JPS60240941A - Controller of air conditioner - Google Patents

Controller of air conditioner

Info

Publication number
JPS60240941A
JPS60240941A JP59098032A JP9803284A JPS60240941A JP S60240941 A JPS60240941 A JP S60240941A JP 59098032 A JP59098032 A JP 59098032A JP 9803284 A JP9803284 A JP 9803284A JP S60240941 A JPS60240941 A JP S60240941A
Authority
JP
Japan
Prior art keywords
control circuit
heat exchanger
heating
outdoor
outdoor blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59098032A
Other languages
Japanese (ja)
Inventor
Noboru Kubota
久保田 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59098032A priority Critical patent/JPS60240941A/en
Publication of JPS60240941A publication Critical patent/JPS60240941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To reduce drastically the number of times of defrosting and to improve comfortability at the time of heating operation by preventing fosting under terms wherein atmospheric temperature is comparatively high, by turning an outdoor blower at a very small number of revolutions without suspending the same at the same at the time of heating at overload. CONSTITUTION:A control circuit 8 is so constituted that an outdoor blower 6 is turned at the minute number of revolutions by an input signal from a heating load detector 7 at the time of heating at superload by a method wherein the heating laod detector 7 detecting a heating load and a contol circuit 8 controlling the number revolutions of the outdoor blower 6 are provided. In other words, at the time of heating operation, time when the temperature of an indoor heat exchanger 4 has become more than T2 (e.g. 55 deg.C) is detected by a thermistor 17 and an air quantity signal which is ultraminute is applied from an output port OUT5 of a main control circuit 19.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、熱媒圧縮サイクルを有する空気調和機の制御
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a control device for an air conditioner having a heat medium compression cycle.

〈従来技術〉 従来、熱媒を吐出する圧縮機と、該圧縮機に流路切換弁
を介して接続された室外熱交換器と、−側が室外熱交換
器に接続され他側か流路切換弁を介して圧縮機に接続さ
れた室内熱交換器とから熱媒圧縮サイクルが構成され、
前記室外熱交換器に強制的に送風するための室外送風機
を有し流路切換弁の切換により暖房−冷房−除霜運転が
可能な空気調和機において、暖房過負荷時に第5,6図
の如く室内熱交換器の温度が12以上(例えば55℃以
上)かあるいは負荷電流か12以」二(例えば18A以
上)になれば、室外送風機を停止し圧縮機の過負荷を防
止し、高圧圧力上昇を防止していた。
<Prior art> Conventionally, a compressor that discharges a heat medium, an outdoor heat exchanger connected to the compressor via a flow path switching valve, and a negative side connected to the outdoor heat exchanger and the other side connected to the outdoor heat exchanger and the other side connected to the outdoor heat exchanger through a flow path switching valve have been used. A heat medium compression cycle is composed of an indoor heat exchanger connected to a compressor via a valve,
In an air conditioner that has an outdoor blower for forcibly blowing air to the outdoor heat exchanger and is capable of heating, cooling, and defrosting operations by switching the flow path switching valve, the conditions shown in Figs. 5 and 6 occur when heating is overloaded. If the temperature of the indoor heat exchanger becomes 12 or more (for example, 55℃ or more) or the load current becomes 12 or more (for example, 18A or more), the outdoor blower is stopped, the compressor is prevented from overloading, and the high pressure is It was preventing it from rising.

しかし、このような制御方法では外気温が高いにもかか
わらず室外送風機が停止中に着霜し、除霜用サーモスタ
ットがたとえば一3°Cとなり、熱媒圧縮サイクルを冷
房サイクルに切換え、除霜に入る可能性があった。その
ためサイクル切換時の熱媒音の発生頻度が大となり、ま
た室温の低下による不快感も増大した。
However, with this control method, even though the outside temperature is high, frost builds up while the outdoor blower is stopped, and the defrosting thermostat switches to, for example, -3°C, switching the heat medium compression cycle to the cooling cycle and starting the defrosting cycle. There was a possibility of entering. As a result, the frequency of generation of heating medium noise during cycle switching increased, and discomfort caused by a drop in room temperature also increased.

