
の機能)、次にクロツク信号や第1の機能の段階
における指定内容に基づいて送風装置の運転か否
かを判定する(第14の機能)、運転と判定された
ら第13の機能の結果に基づく適切なフアンモータ
回転数となるように前記サイリスタ位相制御を行
わせる(第15の機能)と共に運転でなければ第15
の機能段階をスキツプさせる。また上記第3と第
9と第11の機能段階における期間、タイミングあ
るいはタイマー等の時計とするためのパルスカウ
ントや桁上げや判定などのいわゆる時計処理が必
要と判定されない場合には次の第17の機能段階を
スキツプし、他方時計処理が必要と判定されれば
次の段階(第17)に進む(第16の機能)、次に時
計処理を行い(第17の機能)、続いて操作内容や
機能設定内容の変更等について前記第2の入力端
4を介して検知する過程でいわゆるキー(Key)
処理を必要とすると判定しない場合には次の段階
(第19の機能)をスキツプし、他方キー処理を必
要と判定した場合には次の段階に進む(第18の機
能)、次にキー処理をあらかじめ定めた内容に従
つて行う(第19の機能)、次に前記第3の入力端
6を介してA−D変換処理が必要であることを判
定しなかつた場合には次に続く段階(第21の機
能)をスキツプし他方A−D変換を必要と判定し
場合には次の段階(第21の機能)に進む(第20の
機能)、次にA−D変換処理をあらかじめ定めた
内容に従つて行い(第21の機能)、この処理の終
了後上記第2の機能の段階に帰還してやる(第22
の機能)という制御過程を空調装置の動作時間中
クロツクに従つて繰返し行うことにより前記のよ
うな送風効果すなわちむらなし送風制御を実現す
ることができる。
Next, a first case in which it is determined that the basic operating time t 0 has not elapsed in the third function stage, and a second case in which it has been determined that the time t L has not elapsed in the ninth function stage; A third case in which it is determined that the time t H has not elapsed in the eleventh function stage, a fourth case in which the tenth function stage has ended, and a fourth case in which the twelfth function stage has ended. 5 and the 6th case where the above 6th function stage has been completed.
The data values created in each case are set as data for executing the thyristor phase control in each case (13th
function), then determines whether or not the blower is operating based on the clock signal and the contents specified in the first function stage (14th function), and if it is determined that it is operating, the result of the 13th function is determined. The thyristor phase control is performed so that the fan motor rotation speed is appropriate based on the 15th function (15th function).
skipping the functional stage. In addition, if it is determined that so-called clock processing such as pulse counting, carry, and judgment for making a clock such as a period, timing, or timer in the 3rd, 9th, and 11th functional steps described above is not necessary, then the following 17th function step is necessary. If it is determined that clock processing is necessary, proceed to the next step (17th function) (16th function), then perform clock processing (17th function), and then change the operation details. In the process of detecting changes in function settings, etc. via the second input terminal 4, a so-called key is used.
If it is determined that no processing is necessary, the next step (19th function) is skipped; on the other hand, if it is determined that key processing is necessary, proceed to the next step (18th function), then key processing is performed. is performed according to predetermined contents (19th function), and then the next step if it is not determined through the third input terminal 6 that A-D conversion processing is necessary. (21st function), and if it is determined that A-D conversion is necessary, proceed to the next step (21st function) (20th function), and then predetermine A-D conversion processing. (21st function), and after completing this process, return to the second function stage (22nd function).
By repeating the control process (function) according to the clock during the operating time of the air conditioner, the above-mentioned air blowing effect, that is, uniform air blowing control can be achieved.

