JPS5952144A - Operation control of air conditioner - Google Patents

Operation control of air conditioner

Info

Publication number
JPS5952144A
JPS5952144A JP57162546A JP16254682A JPS5952144A JP S5952144 A JPS5952144 A JP S5952144A JP 57162546 A JP57162546 A JP 57162546A JP 16254682 A JP16254682 A JP 16254682A JP S5952144 A JPS5952144 A JP S5952144A
Authority
JP
Japan
Prior art keywords
temperature
room temperature
compressor
air
blowout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57162546A
Other languages
Japanese (ja)
Inventor
Shizuo Otaki
大滝 鎮雄
Takashi Deguchi
隆 出口
Naoki Shimokawa
下河 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57162546A priority Critical patent/JPS5952144A/en
Publication of JPS5952144A publication Critical patent/JPS5952144A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE:To improve the air conditioning efficiency by a method wherein the feeling of chilliness is prevented from giving to human body due to the descent of blow-off temperature and at the same time the direction of blown-off air is optimized. CONSTITUTION:The room temperature is detected by a thermistor 1 in terms of resistances and sent to a central processing unit (CPU) 5 by being converted into digital data by an A/D converter 2. On the other hand, the blow-off temperature is detected by a thermistor 3 in terms of resistances and sent to CPU5 by being converted into digital data by an A/D converter 4. CPU5 compares said digital data of the A/D converters 2 and 4 with the share of frequencies so as to decide an operating frequency and then to issue the address signal of said operating frequency to a programmable counter 6 in order to invert DC source to AC source with said operating frequency by the control signal from an inverter controller 8 in order to send to a compressor motor 10 to drive a compressor. When the compressor is started at the time t0, the room temperature is below Ts-1 and consequently the share of frequencies depends only on the room temperature or a drive on 75Hz is performed in order to control the room temperature and yet, because the blow-off temperature is also below 37 deg.C, the direction of blown-off air is kept horizontally. When the blow-off temperature exceeds 37 deg.C at the time t1, the direction of blown-off air is changed from the horizontal direction to the downward direction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和機の能力を制御する運転制御方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an operation control method for controlling the capacity of an air conditioner.

従来例の構成とその問題点 従来、能力可変形の圧縮機を用い暖房能力を変化させる
ヒートポンプ式空気調和機において、能力変更する条件
として室内の温度を検出し、第1図に示すよ”うに、室
温設定値と室内湯度との差により、能力段位を設定し、
室温により能力変化を行なっていた、 すなわち、圧縮機の回転数を変化して能力可変を行なう
ものでは、最初高回転F4で運転し、室温が上昇して設
定値−13℃に到達すると、一段回転数の低いF3で運
転し、さらに室温が上列t7設定値に到達したら、もう
一段低い回転数F2で運転し、さらに室温が上昇して設
定値+t2℃に到達すると、最低回転数F1で運転する
。そしてそれぞれの回転数で運転しているときに、室温
が下降した場合、室温が上昇していった時の回転数変化
温度より一段低い温度で回転数を一段づつ上げて行う。
Conventional configuration and its problems Conventionally, in a heat pump type air conditioner that uses a variable capacity compressor to change the heating capacity, the indoor temperature is detected as a condition for changing the capacity, and as shown in Figure 1. , the capacity level is set based on the difference between the room temperature setting value and the indoor hot water temperature,
In systems that change the capacity depending on the room temperature, that is, by changing the rotation speed of the compressor, the compressor is initially operated at a high rotation speed of F4, and when the room temperature rises and reaches the set value of -13℃, it changes to the next level. Operate at the lower rotation speed F3, and when the room temperature reaches the upper row t7 set value, operate at the next lower rotation speed F2, and when the room temperature rises further and reaches the set value + t2℃, the lowest rotation speed F1. drive. If the room temperature drops while operating at each rotation speed, the rotation speed is increased one step at a time at a temperature one step lower than the rotation speed change temperature when the room temperature rises.