〈 目的〉 本発明は、」―記に鑑み、暖房過負荷時に室外送風機を
停止することなく微小回転数で回転させることにより、
外気温が比較的高い条件下での着霜を防1にし得、除霜
回数を大巾に低減でき、暖房運転時の快適性を向−1ニ
し得る空気調和(幾の制御装置を提供しようとするもの
である。
<Purpose> In view of the above, the present invention has the following advantages: By rotating an outdoor fan at a minute rotation speed without stopping it during heating overload,
Provides an air conditioning control device that can prevent frost formation under relatively high outside temperatures, greatly reduce the number of defrost operations, and improve comfort during heating operation. This is what I am trying to do.

〈実施例〉 以下、本発明の一実施例を図面に基いて説明すると、こ
れは、熱媒を吐出する圧縮機1と、該圧縮機1に流路切
換弁2を介して接続された室外熱交換器3と、−側が室
外熱交換器3に接続され他側か流路切換弁2を介して圧
縮機1に接続された室内熱交換器・1とから熱媒圧縮サ
イクル5が構成され、前記室外熱交換器3に強制的に送
風するための室外送風(幾6を有し流路切換弁2の切換
により暖房−冷房一除霜運転力呵能な空気調和(幾にお
いで、1@房負荷を検出する暖房負荷検出装置7が設け
られ、前記室外送風(幾6の回転数を制御する制御回路
8が設けられ、該制御回路8は、暖房負荷検出装置7か
らの入力信号により暖房過負荷時に室外送風機6を微小
回転数で回転させるよう構成されたものである。
<Embodiment> An embodiment of the present invention will be described below with reference to the drawings. This includes a compressor 1 that discharges a heat medium, and an outdoor unit connected to the compressor 1 via a flow path switching valve 2. A heat medium compression cycle 5 is composed of a heat exchanger 3 and an indoor heat exchanger 1 whose negative side is connected to the outdoor heat exchanger 3 and whose other side is connected to the compressor 1 via the flow path switching valve 2. , an outdoor air blower (6) for forcibly blowing air to the outdoor heat exchanger 3, and an air conditioning system (with a heating/cooling/defrosting operation power) by switching the flow path switching valve 2. @ A heating load detection device 7 that detects the room load is provided, and a control circuit 8 that controls the rotation speed of the outdoor air blower (6) is provided, and the control circuit 8 is configured to The outdoor blower 6 is configured to rotate at a minute rotational speed during heating overload.

第1,2図は本発明に係る制御装置の回路図で、図中9
は電源、10は室内送風機、lla、]2a。
1 and 2 are circuit diagrams of a control device according to the present invention, and 9 in the figure
is a power supply, 10 is an indoor blower, lla, ] 2a.

13aは夫々圧縮(幾1、流路切換弁2、室内送風機1
0をONさせるリレー接点である。
13a are compressors (1, flow path switching valve 2, indoor blower 1), respectively.
This is a relay contact that turns 0 ON.

そして前記暖房負荷検出装M7は、電源9がら圧縮機1
、流路切換弁2、室内送風機10及び室外送風機6等に
電流を供給する交流回路1・1中で負荷電流を検出する
負荷電流検知回路16と、室内熱交換器4の温度を検知
する熱交換器用サーミスタ17と、該サーミスタ17か
らのアナログ信号をデジタル値に変換して制御回路0に
出力するA/D変換器18とから構成されている。
The heating load detection device M7 detects the compressor 1 from the power source 9.
, a load current detection circuit 16 that detects load current in the AC circuits 1 and 1 that supply current to the flow path switching valve 2, indoor blower 10, outdoor blower 6, etc., and a heat detector that detects the temperature of the indoor heat exchanger 4. It consists of an exchanger thermistor 17 and an A/D converter 18 that converts an analog signal from the thermistor 17 into a digital value and outputs it to the control circuit 0.