なお第4図においてたとえば操作内容が運転で
あることを判定する第14の機能の段階#15を第5
図に示す#15の位置に設けても同等の効果を得る
ことが可能であり、また送風制御を温度制御など
の他の要素と組合わせて行うようにすることも可
能である。また上記の例では段階的な回転数制御
を行つているが従来のような微弱、弱、強等の2
〜3段階の回転数変化の折返しによる繰返し制御
を行うようにすることも可能である。
Note that in FIG. 4, for example, step #15 of the 14th function that determines that the operation content is driving is replaced by
It is possible to obtain the same effect even if it is provided at position #15 shown in the figure, and it is also possible to perform air blow control in combination with other elements such as temperature control. In addition, in the above example, the rotation speed is controlled in stages, but unlike conventional methods, there are two types of rotation speed control: weak, weak, strong, etc.
It is also possible to perform repetitive control by repeating the rotation speed change in ~3 steps.

以上詳細に説明のように、本発明は次の2点を
要旨とする。
As described above in detail, the present invention has the following two points.

(イ) 送風速度を、制御可能範囲内の予め定めた
高、低2端値のうちの一端側で一定時間一定値
に保つこと。
(b) Keep the air blowing speed at a constant value for a certain period of time at one of the two predetermined high and low end values within the controllable range.

(ロ) 送風速度を予め定めてある高、低2端値間内
で予め定めてある一定時間変化率にて一定方向
に変化させ、その高、低のいずれかの一端値に
達した場合、(イ)のように一定時間一定値に保つ
た後、風速変化方向を反転させて、他方の一端
値までその反転前とは異なる時間変化率にて変
化させる行程を繰返すこと。
(b) When the air blowing speed is changed in a certain direction at a predetermined rate of change for a predetermined period of time between two predetermined high and low end values, and one of the high and low end values is reached, As in (a), after holding the wind speed at a constant value for a certain period of time, the direction of change in wind speed is reversed, and the process is repeated to change the wind speed to the other end value at a time change rate different from that before the reversal.

このような制御を行うことにより、本発明によ
れば制御周期が固定せず、いわゆる定在波が立つ
ことによるむらが固定するという現象を避けるこ
とができ、文字通り「らなし」の送風制御を実現
することができる。この効果として冷え過ぎなど
が防止されるので健康に良く、無駄な使い方が軽
減されるのでエネルギーの節約にも役立つことが
挙げられる。また送風機モータは通常容量が小さ
いので比較的安価な回路構成による風速可変装置
が得られ、モータの巻線に強、弱、微弱などの制
御用端子を設けることも不要となるので、本発明
による制御装置を設けることによる経済的負担は
十分に相殺されかえつて経済的である。
By performing such control, according to the present invention, it is possible to avoid the phenomenon that the control cycle is not fixed and the unevenness caused by so-called standing waves is fixed, and literally "no" air blow control can be performed. It can be realized. This effect is good for your health because it prevents you from getting too cold, and it also helps conserve energy because it reduces unnecessary usage. In addition, since the blower motor usually has a small capacity, a wind speed variable device with a relatively inexpensive circuit configuration can be obtained, and there is no need to provide control terminals for strong, weak, weak, etc. on the motor windings, so the present invention The economic burden of providing a control device is more than offset and is therefore economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般家屋の空調装置の説明図、第2図
は本発明を実施した空調装置の送風速度の時間に
よる変化特性例図、第3図は本発明を実施した空
調装置内の送風制御装置の構成例図、第4図およ
び第5図は第3図の装置の動作を示すフローチヤ
ートである。 a…空調装置、b…空調空間、c…熱交換器、
d…送風フアン付モータ、e…風方向整風制御
板、1…零相検出制御回路、3…操作設定制御回
路、5…A−D変換制御回路、7…クロツク発振
回路、9…外部装置制御回路、12…中央制御処
理部(CPU)、13…定電圧直流電源、14…商
用電源入力。
Fig. 1 is an explanatory diagram of an air conditioner for a general house, Fig. 2 is an example of the change in air speed over time of an air conditioner embodying the present invention, and Fig. 3 is an illustration of air blow control in an air conditioner embodying the present invention. FIGS. 4 and 5 are flowcharts showing the operation of the apparatus shown in FIG. 3. a...Air conditioner, b...Air conditioned space, c...Heat exchanger,
d...Motor with ventilation fan, e...Air direction rectification control board, 1...Zero phase detection control circuit, 3...Operation setting control circuit, 5...A-D conversion control circuit, 7...Clock oscillation circuit, 9...External device control Circuit, 12... Central control processing unit (CPU), 13... Constant voltage DC power supply, 14... Commercial power supply input.