すなわち、設定温度でF1→F2  、設定温度−13
℃でF2→F3.設定温度−14℃でF5→F4と回転
数を上げて行く。また、最低回転数F1でもさらに室温
が上昇した場合、設定温度十t1℃で圧縮機を停止し、
室温が設定値まで下がった時−圧縮機を、再びF2の回
転数〒運転する、 このような制御を行なった時、圧縮機は停止せずFlで
ほとんど連続運転となるように回転数は設定されている
。この場合、室温が設定値+t1℃に近づくにしたがい
圧縮機能力を下げて暖房能力を下げ、負荷に合った暖房
を行なうものであるが圧縮機能力を下げると吹き出し温
度が低下するので、人体に冷風感を4え、そのような運
転が安定状態となり長時間続く欠点を有していた。
In other words, F1 → F2 at the set temperature, set temperature -13
F2→F3 at ℃. Increase the rotation speed from F5 to F4 at the set temperature of -14℃. In addition, if the room temperature rises further even at the lowest rotation speed F1, the compressor will be stopped at the set temperature of 10t1℃,
When the room temperature has fallen to the set value, the compressor is operated again at the rotation speed of F2. When performing this kind of control, the rotation speed is set so that the compressor does not stop and runs almost continuously at Fl. has been done. In this case, as the room temperature approaches the set value + t1°C, the compression function is lowered to lower the heating capacity, and heating is performed in accordance with the load. However, lowering the compression function lowers the air outlet temperature, which is harmful to the human body. This had the disadvantage that it gave a feeling of cold air and that such operation became stable and continued for a long time.

また、吹き出し温度を検出し、吹き出し温度が低下する
と吹き出し風が居住空間に入るのを防止し、冷風感を感
じさせないように、吹き出し風の方向を変更しているも
のもあるが、この場合は、サーモスタットによる圧縮機
が停止1−た時および立ち上り時の吹き出し温度の低い
時を主に対象としており、圧縮機の安定運転中に、居住
空間への吹き出しを行森わない場合、室内温度分布が悪
化するので、圧縮機能力を低下できるものには、かえっ
て快適性を悪くシ、空調効率を悪化炉ぜていたー 発明の目的 本発明は、吹き出し温度の低下により1人体に冷風感を
感じさせることを防止し、また吹き出し風方向を適正化
し空調効率を上げるように、圧縮機の能力を制御するこ
とを目的としている。
In addition, some devices detect the temperature of the air outlet and, when the temperature drops, prevent the air from entering the living space and change the direction of the air outlet so that the person does not feel cold. This mainly targets when the compressor is stopped by the thermostat and when the blowing temperature is low at the time of start-up, and when the compressor is in stable operation and the blowing is not carried out into the living space, the indoor temperature distribution As a result, those that can reduce the compression function actually worsen the comfort and worsen the air conditioning efficiency.Purpose of the InventionThe present invention aims to reduce the blowout temperature so that a person feels a feeling of cold air on the body. The purpose of this system is to control the capacity of the compressor in order to prevent this from occurring and to optimize the direction of the air blowing to improve air conditioning efficiency.

発明の構成 この目的を達成するために本発明は、能力可変型圧縮機
を用い、室温を検出する検出手段と、吹き出し温度を検
出する検出手段を有し、吹き出し温度が第1の設定値T
1以下に下がると吹き出し風方向が居住空間に入らない
ように吹き出し風方向を変更する機構を有し、吹き出し
温度が第1の設定値T1を下回ったときは、圧縮機能力
を少なくとも1段上げ、吹き出し温度が第2の設定値T
2を越えたときは圧縮機能力を少なくとも1段下げるよ
うにしたものである、 これにより吹き出し温度を第1の設定値T1と第2の設
定値T2の間に保つようにし、吹き出し温度の低下を防
ぎ、吹き出し風方向を適正化17、空調効率を上げるも
のである。
Structure of the Invention In order to achieve this object, the present invention uses a variable capacity compressor, has a detection means for detecting room temperature, and a detection means for detecting a blowout temperature, and the blowout temperature is set to a first set value T.
It has a mechanism that changes the direction of the blowing air so that it does not enter the living space when the temperature falls below 1, and when the blowing temperature falls below the first set value T1, the compression function power is increased by at least one step. , the blowout temperature is the second set value T
When the temperature exceeds 2, the compression function is lowered by at least one stage.This keeps the outlet temperature between the first set value T1 and the second set value T2, and reduces the outlet temperature. This prevents air flow, optimizes the direction of the blowing air17, and increases air conditioning efficiency.

・実施例の説明 以下、本発明の一実施例を添付図面の第2図〜第6図を
参考に説明する。
-Description of an Embodiment Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 2 to 6 of the accompanying drawings.