また制御回路8は、前記暖房負荷検出装置7がらの入力
信号により、室外送風機6を「強」又は「超微」とする
信号を出力する主制御回路1つと、該主制御回路19か
らの信号によりトリガー信号を3− 出力する位相制御回路20と、該位相制御回路2()か
らのトリが一信号により室外送風機6の回転数を制御す
るトライアック回路21とがら構成されている。
The control circuit 8 also includes one main control circuit that outputs a signal to set the outdoor fan 6 to "strong" or "ultra-low" in response to an input signal from the heating load detection device 7, and a signal from the main control circuit 19. The triac circuit 21 is comprised of a phase control circuit 20 which outputs a trigger signal by three signals, and a triac circuit 21 which controls the rotation speed of the outdoor blower 6 by one signal from the phase control circuit 2 ( ).

なお、第1図中X、 Y、Zは夫々第2図中のX。Note that X, Y, and Z in FIG. 1 are the X in FIG. 2, respectively.

)′、Zに電気的に接続されており、22はトランス、
23はブリッジ形整流回路(平滑を含む)である。そし
て、前記主制御回路19は、一般的なワンチップマイク
ロコンピュータで、内部にプログラムROM、データR
AM、ALUおよび入カポ−)IN1〜6、出力ポート
0UT1〜7を有し、外部発振回路24により駆動され
ている。25゜26はスイッチで主制御回路19のIN
I、INSに入力される。27は室外熱交換器3の温度
検知用の除霜サーモスタットで主制御回路19のINS
に入力される。28は室内用サーミスタで、A/D変換
器29でディジタル値に変換されて主制御回路19のI
NSに入力される。また前記熱交換器用サーミスタ17
がらの温度信号は、A/D変換器18でディジタル値に
変換されて主側4− 御回路19のIN6に入力される。30はドライバーア
レイで、出カポ−)OLJTI〜3からの出力信号によ
り、リレーコイル11,12.13を駆動する。
)', electrically connected to Z, 22 is a transformer,
23 is a bridge type rectifier circuit (including smoothing). The main control circuit 19 is a general one-chip microcomputer with a program ROM and data R.
It has AM, ALU and input ports IN1-6 and output ports 0UT1-7, and is driven by an external oscillation circuit 24. 25° and 26 are switches for the IN of the main control circuit 19.
I, input to INS. 27 is a defrosting thermostat for detecting the temperature of the outdoor heat exchanger 3, and is connected to the INS of the main control circuit 19.
is input. 28 is an indoor thermistor, which is converted into a digital value by an A/D converter 29 and sent to I of the main control circuit 19.
Input to NS. In addition, the heat exchanger thermistor 17
The temperature signal is converted into a digital value by the A/D converter 18 and input to IN6 of the main control circuit 19. 30 is a driver array, which drives relay coils 11, 12, and 13 by output signals from output capacitors OLJTI-3.

また、主制御回路19から位相制御回路20へは、出カ
ポ−)OUT4から室外送風機6の風量信号1強」を出
力し、出カポ−) OLJ T 5からは風量信号「超
微」を出力し、出カポ−) OU T 6.7からは夫
々電源周波数(50Hz、60Hz)に相応する信号を
出力する。
In addition, from the main control circuit 19 to the phase control circuit 20, an air volume signal of 1 strong from the outdoor fan 6 is output from the output capo OUT 4, and an air volume signal "ultra small" is output from the output capo OLJ T5. The output capacitors OUT 6.7 output signals corresponding to the power supply frequencies (50 Hz, 60 Hz), respectively.

