JPS5952145A - Operation control of air conditioner - Google Patents

Operation control of air conditioner

Info

Publication number
JPS5952145A
JPS5952145A JP57162547A JP16254782A JPS5952145A JP S5952145 A JPS5952145 A JP S5952145A JP 57162547 A JP57162547 A JP 57162547A JP 16254782 A JP16254782 A JP 16254782A JP S5952145 A JPS5952145 A JP S5952145A
Authority
JP
Japan
Prior art keywords
temperature
compressor
room temperature
drive
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57162547A
Other languages
Japanese (ja)
Inventor
Shizuo Otaki
大滝 鎮雄
Kenichiro Miura
三浦 賢一郎
Shigeru Muramatsu
繁 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57162547A priority Critical patent/JPS5952145A/en
Publication of JPS5952145A publication Critical patent/JPS5952145A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve the air conditioning efficiency by a method wherein the capacity of a compressor is changed by comparing a detected blow-off temperature with the set value. CONSTITUTION:The room temperature is detected by a thermistor 1 in by terms of resistances and sent to a central processing unit (CPU) 5 being converted into digital data by an A/D converter 2. On the other hand, the blow-off temperature is detected by a thermistor 3 interms of resistances and sent to CPU5 by being converted into digital data by A/D converter 4. A programmable counter 6 demultiplys the reference frequency signal issued from an oscillator 7 by an address signal sent from CPU5 so as to issue an operating frequency signal to an inverter controller 8 in order to send to a compressor motor 10 to drive a compressor. Let Ts be the set value of room temperature set by a thermostat. When the rise of room temperature is requested, the compressor is at first put into a drive on 75Hz. When the room temperature exceeds the lower limit value Ts-1 deg.C, the compressor is changed-over to the drive on 60Hz. When exceeds Ts deg.C, to the drive on 45Hz, when exceeds Ts+1 deg.C, to the drive on 30Hz. When the room temperature exceeds the upper limit value Ts+2 deg.C, the compressor is brought to a standstill. The compressor is restarted from its standstill by resetting only when the room temperature is below Ts deg.C and yet the drive is started on 45Hz.

Description

【発明の詳細な説明】 産業上の利用分野 本冗明は、空気調和機の能力制御を行なう運転制御方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an operation control method for controlling the capacity of an air conditioner.

従来例の構成とその問題点 従来、能力可変型の圧縮機を用い、暖房能力を変化させ
るヒートポンプ式空気調和機において、能力変更する条
件として室内の温度を検出し、第1図に示すように、室
温設定値上室内温度との差により、能力段位を設定し、
室温により能力変化を行なっていた。
Conventional configuration and its problems Conventionally, in a heat pump air conditioner that uses a variable capacity compressor to change the heating capacity, the indoor temperature is detected as a condition for changing the capacity, and as shown in Figure 1. , the capacity level is set based on the difference between the room temperature set value and the room temperature,
Capacity was changed depending on room temperature.

すなわち、圧縮機の回転数を変化して能力1■変を行な
うものでは、最初高回転F4で運転し、室温が上昇して
設定値−tsdに到達すると、一段回転数の4mrD3
で運転し、さらに室温が、]−ゲvし設定値に到達した
ら、もう一段低い回転数F2で運転し、さらに室温力月
−昇して、設定値+t2σに到達する回転数で運転して
いるときに、室温が丁降した場合、室温が上昇していっ
た時の回転数変化温度より一段低い温度で回転数を1段
づつにはて行なう。
In other words, in a compressor whose capacity is changed by changing the rotational speed of the compressor, it is first operated at high rotational speed F4, and when the room temperature rises and reaches the set value -tsd, the rotational speed of the compressor is changed to 4mrD3.
When the room temperature reaches the set value, operate at a lower rotation speed F2, and further increase the room temperature to the set value + t2σ. If the room temperature drops slightly while the room temperature is rising, the rotation speed is increased one step at a time at a temperature one step lower than the temperature at which the rotation speed changes when the room temperature rises.

すなわち、設定温度でFl−+F2、設定温度−t36
でF2→F5、設定温度−t4dでF3→F4と、回転
数をLげて行く。
In other words, Fl-+F2 at the set temperature, set temperature -t36
At F2→F5, set temperature -t4d, F3→F4, and the rotation speed increases by L.