本実施例では、圧縮機の能力変更を圧縮機に供給する電
源周波数を変更して行なう壁掛形の空気調和機つ一場合
を例にとり、第2図に制御プロ、ンク線図を示す− 第2図において、1は室温を検出するサーミスタ、2は
A/D変換器、3は吹き出し温度を検出するサーミスタ
、4はA/D変換器、6はCPU、6はプログラマブル
カウンタ、7は発振器、8−はインバータ制御器、9は
インバータ、1oは圧縮機モータ、11はステッピング
モータを示す。
In this embodiment, we will take as an example a wall-mounted air conditioner in which the capacity of the compressor is changed by changing the frequency of the power supply supplied to the compressor, and a control diagram is shown in Fig. 2. In Figure 2, 1 is a thermistor that detects room temperature, 2 is an A/D converter, 3 is a thermistor that detects the air outlet temperature, 4 is an A/D converter, 6 is a CPU, 6 is a programmable counter, 7 is an oscillator, 8- is an inverter controller, 9 is an inverter, 1o is a compressor motor, and 11 is a stepping motor.

次にその動作を説明する。Next, its operation will be explained.

室温は、サーミスタ1により抵抗値として検出され、A
/D変換器2によりデジタルデータとしてCPU5に送
り込ま」する。一方、吹き出し温度はサーミスタ3によ
り抵抗値として検出され、A/D変換器4によりデジタ
ルデータとしてCPU5に送り込まれる。CPU5では
A/D変換器2より送られたデジタルデータと、A/D
変換器4より送られたデジタルデータな、第2図、第3
図による周波数の割り振りと比較し、運転用δν数を決
定し、プログラマブルカウンタ6へ、運転周波数のアド
レス信号を出す。プログラマブルカウンタ6は、CPU
5より出されたアドレス信号により発振器7から出た基
準周蔽数信号を分周し。
The room temperature is detected as a resistance value by thermistor 1, and A
/D converter 2 sends the data to CPU 5 as digital data. On the other hand, the blowout temperature is detected as a resistance value by the thermistor 3, and sent to the CPU 5 as digital data by the A/D converter 4. The CPU 5 converts the digital data sent from the A/D converter 2 and the A/D
Digital data sent from converter 4, Figures 2 and 3
The operating frequency δν number is determined by comparison with the frequency allocation shown in the figure, and an address signal of the operating frequency is output to the programmable counter 6. The programmable counter 6 is a CPU
The reference frequency signal output from the oscillator 7 is divided by the address signal output from the oscillator 5.

インバータ制御器8へ運転周波数信号を出す。インバー
タ制御器8ではプログラマブルカウンタ6からの運転周
波数信号にもとづき、インハ6−夕9の波形制御信号を
出す。インバータ9は交流電源人力を一旦直流に変換し
、インバータ制御器8からの制御信号により直流電源を
運転周波数の交流電源として圧縮機モータ10へ送り、
圧縮機(図示せず)を運転する。
Sends an operating frequency signal to the inverter controller 8. The inverter controller 8 outputs waveform control signals of 6-9 based on the operating frequency signal from the programmable counter 6. The inverter 9 once converts the AC power human power into DC power, and sends the DC power to the compressor motor 10 as AC power at the operating frequency according to the control signal from the inverter controller 8.
Operate the compressor (not shown).

まだステッピングモータ11は、吹き出し風を変更する
ベーン(図示せず)に連結されている。
The stepping motor 11 is still connected to a vane (not shown) that changes the blowing air.

そしてCPTJ5は、サーミスタ3により検出された吹
き出し温度が設定温度以下であると、CPU6の判断に
より、吹き出し風が水平に吹き出されるように、ステッ
ピングモータ11を回転させ−吹き出し温度が設定値よ
り高い場合は、吹き出し風が下向きに吹き出されるよう
にステッピングモータ11を回転させる。
Then, when the blowout temperature detected by the thermistor 3 is below the set temperature, the CPU 6 determines that the CPTJ5 rotates the stepping motor 11 so that the blowout air is blown out horizontally - the blowout temperature is higher than the set value. In this case, the stepping motor 11 is rotated so that the blown air is blown downward.

第3図は、実施例の室温による電源周波数の割り振りを
示す。
FIG. 3 shows the allocation of power supply frequency according to room temperature in the embodiment.