一方前記位相制御回路20は、室外送風機6の電流信号
をトライアック回路21から受け、主制御回路19から
の風量信号に対応する位相を経過した後、トライアック
回路21のトライアックの21AをONするトリが一信
号を出力するものである。即ち、位相制御回路20は、
比較器31を具え、該比較器31のマイナス入力端子に
は、抵抗32と、主制御回路19の出カポ−)OUT4
゜5に接続された抵抗値の異なる抵抗33.34とが並
列接続され、その並列抵抗と抵抗35とで分圧された電
圧が印加される。また比較器31のプラス入力端子には
、主制御回路19の出力ポートロ、7に接続する抵抗3
6(5082時)、抵抗37(61’l Hz)、抵抗
38,41,44、コンデンサ4()、第一ホトカプラ
−42のホトトランジスタ42A、トランジスタ43、
及び抵抗44が接続され、抵抗36(5(’lHz時)
又は抵抗37(60Hz時)を通してコンデンサ40に
充電した電圧が印加される。なお、抵抗36の方が抵抗
37よりも大トい値、すなわち5(lHzの方が充電時
間が長くなる。
On the other hand, the phase control circuit 20 receives the current signal of the outdoor blower 6 from the triac circuit 21, and after passing through the phase corresponding to the air volume signal from the main control circuit 19, the phase control circuit 20 receives the current signal of the outdoor blower 6, and after passing through the phase corresponding to the air volume signal from the main control circuit 19, a triac circuit 21 turns on the triac 21A of the triac circuit 21. It outputs one signal. That is, the phase control circuit 20
A comparator 31 is provided, and a negative input terminal of the comparator 31 is connected to a resistor 32 and an output capacitor (OUT4) of the main control circuit 19.
Resistors 33 and 34 having different resistance values are connected in parallel, and a voltage divided by the parallel resistance and the resistor 35 is applied. In addition, the positive input terminal of the comparator 31 is connected to the resistor 3 connected to the output port 7 of the main control circuit 19.
6 (5082 hours), resistor 37 (61'l Hz), resistors 38, 41, 44, capacitor 4 (), phototransistor 42A of first photocoupler 42, transistor 43,
and resistor 44 are connected, and resistor 36 (5 (at 'lHz)
Alternatively, a charged voltage is applied to the capacitor 40 through the resistor 37 (at 60 Hz). Note that when the resistor 36 has a larger value than the resistor 37, that is, 5 (lHz), the charging time becomes longer.

そして、該電圧は第4図の如く、トライアック回路21
からの信号で室外送風機6の通電時にはホトトランジス
タ42 AはOFF’となるため、トランジスタ43は
抵抗38を通してベース電流か供給されてONし、抵抗
4,4を通しでコンデンサ40は放電している。従って
比較器31のプラス入力端子は低レベル電圧である。そ
して室外送風機6の電流がゼロになり、トライアック回
路21のトライアック21AがOF Fになると、トラ
イアック回路21の発光ダイオード4.2 Bの発光に
よりホトトランジスタ42AはONL、トランジスタ4
3はOF Fとなり、コンデンサ40は充電を始める。
Then, the voltage is applied to the triac circuit 21 as shown in FIG.
When the outdoor fan 6 is energized by the signal from . Therefore, the positive input terminal of comparator 31 is at a low level voltage. Then, when the current of the outdoor fan 6 becomes zero and the triac 21A of the triac circuit 21 turns OFF, the phototransistor 42A turns ONL and the transistor 4
3 becomes OFF, and the capacitor 40 starts charging.

そのため比較器31のプラス入力端子の電圧が高くなり
、マイナス入力端子よりも入力電圧が高くなると、比較
器31の出力はHレベルとなり、抵抗45、ダイオード
46を通してトランジスタ48にベース電流を流す。そ
のため1こ、トランジスタ48がONL、第二ホトカプ
ラー50の発光ダイオード5()を発光させ、第4図の
如くトリガー信号を出力し、トライアック回路21のホ
トトライアック5()BをONする。なお、45.47
.49は抵抗である。
Therefore, when the voltage at the plus input terminal of the comparator 31 becomes higher than the input voltage at the minus input terminal, the output of the comparator 31 becomes H level, causing a base current to flow through the transistor 48 through the resistor 45 and diode 46. Therefore, the transistor 48 turns ON and causes the light emitting diode 5() of the second photocoupler 50 to emit light, outputs a trigger signal as shown in FIG. 4, and turns on the phototriac 5()B of the triac circuit 21. In addition, 45.47
.. 49 is a resistance.