また、最低回転数21でもさらに室温が上昇した場合、
設定温度+1+(?で圧縮機を停止腰室温が設定値まで
Fがった時、圧縮機を再びF2の回転数で運転する。
Also, if the room temperature rises even at the lowest rotation speed of 21,
Stop the compressor at the set temperature +1+(?). When the room temperature reaches the set value, the compressor is operated again at the rotation speed of F2.

このような制御を行なった時圧縮機は、停止せず、Fl
でほとんど連続運転となるように回転数は設定されてい
る。この場合、室温が設定値+t+(5に近づくに従い
圧縮機能力を丁げて暖房能力を丁げ、負荷に合っ苑暖房
を行びうものであるが、圧縮機能力をシヂると吹き出し
温度が低Fするので、人体に冷風感を与え、そのような
運転が安定状態となり長時間続く欠点を有していた。
When such control is performed, the compressor does not stop and the Fl
The rotation speed is set so that almost continuous operation occurs. In this case, as the room temperature approaches the set value + t + (5), the compression function power is reduced and the heating capacity is reduced to perform heating that matches the load, but when the compression function power is changed, the outlet temperature increases. Since the F is low, it gives a feeling of cold air to the human body and has the drawback that such operation becomes stable and continues for a long time.

また、吹き出し温度を検出し、吹き出し温度が低Fする
と、吹き出し風が居住空間に入るのを防止し、冷風感を
感じぴせないように、吹き出し風の方向を変更している
ものもあるが、この場合は、サーモスタットによる圧縮
機が停止した時および立ちJ−り時の吹き出し温度の低
い時を主に対象としており、圧縮機の安定運転中に、居
住空間への吹き出しを行なわない場合、室内温度分布が
悪化するので、圧縮機能力を低Fできるものには、かえ
って快適性を悪くし、空調効率を悪化させていた。
In addition, some devices detect the temperature of the air outlet and, when the temperature of the air outlet is low, prevent the air from entering the living space and change the direction of the air outlet so that the user does not feel the cold air. In this case, the main target is when the compressor is stopped by the thermostat and when the air temperature is low when the compressor is in a standing position.If air is not blown into the living space while the compressor is operating stably, Since the indoor temperature distribution deteriorates, those that can reduce the compression function to a low F have instead worsened comfort and air conditioning efficiency.

発明の目的 本発明は、吹き出し温度の低ドにより、人体に冷風感を
与えることを防止し、また吹き出し風方向を適正化し空
調効率を上げるべく、圧縮機能力を制御することを目的
と1〜でいる。
Purpose of the Invention The present invention has the following objects: 1-1. I'm here.

発明の構成 この目的を達成するために本発明は、能力++J敦型圧
型圧縮機い、室温を検出する検出手段と、吹き出し温度
を検出する検出手段を有し、吹き出し温度が第1の設定
値T1以丁、にFがると吹き出し風方向が居住空間に入
らないように吹き出し風方向を変更する機構を有し、吹
きIJル温度に第12設定値T+(第2の設定値T2<
第3の設定値T5なる設定値を設け、吹き出し温度を周
期的に検出し、吹き出し温度が第2の設定値T2を丁目
つをときは、圧縮機能力を少なくさも1段上げ、吹き出
し温度が上昇し7て第3の設定値T5を越えたときは、
圧縮機能力を少なくとも1段丁げるよう制御を行ない、
吹き出し温度の低丁を防ぎ吹き出し風方向を適正化し、
空調効率をとげるものである。
Structure of the Invention To achieve this object, the present invention has a capacity ++J Atsushi type compressor, a detection means for detecting the room temperature, and a detection means for detecting the blowout temperature, and the blowout temperature is set to a first set value. It has a mechanism that changes the direction of the blowing air so that it does not enter the living space when turning to T1 and F, and sets the blowing temperature to the twelfth set value T+ (second set value T2<
A third set value T5 is set, and the air outlet temperature is periodically detected. When the air outlet temperature is lower than the second set value T2, the compression function is decreased or raised by one step, and the air outlet temperature is increased. When it rises to 7 and exceeds the third set value T5,
Controlling the compression function to reduce it by at least one step,
Prevents low blowout temperature and optimizes blowout air direction.
This increases air conditioning efficiency.

実施例の説明 以F、本発明の一実施例を添伺図面の第2図〜第6図を
参考に説明する。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will now be described with reference to FIGS. 2 to 6 of the accompanying drawings.