すなわち、Tsをサーモスタットによる室温設定値とし
、+1℃、+2℃、−1℃、−2℃に境界線を設は室温
上昇時には、最初76Hzで運転し、Ts−1℃を越え
たら60 Hzに、78℃を越えたら45 Hz If
C,Ts−4−1℃を越えたら30Hzとそれぞれ切換
える。さらに温度が上昇し、Tg十2℃を越えたら圧縮
機を停止する。圧縮機が停止にして復帰する場合は、室
温がT8℃を下回ったときで、45H2で運転を始める
。、マだ各周波数で運転中室温が下降した場合、30H
zで運転していたときは、78℃に下がるまで30Hz
とし、TS’Cを下回った時45H2にし2.46H2
で運転し、でいて温度下降した場合は、Ts−1℃を下
回ったときに60Hzとし、60H2から45H2にす
る時は、Ts−2℃を下回ったときと設定している。
In other words, if Ts is the room temperature setting value set by the thermostat, and boundary lines are set at +1℃, +2℃, -1℃, and -2℃, when the room temperature rises, it will initially operate at 76Hz, and when Ts -1℃ is exceeded, it will change to 60Hz. , 45 Hz If it exceeds 78℃
If the temperature exceeds C, Ts-4-1℃, switch to 30Hz. When the temperature rises further and exceeds the Tg of 12°C, the compressor is stopped. When the compressor is stopped and then restarted, it is when the room temperature falls below T8°C and it starts operating at 45H2. , If the room temperature drops during operation at each frequency, 30H
When I was driving at 30Hz until the temperature dropped to 78℃
When it falls below TS'C, it becomes 45H2 and 2.46H2.
When the temperature is lower than Ts-1°C, it is set to 60Hz, and when changing from 60H2 to 45H2, it is set to be set to be lower than Ts-2°C.

また斜線部分の温度範囲すなわち室温がTS℃とTs4
−2℃の間にある場合は、吹き出し温度コントロールを
行う範囲としている。
Also, the temperature range in the shaded area, that is, the room temperature, is TS℃ and Ts4.
If the temperature is between -2°C, the temperature of the air outlet is controlled.

第4図は吹き出し温度コンI・ロールを行うときの周波
数の変更の割り振りと、吹き出し風の方向の割り振りを
示している。
FIG. 4 shows the allocation of frequency changes and the allocation of the direction of the blown air when performing the blown temperature control I roll.

すなわち、吹き出し温度が40℃と62℃の間にあると
きは、現在運転中の周波数その寸まで運転し、吹き出し
温度が62℃を越えたときは16Hi周波数を下げ+ 
40℃を下回−たときは、16Hz周波数を」二げる。
In other words, when the blowout temperature is between 40°C and 62°C, the operation is performed at the current operating frequency, and when the blowout temperature exceeds 62°C, the 16Hi frequency is lowered.
When the temperature drops below 40℃, increase the frequency to 16Hz.

また吹き出し風は、吹き出し温度が37℃以下であると
きは上向となり、37℃以上になると下向きとなるよう
にしている。
Further, the blowing air is directed upward when the blowing temperature is 37° C. or lower, and downward when the blowing temperature is 37° C. or higher.

次に、第5図のタイミングチャートにより、本実施例の
制御方法の動作を説明する。
Next, the operation of the control method of this embodiment will be explained with reference to the timing chart of FIG.

時間toにスタートし、そのとき室温はTs −1以下
なので、第2図による室温のみの周波数割り振りで75
Hz運転し、室温制御を行なう、そし。
It starts at time to, and since the room temperature is less than Ts −1 at that time, 75
Hz operation and room temperature control.

で吹き出し温度も室温37℃以下であるだめ、吹き出し
風方向は水平向きである。吹き出し温度は室温近辺から
徐々に上昇しtlで37℃を越える。
The blowing air temperature must also be below the room temperature of 37°C, and the direction of the blowing air must be horizontal. The blowing temperature gradually rises from around room temperature and exceeds 37° C. at tl.