また、トライアック回路21は、位相制御回路2()か
らのトリガー信号によりトライアック21AをONさせ
、室外送風機6をONさせるとともに、第4図の如く室
外送風(幾6の電流遮断信号を位相制御回路20の第一
ホトカプラ−42のホトトランジスタ42Aに出力する
ものである。即ち、トライアック回路2]は第二ホトカ
プラー50の7− ホ))ライアツク50Bがトライアック2]Aのゲート
に接続され、該ホトトライアック50Bが位相制御回路
2()からのトリガー信号により内部のL E Dが点
灯すると、内部トライアックがターンオンし、トライア
ック2]Aに抵抗51、ホトトライアック50Bを通し
てゲート電流が流れてターンオンする。なお、図中51
は抵抗、53はコンデンサである。また、トライアツク
21AOFF時には、交流電源9の電圧は室外送風機6
及び抵抗52、ダイオードブリッヂ53を通しで第一ホ
トカプラ−42の発光ダイオード42Bに印加して発光
させ、位相制御回路2(′)に室外送風機電流遮断信号
を出力する。
Further, the triac circuit 21 turns on the triac 21A by a trigger signal from the phase control circuit 2 (), turns on the outdoor fan 6, and transmits the current cutoff signal of In other words, the triac circuit 2] is connected to the gate of the triac 2]A, and the triac circuit 50B of the second photocoupler 50 is connected to the gate of the triac 2]A. When the internal LED of the triac 50B is turned on by the trigger signal from the phase control circuit 2(), the internal triac is turned on, and a gate current flows through the resistor 51 and the phototriac 50B to the triac 2]A, turning it on. In addition, 51 in the figure
is a resistor, and 53 is a capacitor. In addition, when the triack 21A is OFF, the voltage of the AC power supply 9 is lower than the voltage of the outdoor blower 6.
It is applied to the light emitting diode 42B of the first photocoupler 42 through the resistor 52 and the diode bridge 53 to cause it to emit light, and outputs an outdoor blower current cutoff signal to the phase control circuit 2(').

」1記構成においで、暖房運転時に、室内熱交換器4の
温度がT2(例えは55℃)以」−になった時を熱交換
器用サーミスタ17で検出し、又は負荷電流検知回路1
6で負荷電流が12(アンペア1以上になった時を検出
し、これらの検出信号により主制御回路19の出カポ−
)OUT5がら[超微]の風量信号力咄力する。また暖
房運転時に室内熱8− 交換器4の温度がT2以下で負荷電流が12以下の場合
は、主制御回路19の出カポ−) OU T 4から「
強」の風量信号力咄力される。
In the configuration described in item 1, during heating operation, the heat exchanger thermistor 17 detects when the temperature of the indoor heat exchanger 4 becomes T2 (for example, 55°C) or higher, or the load current detection circuit 1
6, it is detected when the load current becomes 12 (ampere 1 or more), and these detection signals control the output port of the main control circuit 19.
) A [ultra-fine] air volume signal force is applied from OUT5. In addition, during heating operation, if the temperature of the indoor heat exchanger 4 is below T2 and the load current is below 12, the output from the main control circuit 19 is
“Strong” air volume signal force is applied.

位相制御回路20では、」―述の如く、比較器31のプ
ラス入力端子には、一定波形の電圧が印加されているが
、マイナス入力端子には主制御回路19からの風量信号
により、抵抗33又は34の抵抗値の違いで異なるレベ
ルの電圧か印加されることになる。従って、比較器31
の出力がHレベルになる時期が異なり、第二ホトカプラ
ー51)の発光ダイオード50Aからトリが一信号の出
力時期も風量信号「強」、「超微」によって異なってく
る。
In the phase control circuit 20, as described above, a voltage with a constant waveform is applied to the positive input terminal of the comparator 31, and the resistor 33 is applied to the negative input terminal by the air volume signal from the main control circuit 19. Alternatively, voltages of different levels are applied depending on the difference in the resistance value of the 34 resistors. Therefore, comparator 31
The timing at which the output reaches the H level differs, and the timing at which the single signal is output from the light emitting diode 50A of the second photocoupler 51) also differs depending on whether the air volume signal is "strong" or "ultra-fine."