本実施例では、王縮機の能力変更を圧縮機に供給する電
源周波数を変更して行なう壁掛形の空気調和機を例にし
て、第2図にその制御プロ・ツク線図を示す。
In this embodiment, a wall-mounted air conditioner is used as an example in which the capacity of the compressor is changed by changing the frequency of the power supply supplied to the compressor, and FIG. 2 shows a control program diagram thereof.

第2図において、1け室温を検出するサーミスタ、2は
A/D変換器、3け吹き出し温度を検出する→F−ミス
タ、4け’/’L)変換器、6はCPU、6けプログラ
マブルカウンタ、7は発振器、8はインバータ制御器、
9はインバータ、10は圧縮機モータ、11はステッピ
ングモータを示す。
In Figure 2, 1 is the thermistor that detects the room temperature, 2 is the A/D converter, 3 is the F-mister that detects the air temperature, 4 is the '/'L) converter, 6 is the CPU, and 6 is the programmable Counter, 7 is an oscillator, 8 is an inverter controller,
9 is an inverter, 10 is a compressor motor, and 11 is a stepping motor.

次にその動作を説明する。Next, its operation will be explained.

同一において、室温はサーミスタ1により抵抗値乏し、
て検出され、A/D変換器2によりデジタルデータとし
てcptrcsに送り込まれる。
In the same case, the resistance value is low at room temperature due to thermistor 1,
is detected by the A/D converter 2 and sent to cptrcs as digital data.

一方吹き出し温度は、サーミスタ3により抵抗値としで
検出され、A/D変換器4によりデジタルデータとして
CPU6に送り込まノLる。CPU5では、ム/D変換
を2より送られたデジタルデータと、A/IJ変換轍4
より送られたデジタルデータを、第2図、第3図による
周波数の割り振りと比較し、運転周波数を決定し、プロ
グラマブルカウンタ6へ、運転周波数のアト筺&柑′号
を出す。プログラマブルカウンタ6は、cpusにより
出されたアドレス信号により発振器7から出た基準周波
数信号を分周し、インバータ制御器8−\運転周波数信
号を出す。インバータ制御器8ではプログラマブルカウ
ンタ6からの運転周波数信号にもとづき、インバータ9
の波形制御信号を出す。インバータ9は、交流転源入力
を一旦直流に変換し、インバータ制御器8からの制御信
号により、直流電源を・運転周波数の交流電源として、
圧縮機モータ1゜へ送り、圧縮機(図示せず)を運転す
る。
On the other hand, the temperature of the air outlet is detected as a resistance value by the thermistor 3, and sent to the CPU 6 as digital data by the A/D converter 4. The CPU 5 performs M/D conversion on the digital data sent from 2 and the A/IJ conversion track 4.
The digital data sent from the controller is compared with the frequency allocation shown in FIGS. 2 and 3, the operating frequency is determined, and the operating frequency is output to the programmable counter 6. The programmable counter 6 divides the reference frequency signal output from the oscillator 7 according to the address signal output by the CPU, and outputs an operating frequency signal from the inverter controller 8-\. The inverter controller 8 controls the inverter 9 based on the operating frequency signal from the programmable counter 6.
outputs a waveform control signal. The inverter 9 once converts the AC source input into DC, and uses the control signal from the inverter controller 8 to convert the DC power source into an AC power source at the operating frequency.
to the compressor motor 1° to operate the compressor (not shown).

またステッピングモータ11は、吹き出し風を変更する
ベーン(図示せず)に連結してあり、サーミスタ3によ
り検出された吹き出し温度が設定温度以゛ドであると、
CPUF5の判断により、吹き出し風が水平に吹き出す
ようにステッピングモータ11を回転させ、吹き出し温
度が設定値より高い場合は、吹き出【2風が丁向きに吹
き出されるように、ステッピングモータ11を回転させ
る。
Further, the stepping motor 11 is connected to a vane (not shown) that changes the blowout air, and when the blowout temperature detected by the thermistor 3 is equal to or higher than the set temperature,
Based on the judgment of the CPUF 5, the stepping motor 11 is rotated so that the blown air is blown out horizontally, and if the blown air temperature is higher than the set value, the stepping motor 11 is rotated so that the blown air [2] is blown out in the right direction. .

第3図は、実施例の室温による電源周波数の割り振りを
示す。
FIG. 3 shows the allocation of power supply frequency according to room temperature in the embodiment.