この時吹き出し風方向は、水平から下向きに変わり、居
住空間へ温風を送る1周波数は75Hzそのま捷で運転
し、室温、吹き出し温度も上昇を続け、吹き出し温度は
62℃を越えて安定しはじめる。そして室温はt2でT
s−1を越える、t2で室温がTs−1を越えたとき、
第3図に示す室温制御により、60Hz運転に入る1、
60H2に入ると吹き出し温度は、下降し40℃と62
℃の間で安定する。室温は上昇を続けt3でTgに到達
する。この時第3図の室温制御により45H7運転に入
ると同時に、第4図に示す吹き出し温度による運転周波
数の補正制御を開始する。これにより吹き出し温度制御
が始まる。この時は、吹き出し温度は40℃と52℃の
間にあるので、その捷まの46Hz運転を続ける。
At this time, the direction of the blowing air changed from horizontal to downward, and the single frequency for sending warm air to the living space remained unchanged at 75Hz, and the room temperature and blowing temperature continued to rise, and the blowing temperature remained stable at over 62℃. Start. And the room temperature is T at t2
exceeds s-1, when the room temperature exceeds Ts-1 at t2,
60Hz operation is started by the room temperature control shown in Figure 31.
When entering 60H2, the blowout temperature decreases to 40℃ and 62℃.
Stable between ℃. The room temperature continues to rise and reaches Tg at t3. At this time, the 45H7 operation is started by the room temperature control shown in FIG. 3, and at the same time, the operation frequency correction control based on the blowout temperature shown in FIG. 4 is started. This starts the blowout temperature control. At this time, the blowout temperature is between 40°C and 52°C, so the 46Hz operation continues.

45Hz運転でさらに室温が−1−昇し−j4で室温が
Tr+−4−1を越えると、第3図による室温制御によ
り30H2運転と々る。30H2運転すると吹き出し温
度は下がり一’tsで40℃を下回ると′*4図による
吹き出し温度制御により周波数を1ts Hz」二げ一
’45Hz運転とする。46Hz運転になり吹き出し温
度は、40℃を越えて安定する。
During the 45 Hz operation, the room temperature further rises by -1-, and when the room temperature exceeds Tr+-4-1 at -j4, the room temperature is controlled according to FIG. 3 and the operation reaches 30 H2. During 30H2 operation, the blowout temperature decreases and when it falls below 40°C in 1'ts, the frequency is changed to 1ts Hz and 45Hz operation by blowout temperature control according to Figure 4. The operation is now 46Hz, and the blowout temperature remains stable above 40°C.

そして、室温が徐々に上昇し、t6に室温がTs−1−
2に到達した時、第3図による室温制御により、圧縮機
は停止し、吹き出し温度制御も解除される。
Then, the room temperature gradually rises, and at t6 the room temperature becomes Ts-1-
2, the compressor is stopped by the room temperature control shown in FIG. 3, and the blowout temperature control is also canceled.

圧縮機が停止すると吹き出し温度は降下し、t7で37
℃を下向る。この時、吹き出し風方向は水平と変わる。
When the compressor stops, the blowout temperature drops to 37 at t7.
℃ down. At this time, the direction of the blowing air changes to horizontal.

t8で室温が、Ts−4で下がるので、圧縮機は再び運
転を開始し、この時は室温制御により45Hz運転とな
り、室温、吹き出し温度とも上昇し始め、t9で吹き出
し温度が37℃を越える。
At t8, the room temperature decreases at Ts-4, so the compressor starts operating again, and at this time, the room temperature is controlled to operate at 45 Hz, and both the room temperature and the blowout temperature begin to rise, and at t9, the blowout temperature exceeds 37°C.

そのため、吹き出し風方向は下向きとなる。Therefore, the blowing air direction is downward.

さらに、tooで室温がTsを越えるため、吹き出し温
度制御を再び開始する。この時吹き出し温度は40℃を
越えているため、45Hz運転そのままであるM45H
z運転でさらに温度」ニア7、l、t4’で室温τB+
1に到達し室温制御により30H2運転となる。
Furthermore, since the room temperature exceeds Ts at too, the blowout temperature control is restarted. At this time, the blowout temperature exceeds 40℃, so M45H, which is still operating at 45Hz,
In z operation, the temperature is further increased at near 7, l, t4', the room temperature τB +
1 and becomes 30H2 operation due to room temperature control.

