JPS6256411B2 - - Google Patents

Info

Publication number
JPS6256411B2
JPS6256411B2 JP57164614A JP16461482A JPS6256411B2 JP S6256411 B2 JPS6256411 B2 JP S6256411B2 JP 57164614 A JP57164614 A JP 57164614A JP 16461482 A JP16461482 A JP 16461482A JP S6256411 B2 JPS6256411 B2 JP S6256411B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
capacity
room temperature
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57164614A
Other languages
Japanese (ja)
Other versions
JPS5956035A (en
Inventor
Hideki Kosaka
Naoki Shimokawa
Shigeru Ooshiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57164614A priority Critical patent/JPS5956035A/en
Publication of JPS5956035A publication Critical patent/JPS5956035A/en
Publication of JPS6256411B2 publication Critical patent/JPS6256411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和機の能力制御方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for controlling the capacity of an air conditioner.

従来例の構成とその問題点 従来、能力可変型圧縮機を用いた空気調和機に
おいて、冷房運転時の温度制御は室温を検出し、
第1図に示すように室温と室温設定値との差によ
り能力を設定し、室温が室温設定値に近づくにし
たがい、圧縮機の能力を変化させて、冷房能力の
制御を行なつていた。
Conventional configuration and its problems Conventionally, in air conditioners using variable capacity compressors, temperature control during cooling operation involves detecting the room temperature.
As shown in FIG. 1, the capacity is set based on the difference between the room temperature and the room temperature set value, and as the room temperature approaches the room temperature set value, the compressor capacity is changed to control the cooling capacity.

すなわち圧縮機回転数を変化させて能力可変を
行なうものでは、室温と室温設定値との差がt3
以上であると最初回転数F4で運転し、室温が下
降しt3℃に到達すると1段回転数の低い回転数F3
で運転しさらに室温が下降しt2℃に到達すると、
もう1段低い回転数F2で運転する。
In other words, in a system where the capacity is varied by changing the compressor rotation speed, the difference between the room temperature and the set room temperature is t 3 °C.
If this is the case, the engine will initially operate at a rotation speed of F 4 , and when the room temperature drops and reaches t 3 ℃, the first stage rotation speed will be lowered to a lower rotation speed of F 3 .
When the room temperature further decreases and reaches t 2 °C,
Operate at one step lower rotation speed F2 .

さらに室温が下降してt1℃に到達すると最低回
転数F1で運転する。各回転数の範囲は室温の上
昇と下降とで異なり上昇の場合は1段高い室温ま
で同じ回転数となるように設定してある。
When the room temperature further decreases and reaches t 1 °C, operation is performed at the minimum rotation speed F 1 . The range of each rotational speed is different depending on whether the room temperature is rising or falling, and in the case of rising, the rotational speed is set to be the same until the room temperature is one step higher.

また最低回転数F1でもさらに室温が下降した
場合、設定温度で圧縮機を停止し、室温がt2℃ま
で上昇した時圧縮機を再び回転数F2で運転す
る。
Further, if the room temperature further decreases even at the lowest rotation speed F 1 , the compressor is stopped at the set temperature, and when the room temperature rises to t 2 °C, the compressor is operated again at the rotation speed F 2 .

そして上記制御を行なつた時、圧縮機は停止せ
ずに回転数F1でほとんど連続運転となるように
設定されている。
When the above control is performed, the compressor is set to operate almost continuously at the rotation speed F1 without stopping.

この場合、圧縮機は負荷に合つた冷房運転のた
め、長時間の安定した連続運転となり、ほとんど
停止することがない。そのため、吹き出し温度も
同じ吹き出し温度で安定し、それが長時間続くこ
とになる。
In this case, the compressor performs a cooling operation that matches the load, so it operates stably and continuously for a long time, with almost no stoppages. Therefore, the blowing temperature is stabilized at the same blowing temperature and continues for a long time.

そのような運転の場合、所望する室温が低めの
ときは、吹き出し温度も低下しかつ長時間続くこ
とから、人体に直接風が当たる空間では肌寒く、
冷えすぎから居住空間全体を快適な空調条件にす
ることができないという欠点を有していた。
In such operations, when the desired room temperature is low, the air outlet temperature also decreases and continues for a long time, so it can be chilly in a space where the wind directly hits the human body.
This had the disadvantage that the entire living space could not be kept under comfortable air-conditioning conditions because it was too cold.