すなわち、T、をサーモスタッによる室温設定値とし、
+1°G、+2°C2−1°C1−2°Cに境界線を設
け・、室温上昇時には、最初75H2で運転し、Ts−
1°Gを越えたら60 H2に、18℃を越えたら46
H2に、TB4−1°Cを越えたら30H2とそれそ力
That is, let T be the room temperature setting value by the thermostat,
Set a boundary line at +1°G, +2°C2-1°C1-2°C.When the room temperature rises, first operate at 75H2, then Ts-
If it exceeds 1°G, it becomes 60 H2, and if it exceeds 18°C, it becomes 46.
If H2 exceeds TB4-1°C, it becomes 30H2.

切換える。Switch.

σらに温度が71−昇し、1812°Cを越えたら圧縮
機を停止する。11(縮機が件11.シて復帰する場合
tit、室温がT8°C′f:丁目った時で45 H7
で運転を始める。
When the temperature increases by 71°C and exceeds 1812°C, the compressor is stopped. 11 (When the compressor returns to normal condition, the room temperature is T8°C'f: 45 H7
Start driving.

まだ各周波数で運転中室温がF降した場合、30H2で
運転している時は、18℃にドがるまで30H2とし、
Tsooを丁目つた時45H2にし、46H2で運転し
てい−C温度丁降した場合け、TB−1°Cをド回った
ききに60均とし、60H2から46H2にする時はT
s−2“°Cをド回つだときと設定している。
If the room temperature drops by F while operating at each frequency, when operating at 30H2, keep it at 30H2 until it drops to 18℃,
If you set Tsoo to 45H2 when you set it to 46H2, and the temperature drops to -C, when you turn TB-1°C, set it to 60Yen, and when you change from 60H2 to 46H2, set T.
It is set as s-2"°C when the temperature is turned over.

また斜線部分の温度範囲すなわち、室〆晶がIll 8
6CとTs千2°Gの間にある場合は、吹き出し温度コ
ントロールを行う範囲としている。
In addition, the temperature range in the shaded area is 8.
If the temperature is between 6C and Ts 1,22°G, the temperature of the air outlet is controlled.

第4図は吹き出し温度コントロールを行うときの周波数
の変更の割り振りと、吹き出し風の方間の割り振りを示
している。
FIG. 4 shows the allocation of frequency changes and the allocation of airflow when controlling the airflow temperature.

同図において、吹き出し温度が40°Gと62“′Cの
間にある時は、現在運転中の周波数そのままで運転し、
吹き出し温度が62°Cを越えたときd15H215H
2丁げる。
In the same figure, when the blowout temperature is between 40°G and 62''C, the current operating frequency remains the same.
d15H215H when the blowout temperature exceeds 62°C
Give me two.

また吹き出し風は、吹き出し温度が37°G以丁である
ときu’、−1=向となり、37°G以りになると丁向
き々なるようにしている。
Further, when the temperature of the blown air is 37°G or higher, the air blows in the u', -1=direction, and when the temperature is 37°G or higher, it moves in the opposite direction.

次に、第6図のタイミングチャートにより、本実施例の
制御方法の動作を説明する。
Next, the operation of the control method of this embodiment will be explained with reference to the timing chart of FIG.

同図において時間10にスタートし、その時室温Id)
’J:、−*以丁なので以下図による室温のみの周波数
割り振りで76 H2運転17、室温制御を行なう。
In the figure, starting at time 10, the room temperature Id)
'J:, -* Since it is 76 H2 operation 17, room temperature control is performed with frequency allocation only for room temperature as shown in the figure below.

そして吹き出し温度も室/l!37°C以丁であるため
、吹き出し風方向は水平向きである。
And the temperature of the air outlet is also room/l! Since the temperature is 37°C or higher, the blowing air direction is horizontal.

吹き出し温度は室温近辺から徐々に」−昇し、tlで3
70を越える。この時、吹き出し風方向をF向きにし、
居住空間へ暖風を送る。周波数は76H2のまま運転し
、室温が」−昇する。そして時間t2で室温がTs−1
に到達し、60H2運転に変わり、吹き出し温度は′F
降安定するがまだ43°G以上にある。
The blowout temperature gradually rises from around room temperature to 3 at tl.
Over 70. At this time, set the blowout air direction to F,
Sends warm air into the living space. The frequency remains at 76H2, and the room temperature rises. Then, at time t2, the room temperature becomes Ts-1
reached, changed to 60H2 operation, and the blowout temperature was 'F.
The precipitation has stabilized, but the temperature is still above 43°G.