即ち、トライアック回路21に入力するトリガー信号の
時期的制御により室外送風機電流が制御され、例えば早
い時点でトリガー信号がホ))ライアツク50.8に入
力されれば電流も多く流れ室外送風機6を「強風」で回
転させることかで外、第4図の如く遅い時点でトリが一
信号が入力されれば電流も少なく室外送風機6は「超微
風」で回転することになる。そして第1()図の70−
チャートで示す如く、室内熱交換器の温度が第5図の如
くT1以下となりかつ負荷電流が11以下となったとき
に主制御回路19の出カポ−) OU T 4から風量
信号を出力し、室外送風機6を強風に切換えて暖房運転
を続ける。
That is, the outdoor blower current is controlled by the timing control of the trigger signal input to the triac circuit 21. For example, if the trigger signal is inputted to the triac circuit 50.8 at an early point in time, a large amount of current flows and the outdoor blower 6 is In addition, if one signal is input to the bird at a late point in time as shown in FIG. 4, the outdoor blower 6 will rotate with a "super light wind" because the current will be small. And 70- in Figure 1 ()
As shown in the chart, when the temperature of the indoor heat exchanger becomes T1 or less and the load current becomes 11 or less as shown in FIG. The outdoor blower 6 is switched to strong wind and the heating operation is continued.

なお、第7図は室外送風機6の電動機のトルク−回転数
の関係を示す図で、その電動機を図中の負荷曲線で使用
して上記の如く位相制御すれば、60 Hzのとぎ超微
風で回転数が下がりすぎるのを防止でき、又電動機の速
度切換タップを現行通1)とすること力呵能である。そ
して超微風回転は、圧縮機1の保護装置力情j1らかな
い程度の回転数で、例えば150〜20 (1rpmに
シフトダウンすればよい。
In addition, Fig. 7 is a diagram showing the relationship between the torque and rotation speed of the electric motor of the outdoor blower 6. If the electric motor is used according to the load curve in the figure and the phase is controlled as described above, it will be possible to generate a 60 Hz ultra-light breeze. It is possible to prevent the rotational speed from dropping too low, and it is also possible to use the current speed switching tap of the motor (1). The ultra-light rotation may be performed at a rotation speed that does not affect the protection device of the compressor 1, for example, by shifting down to 150 to 20 (1 rpm).

また、第31図は室外送風機6の回転数と遮断位相角の
関係を示す図で、遮断位相角を変えることにより、周波
数の異なる商用電源(5(’)H2と6(−))(z)
のいずれであっても室外送風機6の回転数を同一にする
ことがでとる。即ち、位相制御回路20において上記実
施例の如く、抵抗36(50HzZ)の抵抗値を抵抗3
7(6(lHz)よりも大ぎい値とすれば、50Hzの
方が充電時間が長くなり、比較器31のプラス入力端子
に印加される電圧波形■(十)は、第4図で示す場合よ
りも立」19時間が長くなるが、その分筆4図が上段に
示す室外送風機6の電流波形も5(lHzの方が波長が
長くなるため、トリガー信号の発生時期が遅れても同量
の電流を室外送風機6に供給することができる。
Moreover, FIG. 31 is a diagram showing the relationship between the rotation speed and the cutoff phase angle of the outdoor blower 6. By changing the cutoff phase angle, commercial power sources (5(')H2 and 6(-)) (z )
Either of these can be achieved by making the rotational speed of the outdoor blower 6 the same. That is, in the phase control circuit 20, as in the above embodiment, the resistance value of the resistor 36 (50HzZ) is
If the value is larger than 7 (6 (lHz)), the charging time will be longer at 50 Hz, and the voltage waveform ■ (10) applied to the positive input terminal of the comparator 31 will be as shown in Fig. 4. However, the current waveform of the outdoor fan 6 shown in the upper part of Figure 4 is also 5 (1Hz), which has a longer wavelength, so even if the trigger signal is delayed, the same amount of current will be generated. Electric current can be supplied to the outdoor blower 6.