発明の目的 本発明は、吹き出し温度の低下による不快感を
防止すべく、圧縮機の能力を制御することを目的
としている。
OBJECT OF THE INVENTION The object of the present invention is to control the capacity of a compressor in order to prevent discomfort due to a decrease in blowout temperature.

発明の構成 この目的を達成するために本発明は能力可変型
圧縮機と、室温を検出する手段と、吹き出し温度
を検出する手段を有し、冷房運転時、室温と設定
温度との差によつて運転周波数を変更する境界線
を設けて圧縮機の能力制御を行なうとともに、前
記室温が設定温度範囲内にある時、吹き出し温度
により圧縮機の能力制御を行ない、圧縮機の能力
可変段数を少なくとも3段以上とし、吹き出し温
度に第1の設定値T1>第2の設定値T2なる設定
温度を設け、室温が設定温度範囲内に入ると、吹
き出し温度を検出し、吹き出し温度が上昇して第
1の設定値T1を越えた時、現在の運転能力より
1段高い能力で運転するようにし、吹き出し温度
が下降して第2の設定値T2を越えた時は、現在
の運転能力より1段低い能力で運転するものであ
る。
Structure of the Invention In order to achieve this object, the present invention includes a variable capacity compressor, a means for detecting room temperature, and a means for detecting outlet temperature. In addition, when the room temperature is within the set temperature range, the compressor capacity is controlled by setting a boundary line for changing the operating frequency, and when the room temperature is within the set temperature range, the compressor capacity is controlled by the blowout temperature, and the number of stages of variable capacity of the compressor is at least There are three or more stages, and the temperature of the air outlet is set such that the first set value T 1 > the second set value T 2 , and when the room temperature falls within the set temperature range, the air outlet temperature is detected and the air outlet temperature increases. When the temperature exceeds the first set value T 1 , the operation is performed at one level higher than the current operating capacity, and when the blowout temperature decreases and exceeds the second set value T 2 , the current operation is performed. It operates at a capacity one step lower than the capacity.

この制御により、吹き出し温度を第1の設定値
T1と第2の設定値T2の間に保つように制御し、
吹き出し温度の低下による不快感を防止するもの
である。
By this control, the air outlet temperature is set to the first set value.
control to maintain it between T 1 and the second set value T 2 ,
This prevents discomfort caused by a drop in blowout temperature.

実施例の説明 以下、本発明の一実施例について添付図面の第
2図〜第6図を参考に説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 2 to 6 of the accompanying drawings.

本実施例は、圧縮機の能力変更を圧縮機に供給
する電源周波数の変更により行なうもので、第2
図に室温と設定温度との差による電源周波数の割
り振りを示す。
In this embodiment, the capacity of the compressor is changed by changing the frequency of the power supply supplied to the compressor.
The figure shows the allocation of power supply frequency based on the difference between room temperature and set temperature.

同図において、TS℃をサーモスタツトによる
室温設定値とし、+1℃、+2℃、+3℃、+4℃に
境界線を設け、室温下降時には最初60Hzで運転
し、TS+2℃を下回つたら45Hzにし、TS+1℃
を下回つたら30Hzにし、さらに下降してTS℃を
下回つたら圧縮機を停止する。
In the same figure, T S °C is the room temperature setting value set by the thermostat, boundary lines are set at +1 °C, +2 °C, +3 ° C , and +4 °C. then set it to 45Hz, T S +1℃
When the temperature drops below T S ℃, the compressor is stopped.

圧縮機が停止して復帰する場合は、TS+2℃
を上回つた時に60Hzで運転を開始する。また各周
波数で運転中室温が上昇した時において、30Hzの
場合はTS+2℃を上回つた時45Hzにし、45Hzの
場合はTS+3℃を上回つた時60Hzにするように
設定している。
When the compressor stops and restarts, T S +2℃
When the frequency exceeds 60Hz, operation starts at 60Hz. Also, when the room temperature rises during operation at each frequency, in the case of 30Hz, it is set to 45Hz when it exceeds T S +2℃, and in the case of 45Hz, it is set to 60Hz when it exceeds T S +3℃. There is.