さらに室温がJ−、昇し時間t3で室温がTsに到達す
る。この時第3図に示す室温制御により45H2運転に
入る。この時同時に吹き出し温度制御を開始する。t3
よりΔtだけ時間が経過した時間t4に吹き出し温度を
検出する。この時吹き出し温度14300以上であると
し、第4図に示ノー吹き出し温度による能力制御すなわ
ち吹き出し温度制御により、運転周波数を157(7:
ドげ3oH2運転吉なる。
Furthermore, the room temperature reaches J-, and the room temperature reaches Ts at a rising time t3. At this time, 45H2 operation is started by controlling the room temperature as shown in FIG. At this time, the blowout temperature control is started at the same time. t3
The blowout temperature is detected at time t4 when Δt has elapsed. At this time, it is assumed that the air outlet temperature is 14,300 or higher, and the operating frequency is set to 157 (7:
Doge3oH2 driving luck.

次にt4より△を経過後t5に吹き出し−t!IA度を
検出する。この時吹き出1砦fiA度1:J’ 40°
Cと43°Cの間にある古し、そのまま30H2運転を
続ける。さらに、t5より△を経過後t6に吹き出し1
fra度を検出する。この時吹き出し温度(1−、f 
40’C以FC吹き出し温度制御により運転周波数を1
6H)51−げて46H2運転となる。
Next, after △ has passed from t4, a speech bubble -t! at t5! Detect IA degree. At this time, blowout 1 fiA degree 1: J' 40°
It is between 43°C and 43°C, and continues to operate at 30H2. Furthermore, after △ has passed from t5, a speech bubble 1 appears at t6.
Detect the degree of fragility. At this time, the blowing temperature (1-, f
The operating frequency is reduced to 1 by controlling the FC blowing temperature above 40'C.
6H) 51-years-long operation resulting in 46H2 operation.

次にtlに室温がTB + 1を越えると室温制御によ
り、運転周波数は30 H2となる。
Next, when the room temperature exceeds TB + 1 at tl, the operating frequency becomes 30 H2 due to room temperature control.

次にt6より△を経過後のt8に吹き出し温度を検出し
、吹き出し温度が40″C以Fであると、吹き出、し温
度制御により、運転周波数を1[”iH2高y)で45
H2運転とする。
Next, at t8 after passing △ from t6, the air outlet temperature is detected, and if the air outlet temperature is 40"C or higher, the air outlet temperature is controlled to set the operating frequency to 45
Set to H2 operation.

ざらにt8より△を経過後のtvK吹き出し温度を検出
1吹き出し温度が40’Cと43°Cとの間にあると、
運転周波数はそのままで46Hz運転を続ける。
Roughly detect the tvK blowout temperature after △ from t8.1 If the blowout temperature is between 40'C and 43°C,
The operating frequency remains the same and continues to operate at 46Hz.

次にt9よりΔを経過後のtloに吹き出し温度を検出
し、吹き出し温度が43°C以tを越えていると、運転
周波数け15H2丁げて30 H2運転とする。
Next, the air outlet temperature is detected at tlo after Δ has elapsed from t9, and if the air outlet temperature exceeds t by 43°C, the operating frequency is increased to 15H2 and the operation is set to 30H2.

さらにtlGよりΔを経過後の1++に吹き出し温度を
検出し、吹き出し温度が40℃以丁であると、運転周波
数を16H2高めて45 HE運転とする。
Further, the blowout temperature is detected at 1++ after Δ has elapsed from tlG, and if the blowout temperature is 40° C. or more, the operating frequency is increased by 16H2 to set 45 HE operation.

次にtj<よりΔを経過後のtj2に吹き出し温度を検
出する。この時はtloの時と同様に吹き出し温度け4
3°C以上であるため、周波数は15Hz’Fげて30
 nz運転となる。
Next, since tj<, the blowout temperature is detected at tj2 after Δ has elapsed. At this time, as with tlo, the temperature of the air outlet is 4.
Since the temperature is over 3°C, the frequency increases by 15Hz'F to 30
It becomes nz operation.

次にt12からΔを経過後t′11に吹き出し温度を検
出し、この時は、tllと同様に吹き出し温度は、4o
t3以Vであると、周波数を16H2高めて46H2運
転とする。
Next, after Δ has elapsed from t12, the air outlet temperature is detected at t'11, and at this time, the air outlet temperature is 4 o
If the voltage is t3 or higher, the frequency is increased by 16H2 to provide 46H2 operation.