以後t4〜ta/のくり返しを行なう。この時t7〜t
90間の時間は、3〜6分程度で−あるが、第5図に点
線で示したように、従来の吹き出し温度制御を行なわな
い場合、30Hz運転で延々と続き、吹き出し温度が3
7℃以下で吹き出し風方向が下向きの状態で安定となる
Thereafter, the process from t4 to ta/ is repeated. At this time t7~t
The time between 90Hz and 90Hz is about 3 to 6 minutes, but as shown by the dotted line in Fig. 5, if the conventional blowout temperature control is not performed, the operation will continue at 30Hz, and the blowout temperature will reach 30Hz.
At temperatures below 7°C, the airflow becomes stable with the direction of the air blowing downward.

以上説明したように、本実施例では、吹き出し温度制御
を行うことによって吹き出し温度が低い状態での長時間
運転するのを避け、1「縮機停止1−中の3〜6分程度
に短縮できる。
As explained above, in this embodiment, by controlling the blowout temperature, it is possible to avoid long-term operation with a low blowout temperature and shorten the time to about 3 to 6 minutes during the compressor stop. .

なお、本実施例では圧縮機の能力司変に、インバータに
よる周波数変更を利用したものについて説明をしだが、
その他、極数切換により運転速度を制御するもの、ある
いは、シリンダ容債を変化させるもの、あるいはバイパ
スを行ない冷媒の循環量を変えるものでも同様の効果が
得られる、−に記実施例より明らかなように本発明は、
能力可変型圧縮機と、室温を検出する検出手段と、吹き
出し温度を検出する検出手段を有し、室温により決定さ
れる運転圧縮機能力に対し、吹き出し湿度を検出し、吹
き出し温度が上−Ff、1−で第1の設定値T1を越え
たとき圧縮機能力を少なくとも1段落とし、吹き出し温
度が下降して第2の設定値T2を越えたとき圧縮機能力
を少なくとも1段高めるように補正を加え、吹き出し温
度を第1の設定値T1と第2の設定値T2め間に保つよ
うに制御を行ない、吹き出し温度が低下することを防い
でいるので、人体に冷風感を与えることを防止すること
ができ、また、吹き出し温度により吹き出し方向を変更
しているものにおいては、居住空間への吹き出しを行な
わないことによる空調効率の悪化を防止することができ
る。
In addition, in this example, we will explain the case where frequency change by an inverter is used to change the capacity of the compressor.
In addition, similar effects can be obtained by controlling the operating speed by switching the number of poles, by changing the cylinder capacity, or by changing the amount of refrigerant circulation by performing bypass. As such, the present invention
It has a variable capacity compressor, a detection means for detecting the room temperature, and a detection means for detecting the air outlet temperature, and detects the air outlet humidity with respect to the operating compression function determined by the room temperature, and determines whether the air outlet temperature is above -Ff. , 1-, when the first set value T1 is exceeded, the compression force is set at least one step, and when the blowout temperature decreases and exceeds the second set value T2, the compression force is corrected to be increased by at least one step. The temperature of the air outlet is controlled to be maintained between the first set value T1 and the second set value T2, thereby preventing the temperature of the air outlet from decreasing, thereby preventing the human body from feeling cold air. In addition, in the case where the blowing direction is changed depending on the blowing temperature, deterioration of air conditioning efficiency due to not blowing into the living space can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す室温による圧縮機運転回転数の割
り振り図、第2図は本発明の一実施例の制御ブロック線
図、第3図は本実施例における室温による圧縮機運転周
波数の割り振り図、第4図は本実施例における吹き出し
温度の周波数補正図、第6図は本実施例における動作例
のタイミング図である。 1.3・・・・・・温度センザ、5・・・・・・CPU
、9・・・・・・インバータ、10・・・・・・圧縮機
モータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 馴 第2図 第3図 第4図
Fig. 1 is an allocation diagram of compressor operating speed according to room temperature showing a conventional example, Fig. 2 is a control block diagram of an embodiment of the present invention, and Fig. 3 is a diagram of compressor operating frequency according to room temperature in this embodiment. The allocation diagram, FIG. 4 is a frequency correction diagram of the blowout temperature in this embodiment, and FIG. 6 is a timing chart of an operation example in this embodiment. 1.3...Temperature sensor, 5...CPU
, 9... Inverter, 10... Compressor motor. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)能力可変形圧縮機を用い、室温を検出する検出手
段と、吹き出し温度を検出する検出手段を有し、暖房運
転時、室温と吹き出し温度により圧縮機の能力を制御し
、かつ、吹き出し温度により吹き出し風方向を変更する
ヒートポンプ式空気調和機を構成し、吹き出し風方向を
変更する吹き出し温度が上昇1.て第1の設定値T1を
下まわったときは、圧縮機能力を少なくとも1段上げ、
吹き出し温度が下降して第2の設定値T2を越えたとき
は、圧縮機能力を少なくとも1段下げるようにした空気
調和機の運転制御方法。
(1) Using a variable capacity compressor, it has a detection means for detecting the room temperature and a detection means for detecting the blowout temperature, and during heating operation, the capacity of the compressor is controlled by the room temperature and the blowout temperature, and A heat pump type air conditioner is configured that changes the direction of the blowing air depending on the temperature, and the temperature of the blowing air that changes the direction of the blowing air increases.1. If the value falls below the first set value T1, increase the compression function by at least one step,
A method for controlling the operation of an air conditioner, in which the compression function is lowered by at least one step when the outlet temperature decreases and exceeds a second set value T2.
(2)室温が設定温度範囲内にあるときに、吹き出し温
度による圧縮機の能力制御を行なうようにした特許請求
の範囲第1項に記載の空気調和機の運転制御方法。
(2) The method for controlling the operation of an air conditioner according to claim 1, wherein the capacity of the compressor is controlled based on the blowout temperature when the room temperature is within a set temperature range.
(3)空気調和機の運転開始後、最初に吹き出し温度が
第1の設定値T1を越えてから、吹き出し温度による圧
縮機の能力制御を行なうようにした特許請求の範囲第1
項へまたは第2項に記載の空気調和機の運転制御方法、
(3) After the air conditioner starts operating, the capacity of the compressor is controlled based on the air outlet temperature after the air outlet temperature exceeds the first set value T1.
or the method for controlling the operation of an air conditioner according to paragraph 2;
.
JP57162546A 1982-09-17 1982-09-17 Operation control of air conditioner Pending JPS5952144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57162546A JPS5952144A (en) 1982-09-17 1982-09-17 Operation control of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57162546A JPS5952144A (en) 1982-09-17 1982-09-17 Operation control of air conditioner