第3図は吹き出し温度をコントロールする範囲
を示す。
Figure 3 shows the range in which the temperature of the air outlet is controlled.

同図において、吹き出し温度制御は、室温が下
降してTS+2℃を下回つた時に入り、室温がTS
℃とTS+4℃の間(斜線部分)にある場合は、
吹き出し温度制御を行なう範囲としている。
In the same figure, the blowout temperature control starts when the room temperature falls below T S + 2°C.
If it is between ℃ and T S +4℃ (shaded area),
This is the range in which the temperature of the air outlet is controlled.

第4図は吹き出し温度制御を行う時の周波数の
割り振りを示している。
FIG. 4 shows frequency allocation when controlling the temperature of the air outlet.

同図において、吹き出し温度が17℃と19℃の間
にある時は、現在運転中の周波数そのままで運転
し、吹き出し温度が19℃を上回つた時は15Hz周波
数を上げ、17℃を下回つた時は15Hz周波数を下げ
る。さらに吹き出し温度が下降し15℃を下回つた
時は、圧縮機を停止するように設定している。
In the same figure, when the blowout temperature is between 17℃ and 19℃, the current operating frequency remains the same, and when the blowout temperature exceeds 19℃, the frequency is increased by 15Hz, and when the temperature drops below 17℃. When this happens, lower the frequency by 15Hz. The compressor is also set to stop when the blowout temperature drops below 15℃.

第5図は、本実施例の制御ブロツク図を示す。 FIG. 5 shows a control block diagram of this embodiment.

同図において、1は室温を検出するサーミス
タ、2はA/D変換器、3は吹き出し温度を検出
するサーミスタ、4はA/D変換器、5は
CPU、6はプログラマブルカウンタ、9はイン
バータ、10は圧縮機モータを示す。
In the figure, 1 is a thermistor that detects room temperature, 2 is an A/D converter, 3 is a thermistor that detects the air outlet temperature, 4 is an A/D converter, and 5 is an A/D converter.
A CPU, 6 a programmable counter, 9 an inverter, and 10 a compressor motor.

次にその動作を説明する。 Next, its operation will be explained.

同図において、室温はサーミスタ1により抵抗
値として検出され、A/D変換器2によりデジタ
ルデータとしてCPU5に送り込まれる。一方吹
き出し温度は、サーミスタ3により抵抗値として
検出され、A/D変換器4によりデジタルデータ
として、CPU5に送り込まれる。CPU5では、
A/D変換器2より送られたデジタルデータと、
A/D変換器4により送られたデジタルデータを
第2図、第3図、第4図による周波数の割り振り
と比較しプログラマブルカウンタ6へ運転周波数
のアドレス信号を出す。
In the figure, room temperature is detected as a resistance value by a thermistor 1, and sent to a CPU 5 as digital data by an A/D converter 2. On the other hand, the temperature of the air outlet is detected as a resistance value by the thermistor 3, and sent to the CPU 5 as digital data by the A/D converter 4. In CPU5,
Digital data sent from A/D converter 2 and
The digital data sent by the A/D converter 4 is compared with the frequency allocation shown in FIGS. 2, 3, and 4, and an address signal of the operating frequency is output to the programmable counter 6.

プログラマブルカウンタ6はCPU5より出さ
れたアドレス信号により発振器7から出た規準周
波数信号を分周し、インバータ制御部8へ運転信
号を出す。インバータ制御部では、プログラマブ
ルカンタ6からの運転周波数にもとづきインバー
タ9の波形制御信号を出す。インバータ9は交流
電源入力を一旦直流に変換し、インバータ制御器
8からの制御信号により直流電源を運転周波数の
交流電源として圧縮機モータ10へ送り、圧縮機
を運転する。
The programmable counter 6 divides the reference frequency signal output from the oscillator 7 according to the address signal output from the CPU 5, and outputs an operating signal to the inverter control unit 8. The inverter control section outputs a waveform control signal for the inverter 9 based on the operating frequency from the programmable counter 6. The inverter 9 once converts the AC power input into DC power, and in response to a control signal from the inverter controller 8, sends the DC power as AC power at the operating frequency to the compressor motor 10 to operate the compressor.