以後t11か、らt12の制御を繰り返し行ない、吹き
出し温度は40’〜43°C近辺で安定し、第6図で点
線で示す吹き出し温度制御を行なわない場合のような吹
き出し温度が37℃以下に低Fすることがさけられ、吹
き出し風が水平向きとなることもなくなる。
After that, the control from t11 to t12 is repeated, and the blowout temperature becomes stable around 40' to 43°C, and the blowout temperature becomes 37°C or lower, which is the case when the blowout temperature control is not performed, as shown by the dotted line in Fig. 6. Low F is avoided, and the blowing air is also prevented from being oriented horizontally.

なお、本実施例では、圧縮機の能力可変に、インバータ
による周波数変更を利用したものについて説明したが、
その他、極数切換により運転速度を制御するもの、ある
いは、シリンダ容積、シリンダ数を変化させるもの、あ
るIN!/:1、バイパスを行ない冷媒の循環量を変え
るものでも同様の効果まだ、吹き出し温度検出をΔを一
定の周期としていたが、能力をLげた場合とドげた場合
で、時間間隔を変えるとさらに効果が、にがることは明
らかである。
In addition, in this example, a case was explained in which frequency change using an inverter was used to vary the capacity of the compressor.
In addition, there are some IN! that control the operating speed by switching the number of poles, or that change the cylinder volume and number of cylinders. /: 1. The same effect can be obtained even if the refrigerant circulation rate is changed by bypassing.Although the outlet temperature was detected at a constant cycle of Δ, the effect is even greater when the time interval is changed when the capacity is lowered or lowered. It is clear that the effect is bitter.

発明の効果 上記実施例より明らかなように不発明け、能力可変形圧
縮機と、室温を検出する検出手段と、吹き出し温度を検
出する検出手段を有し、吹き出し温度が第1の設定値T
1以五にドがると吹き出し風方向が居住空間に入らない
ように吹き出し風方向を変更する機構を有し、吹き出し
温度に第1の設定値T、<第2の設定値T2なる設定値
を設け、吹き出し温度を周期的に検出し、吹き出し温度
が第1の設定値T1以FにあるときrJ、圧縮機能力を
少なくとも1段丁げ、吹き出し温度が第2の設定値T2
以丁にあるときけ、圧縮機能力を少な(とも1段丁げる
よう制御を行ない、吹き出し温度を第1の設定値T1と
第2の設定値T2近辺に保つように補正を加えるもので
、吹き出し温度が低丁したまま連続して運転することを
防止し、冷風感を与えることを回避して快適な暖房を行
なうことができ、また、吹き出し温度により吹き出し方
向を変更するものにおいては、居住空間への吹き出しを
行なわないことによる空調効率の悪化が防止できる。
Effects of the Invention As is clear from the above embodiments, the present invention has a variable capacity compressor, a detection means for detecting room temperature, and a detection means for detecting outlet temperature, and the outlet temperature is set to the first set value T.
It has a mechanism that changes the direction of the blowing air so that it does not enter the living space when the temperature exceeds 1 or 5, and the blowing temperature is set to a first set value T, < a second set value T2. is provided, the air outlet temperature is periodically detected, and when the air outlet temperature is below the first set value T1, rJ, the compression function is reduced by at least one step, and the air outlet temperature is set to the second set value T2.
When the temperature is above zero, the compression function is controlled to be reduced by one step, and correction is made to keep the blowout temperature close to the first set value T1 and the second set value T2. , it is possible to prevent continuous operation with a low blowout temperature, avoid giving a feeling of cold air, and perform comfortable heating, and change the blowout direction depending on the blowout temperature. Deterioration of air conditioning efficiency due to not blowing air into the living space can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す室温による圧縮機運転回転数の割
り振り図、第2図は本発明の二実施例の制御ブロック線
図、第3図は本実施例における室温による圧縮機運転周
波数の割り振り図、第4図は1本実施例における吹き出
し温度の周波数補正図、第6図は本実施例における動作
例のタイミング図である。 1.3・・・・・・温度センサー、6・・・・・・(3
PU、9・・・・・・インバータ、10・・・・・・圧
縮機モータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 唄 ← 第2図 第3図 第5図 □霧1 jrt  k’ ↓ tn。
Fig. 1 is an allocation diagram of compressor operating speed according to room temperature showing a conventional example, Fig. 2 is a control block diagram of two embodiments of the present invention, and Fig. 3 is a diagram of compressor operating frequency according to room temperature in this embodiment. The allocation diagram, FIG. 4 is a frequency correction diagram of the blowout temperature in this embodiment, and FIG. 6 is a timing chart of an operation example in this embodiment. 1.3...Temperature sensor, 6...(3
PU, 9... Inverter, 10... Compressor motor. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure ← Figure 2 Figure 3 Figure 5 □ Fog 1 jrt k' ↓ tn.