Publications (1)

Publication Number Publication Date
JPS5952144A true JPS5952144A (en) 1984-03-26

Family

ID=15756646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57162546A Pending JPS5952144A (en) 1982-09-17 1982-09-17 Operation control of air conditioner

Country Status (1)

Country Link
JP (1) JPS5952144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196523A (en) * 2016-07-18 2016-12-07 柳州三木科技有限公司 A kind of room conditioning control system
CN106196452A (en) * 2016-07-18 2016-12-07 柳州三木科技有限公司 A kind of room conditioning control system with temperature detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196523A (en) * 2016-07-18 2016-12-07 柳州三木科技有限公司 A kind of room conditioning control system
CN106196452A (en) * 2016-07-18 2016-12-07 柳州三木科技有限公司 A kind of room conditioning control system with temperature detection

Similar Documents

Publication Publication Date Title
KR930010717B1 (en) Heat pump heating apparatus
EP0246907A2 (en) Room air conditioner
JPS5952144A (en) Operation control of air conditioner
JPS5949440A (en) Control method of operation for air conditioner
JPS5952146A (en) Operation control of air conditioner
JPS5949439A (en) Control method of operation for air conditioner
JPS5956035A (en) Capacity controlling method of air conditioner
JPS5952143A (en) Operation control of air conditioner
JPH03129238A (en) Controlling method for air flow of air conditioner
JPH03122440A (en) Method for controlling operation of air conditioner
JP3233657B2 (en) Air conditioner
JPS6029540A (en) Air quantity controlling method for air conditioner
JPH06159773A (en) Controller for air conditioner
JPH0449020B2 (en)
JPH0428949A (en) Operation control device
JPS6353450B2 (en)
JP3703596B2 (en) Temperature controller for combined hot water heating system
JPS60134134A (en) Method of controlling operation of air conditioner
JPS60134133A (en) Method of controlling operation of air conditioner
JPS5952145A (en) Operation control of air conditioner
JP2002061934A (en) Air cnoditioner
JPS60144551A (en) Method of controlling capacity of air conditioner
JPS63282443A (en) Air conditioner
JPH01127833A (en) Air-conditioning machine
JPH0719575A (en) Air conditioner