次に第6図のタイミングチヤートにより本実施
例の制御方法について説明する。
Next, the control method of this embodiment will be explained using the timing chart shown in FIG.

同図において、時間t0に運転を開始し、その時
の室温がTS+2℃以上であると第2図に示す室
温のみの周波数割り振りで60Hz運転を行なう。こ
れにより吹き出し温度は室温近辺より徐々に下降
する。そして時間t1で室温がTS+2℃に到達し
45Hz運転に入ると同時に吹き出し温度制御を開始
し、吹き出し温度を検出するサーミスタ3により
吹き出し温度を検出し始める。この場合吹き出し
温度は、17℃と19℃の間にあるため、そのままの
周波数45Hzで運転を続ける。また時間t2で吹き出
し温度が17℃を下回ると、第4図に示す吹き出し
温度による周波数補正により、運転周波数を15Hz
下げ30Hz運転とする。その結果圧縮機が30Hz運転
となり、室温はTS+1℃とTS+2℃の間で安定
する。
In the figure, operation is started at time t0 , and if the room temperature at that time is T S +2°C or higher, 60Hz operation is performed with frequency allocation only for the room temperature as shown in FIG. As a result, the blowing temperature gradually decreases from around room temperature. Then, at time t 1 , the room temperature reaches T S +2°C.
At the same time as the 45Hz operation starts, the air outlet temperature control is started, and the thermistor 3 that detects the air outlet temperature starts to detect the air outlet temperature. In this case, the blowout temperature is between 17°C and 19°C, so operation continues at the same frequency of 45Hz. In addition, when the blowout temperature falls below 17℃ at time t 2 , the operating frequency is reduced to 15Hz by frequency correction according to the blowout temperature shown in Figure 4.
It is operated at a lower speed of 30Hz. As a result, the compressor operates at 30Hz, and the room temperature stabilizes between T S +1°C and T S +2°C.

さらに吹き出し温度が時間T3で19℃を上回る
と、運転周波数を15Hz上げ45Hz運転となる。以後
30Hzでの安定運転と45Hzでの吹き出し温度を下げ
るための運転の繰り返しとなる。
Furthermore, when the blowout temperature exceeds 19°C at time T 3 , the operating frequency is increased by 15 Hz to 45 Hz operation. From then on
Stable operation at 30Hz and operation to lower the blowout temperature at 45Hz are repeated.

従来吹き出し温度制御を行なわない場合は、第
6図のt2以後点線で示すように吹き出し温度が17
℃以下で45Hzでの長時間安定運転となる。
If conventional blowout temperature control is not performed, the blowout temperature will decrease to 17% after t 2 in Figure 6, as shown by the dotted line.
It can operate stably for a long time at 45Hz below ℃.

以上説明したように本実施例では、吹き出し温
度制御により吹き出し温度が低い状態で長時間運
転するのをさけ、かつ最低周波数での運転が長く
なり、低入力運転による省エネルギ効果もはかれ
る。
As explained above, in this embodiment, by controlling the blowout temperature, long-time operation with a low blowout temperature is avoided, and the operation at the lowest frequency is extended, thereby achieving an energy saving effect due to low input operation.

なお、本実施例では、圧縮機の能力可変にイン
バータによる周波数変更を利用したものについて
説明したがその他極数変換による運転速度を変換
するもの、あるいはシリンダ容積を変化させるも
の、あるいは、バイパスを行ない冷媒循環量を変
えるものについても同様の効果が得られる。
In addition, in this example, a method using frequency change by an inverter to vary the capacity of the compressor was explained, but other methods such as a method that changes the operating speed by changing the number of poles, a method that changes the cylinder volume, or a method that performs bypass. A similar effect can be obtained by changing the amount of refrigerant circulation.