Claims (3)

【特許請求の範囲】[Claims] (1)能力可変型圧縮機と、室温を検出する検出手段と
、吹き出し温度を検出する検出手段を有し、暖房運転時
、室温と吹き出し温度により圧縮機の能力を制御し、か
つ、吹き出し温度により吹き出し風の方向を変更するヒ
ートポンプ式空気調和機を構成し、吹き出し温度を周期
的に検出し、吹き出し温度が第1の設定値T1以Fにあ
るときは、圧縮機能力を少なくとも1段りげ、吹き出し
温度が第2の設定値T2以七のときけ、圧縮機能力を少
なくとも1段下げるようにした空気調和機の運転制御方
法。
(1) It has a variable capacity compressor, a detection means for detecting the room temperature, and a detection means for detecting the outlet temperature, and during heating operation, the capacity of the compressor is controlled based on the room temperature and the outlet temperature, and the outlet temperature is controlled by the compressor. The heat pump type air conditioner changes the direction of the blowing air by periodically detecting the blowing temperature, and when the blowing temperature is higher than the first set value T1, the compression function power is increased by at least one step. An operation control method for an air conditioner, in which the compression function is lowered by at least one step when the outlet temperature reaches a second set value T2 or higher.
(2)室温が設定温度範囲内にある時に、吹き出し温度
による圧縮機の能力制御を行なう特許請求の範囲第1項
に記載の空気調和機の運転制御方法。
(2) The method for controlling the operation of an air conditioner according to claim 1, wherein the capacity of the compressor is controlled based on the blowout temperature when the room temperature is within a set temperature range.
(3)空気調和機の運転開始後、最初に吹き出し温度が
第2の設定値T2を越えてから、吹き出し温度による圧
縮機の能力制御を行なうようにした特許請求の範囲第1
項または第2項に記載の空気調和機の運転制御方法。
(3) After the air conditioner starts operating, the capacity of the compressor is controlled based on the air outlet temperature after the air outlet temperature exceeds the second set value T2.
The method for controlling the operation of an air conditioner according to item 1 or 2.
JP57162547A 1982-09-17 1982-09-17 Operation control of air conditioner Pending JPS5952145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57162547A JPS5952145A (en) 1982-09-17 1982-09-17 Operation control of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57162547A JPS5952145A (en) 1982-09-17 1982-09-17 Operation control of air conditioner

Publications (1)

Publication Number Publication Date
JPS5952145A true JPS5952145A (en) 1984-03-26

Family

ID=15756664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57162547A Pending JPS5952145A (en) 1982-09-17 1982-09-17 Operation control of air conditioner

Country Status (1)

Country Link
JP (1) JPS5952145A (en)

Similar Documents

Publication Publication Date Title
JPH01181032A (en) Air conditioner
JP3176425B2 (en) Current detection method and current detection device for air conditioner
JPS5952145A (en) Operation control of air conditioner
JPS6338625B2 (en)
JPS6338624B2 (en)
JPS623178A (en) Air conditioner
JPS624618B2 (en)
JPS6256411B2 (en)
JPH06159773A (en) Controller for air conditioner
JPH0449020B2 (en)
JPS5952144A (en) Operation control of air conditioner
JPS5949439A (en) Control method of operation for air conditioner
JPS5952143A (en) Operation control of air conditioner
JPH0140258B2 (en)
JPS5956032A (en) Capacity controlling method of air conditioner
JPS6029540A (en) Air quantity controlling method for air conditioner
JPS6141837A (en) Temperature control device for air conditioner
JPS6033445A (en) Air conditioner
JPH0417332B2 (en)
JPH02115643A (en) Controlling method for start of timer of air conditioner
JPS61197938A (en) Operation method of air conditioner
JPS63282443A (en) Air conditioner
JPS6291737A (en) Air-conditioning machine
JPS63279040A (en) Air conditioner
JPS60144551A (en) Method of controlling capacity of air conditioner