Claims (1)

【特許請求の範囲】[Claims] 1 空気調和装置内の送風装置の送風速度を上記
送風装置の送風速度制御可能範囲内のあらかじめ
定めてある高、低2端値内をあらかじめ定めてあ
る一定の時間変化率にて一定方向に変化させ、上
記速度の1端値に達した場合定められた一定時間
内風速を上記1端値に保つた後風速変化の方向を
反転させて上記速度の他の1端値まで反転前と異
なる時間変化率にて変化させる行程を繰返すよう
に制御することを特徴とするむらなし送風制御方
法。
1 Change the air blowing speed of the air blower in the air conditioner in a certain direction at a predetermined constant rate of change over time within two predetermined high and low end values within the controllable range of the air blowing speed of the air blower. When the wind speed reaches one end value of the above-mentioned speed, the wind speed is maintained at the above-mentioned one end value within a predetermined period of time, and then the direction of wind speed change is reversed until it reaches the other end value of the above-mentioned speed for a different time than before the reversal. A uniform air blow control method characterized by controlling to repeat a process of changing at a rate of change.
JP7413978A 1978-06-21 1978-06-21 Method of controlling uniformly blast Granted JPS553503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7413978A JPS553503A (en) 1978-06-21 1978-06-21 Method of controlling uniformly blast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7413978A JPS553503A (en) 1978-06-21 1978-06-21 Method of controlling uniformly blast

Publications (2)

Publication Number Publication Date
JPS553503A JPS553503A (en) 1980-01-11
JPS6220462B2 true JPS6220462B2 (en) 1987-05-07

Family

ID=13538541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7413978A Granted JPS553503A (en) 1978-06-21 1978-06-21 Method of controlling uniformly blast

Country Status (1)

Country Link
JP (1) JPS553503A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887033U (en) * 1981-12-07 1983-06-13 トヨタ自動車株式会社 air conditioner
CN1010879B (en) * 1987-10-01 1990-12-19 三菱电机株式会社 Air-conditioner
JP6130152B2 (en) * 2013-01-25 2017-05-17 富士工業株式会社 Range food
US10591205B2 (en) * 2015-08-24 2020-03-17 Heatcraft Refrigeration Products Llc Cooling system with stir-cycle
JP6285000B2 (en) * 2016-11-21 2018-02-28 富士工業株式会社 Range food
JP6290362B2 (en) * 2016-11-21 2018-03-07 富士工業株式会社 Range food

Also Published As

Publication number Publication date
JPS553503A (en) 1980-01-11

Similar Documents

Publication Publication Date Title
US5528114A (en) Apparatus for driving two motors
JPS62129639A (en) Air conditioner
JPS6220462B2 (en)
JPS61231340A (en) Operation controller for air conditioner
JPH0544980A (en) Controlling method for air conditioner
JPS624618B2 (en)
JPS60144546A (en) Controller of defrosting operation of air conditioner
JPH0445009Y2 (en)
JPH06159773A (en) Controller for air conditioner
JPH05296519A (en) Air conditioner
JPH051840A (en) Control method of air-conditioner
JP2808467B2 (en) Control device for air conditioner
JPS6338625B2 (en)
JPS6141837A (en) Temperature control device for air conditioner
JPS6338624B2 (en)
JPS6256411B2 (en)
JPS60240941A (en) Controller of air conditioner
JPH0384351A (en) Controlling method for air conditioner
JPH05180499A (en) Controlling method for air conditioner
JP2578998B2 (en) Air conditioner
JP2004036957A (en) Method of controlling flow rate of cooling water in absorption chiller and heater
JPS61132785A (en) Drive controller for variable capacity compressor
JPH01302057A (en) Operation control device for air conditioner
JPS60221647A (en) Controlling device of air conditioner
JPH04350438A (en) Controller for air conditioner