発明の効果 上記実施例より明らかなように本発明は、能力
可変型圧縮機と、室温を検出する手段と、吹き出
し温度を検出する手段を有し、冷房運転時、室温
と設定温度との差によつて運転周波数を変更する
境界線を複数設けて圧縮機の能力制御を行なうと
ともに、前記室温が設定温度範囲内にある時、吹
き出し温度により圧縮機の能力制御を行ない、圧
縮機の能力可変段数を少なくとも3段以上とし、
吹き出し温度に第1の設定値T1>第2の設定値
となる設定温度を設け、吹き出し温度が上昇して
第1の設定値T1を越えたとき圧縮機の能力を少
なくとも1段上げ、吹き出し温度が下降して第2
の設定値T2を越えたとき圧縮機の能力を少なく
とも1段下げ、吹き出し温度を第1の設定値T1
と第2の設定値T2の間に保つように制御するも
ので、室温設定値を低くめに設定した場合の吹き
出し温度の下がりすぎにより、人体に肌寒さを与
えることが防止でき、さらに室温制御の運転状態
より圧縮機能力を1段下げた能力運転により、使
用者のフイーリングを損うことのない冷房運転が
行え、省エネルギ効果も得られる。さらに室外の
状況変化による能力変動を吹出温度変化として関
接的に検出することができるので、天候変化によ
る微妙な能力変動を制御でき、快適性の向上をさ
らに図れるなど優れた効果を奏するものである。
Effects of the Invention As is clear from the above embodiments, the present invention includes a variable capacity compressor, a means for detecting room temperature, and a means for detecting outlet temperature. When the room temperature is within the set temperature range, the compressor capacity is controlled by setting multiple boundary lines for changing the operating frequency. The number of stages is at least 3 or more,
A set temperature is set for the outlet temperature such that the first set value T 1 > the second set value, and when the outlet temperature rises and exceeds the first set value T 1 , the capacity of the compressor is increased by at least one step; The temperature of the air outlet drops and the second
When the temperature exceeds the set value T 2 , the compressor capacity is lowered by at least one step, and the outlet temperature is lowered to the first set value T 1 .
and the second set value T 2. This prevents the blowout temperature from falling too low when the room temperature set value is set low, which would cause the human body to feel chilly. By performing capacity operation in which the compressor function power is lowered by one stage than the control operating state, cooling operation can be performed without impairing the user's feeling, and an energy saving effect can also be obtained. In addition, it is possible to directly detect fluctuations in performance due to changes in outdoor conditions as changes in outlet temperature, making it possible to control subtle fluctuations in performance due to weather changes, which has excellent effects such as further improving comfort. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す制御方法の室温による圧
縮機運転回転数の割り振り図、第2図は本発明の
一実施例における能力制御方法の室温による圧縮
機運転周波数の割り振り図、第3図は同能力制御
方法における吹き出し温度制御を行なう室温温度
範囲図、第4図は同能力制御方法における吹き出
し温度の周波数補正図、第5図は同能力制御方法
を行う制御ブロツク線図、第6図は同能力制御方
法における動作例のタイミング図である。 1,3……温度センサ、5……CPU、9……
インバータ、10……圧縮機モータ。
Fig. 1 is a diagram showing the allocation of compressor operating speed according to room temperature in a conventional control method, Fig. 2 is an allocation diagram of compressor operating frequency according to room temperature in a capacity control method according to an embodiment of the present invention, and Fig. 3 is a room temperature range diagram for controlling the outlet temperature in the same capacity control method, FIG. 4 is a frequency correction diagram of the outlet temperature in the same capacity control method, FIG. 5 is a control block diagram for carrying out the same capacity control method, and FIG. is a timing diagram of an example of operation in the same capability control method. 1, 3...Temperature sensor, 5...CPU, 9...
Inverter, 10... Compressor motor.

Claims (1)

【特許請求の範囲】 1 能力可変型圧縮機と、室温を検出する手段
と、吹き出し温度を検出する手段を有し、冷房運
転時、室温と設定温度との差によつて運転周波数
を変更する境界線を複数設けて圧縮機の能力制御
を行なうとともに、前記室温が設定温度範囲内に
ある時、吹き出し温度により圧縮機の能力制御を
行ない、圧縮機の能力可変段数を少なくとも3段
以上とし、吹き出し温度に第1の設定値T1>第
2の設定値T2となる設定温度を設け、吹き出し
温度が上昇して第1の設定値T1を越えた時、圧
縮機の能力を少なくとも1段上げて運転し、吹き
出し温度が下降して第2の設定値T2を越えた
時、圧縮機の能力を少なくとも1段下げて運転す
る空気調和機の能力制御方法。 2 吹き出し温度に第2の設定値T2>第3の設
定値T3となる設定温度を設け、吹き出し温度が
下降して第3の設定値T3を越えた時、圧縮機を
停止する特許請求の範囲第1項記載の空気調和機
の能力制御方法。
[Claims] 1. A variable capacity compressor, a means for detecting room temperature, and a means for detecting outlet temperature, and during cooling operation, the operating frequency is changed according to the difference between the room temperature and the set temperature. The capacity of the compressor is controlled by providing a plurality of boundary lines, and when the room temperature is within a set temperature range, the capacity of the compressor is controlled by the blowout temperature, and the number of stages of variable capacity of the compressor is at least three stages, A set temperature is set for the outlet temperature such that the first set value T 1 > the second set value T 2 , and when the outlet temperature rises and exceeds the first set value T 1 , the capacity of the compressor is reduced by at least 1. A capacity control method for an air conditioner, in which the capacity of an air conditioner is operated by lowering the compressor capacity by at least one level when the blowout temperature decreases and exceeds a second set value T2 . 2 A patent that sets a set temperature for the outlet temperature such that the second set value T2 > the third set value T3 , and stops the compressor when the outlet temperature decreases and exceeds the third set value T3 . A method for controlling the capacity of an air conditioner according to claim 1.
JP57164614A 1982-09-20 1982-09-20 Capacity controlling method of air conditioner Granted JPS5956035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57164614A JPS5956035A (en) 1982-09-20 1982-09-20 Capacity controlling method of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57164614A JPS5956035A (en) 1982-09-20 1982-09-20 Capacity controlling method of air conditioner

Publications (2)

Publication Number Publication Date
JPS5956035A JPS5956035A (en) 1984-03-31
JPS6256411B2 true JPS6256411B2 (en) 1987-11-25

Family

ID=15796534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57164614A Granted JPS5956035A (en) 1982-09-20 1982-09-20 Capacity controlling method of air conditioner

Country Status (1)

Country Link
JP (1) JPS5956035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137704U (en) * 1986-02-20 1987-08-31
WO2020260199A1 (en) 2019-06-24 2020-12-30 Rossana Castellana Formulations for odontological and dermatological use containing trichloroacetate salts and hydroxyacids

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270854A (en) * 1991-02-26 1992-09-28 Hitachi Ltd Controlling method for air conditioner
JP4592599B2 (en) * 2006-01-19 2010-12-01 シャープ株式会社 Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528999U (en) * 1978-08-17 1980-02-25
JPS5767735A (en) * 1980-10-13 1982-04-24 Toshiba Corp Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528999U (en) * 1978-08-17 1980-02-25
JPS5767735A (en) * 1980-10-13 1982-04-24 Toshiba Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137704U (en) * 1986-02-20 1987-08-31
WO2020260199A1 (en) 2019-06-24 2020-12-30 Rossana Castellana Formulations for odontological and dermatological use containing trichloroacetate salts and hydroxyacids

Also Published As

Publication number Publication date
JPS5956035A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
US5086626A (en) Air conditioner with function for temperature control of radiant heat exchanger
JPS60142140A (en) Air conditioner
CN110726200A (en) Control system of air conditioner and air conditioning system
JPS5912937B2 (en) Air conditioner control method
JPS6256411B2 (en)
KR100214750B1 (en) Air conditioner
JPS6338624B2 (en)
JPS6338625B2 (en)
JPS6353450B2 (en)
JPH0140258B2 (en)
JPS5949439A (en) Control method of operation for air conditioner
CN110864417A (en) Energy-saving control method, device and system for air conditioning system
JP2005147504A (en) Air conditioner
JPH0449020B2 (en)
JPS5956033A (en) Capacity controlling method of air conditioner
JPH0599472A (en) Controlling method of air-conditioning machine
JPH0417332B2 (en)
JPS6029540A (en) Air quantity controlling method for air conditioner
JPS60138349A (en) Air conditioner
CN211084360U (en) Control system of air conditioner and air conditioning system
JPS60144551A (en) Method of controlling capacity of air conditioner
JPS5952144A (en) Operation control of air conditioner
KR100282817B1 (en) Comfort temperature setting method of inverter air conditioner
JPS6155556A (en) Air conditioner
JPH0794909B2 (en) Air conditioner