〈効果〉 以上の説明から明らかな通り、本発明は、熱媒を吐出す
る圧縮機と、該圧縮機に流路切換弁を介して接続された
室外熱交換器と、−側が室外熱交換器に接続され池側が
流路切換弁を介して圧縮(幾1に接続された室内熱交換
器とから熱媒圧縮サイクルが構成され、前記室外熱交換
器に強制的に送風するための室外送風機を有し流路切換
弁の切換により暖房−冷房一除霜運転力呵能な空気調和
機において、暖房負荷を検出する暖房負荷検出装置が設
けられ、前記室外送風機の回転数を制御する制御回路が
設けられ、該制御回路は、暖房負荷検出11− 装置からの人力信号により暖房過負荷時に室外送風機を
微小回転数で回転させるよう構成されるものである。
<Effects> As is clear from the above description, the present invention includes a compressor that discharges a heat medium, an outdoor heat exchanger connected to the compressor via a flow path switching valve, and a negative side connected to the outdoor heat exchanger. A heat medium compression cycle is constructed from an indoor heat exchanger connected to 1, and an outdoor blower for forcibly blowing air to the outdoor heat exchanger. In an air conditioner capable of performing heating-cooling and defrosting operation by switching a flow path switching valve, a heating load detection device for detecting a heating load is provided, and a control circuit for controlling the rotation speed of the outdoor blower is provided. The control circuit is configured to rotate the outdoor blower at a minute rotational speed in the event of heating overload based on a human power signal from the heating load detection 11-device.

従って本発明によると、暖房過負荷時に室外送風機を停
止することなく微小回転数で回転させることにより、外
気温が比較的高い条件下での着霜を防止し得、除霜回数
を大11に低減でき、暖房運転時の快適性を向上し得る
といった効果がある。
Therefore, according to the present invention, by rotating the outdoor fan at a minute rotation speed without stopping it during heating overload, frost formation can be prevented under conditions where the outside temperature is relatively high, and the number of times of defrosting can be increased to 11. This has the effect of reducing the amount of heat and improving comfort during heating operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例を示す制御回路図、第2図は同制
御回路の主制御回路と位相制御回路とを示す回路図、第
3図は同空気調和機の構成図、第・1図はトライアック
回路及び位相制御回路の各部の主な波形を示す図、$5
図は室内熱交換器温度と室外送風機の関係を示す図、第
6図は同負荷電流と室外送風機の関係を示す図、第7図
は室外送風機の回転数とトルクの関係図、第8図は室外
送風機の回転数と遮断位相角特性を示す図、第9図は従
来の制御フローチャート、第10図は本発明による制御
フローチャートである。 12− 1:圧縮機、2:流路切換弁、3:室外熱交換器、4:
室内熱交換器、5:熱媒圧縮サイクル、6:室外送風機
、°7:暖房負荷検出装置、8:制御回路、16:負荷
電流検知回路、17:熱交換器用サーミスタ、19:主
制御回路、20:位相制御回路、21:トライアック回
路。 出 願 入 シャープ株式会社 代理人 中村恒久
Fig. 1 is a control circuit diagram showing an embodiment of the present invention, Fig. 2 is a circuit diagram showing a main control circuit and a phase control circuit of the control circuit, Fig. 3 is a configuration diagram of the air conditioner, The figure shows the main waveforms of each part of the triac circuit and phase control circuit, $5
The figure shows the relationship between the indoor heat exchanger temperature and the outdoor fan, Figure 6 shows the relationship between the same load current and the outdoor fan, Figure 7 shows the relationship between the outdoor fan's rotation speed and torque, and Figure 8 9 is a diagram showing the rotation speed and cutoff phase angle characteristics of an outdoor blower, FIG. 9 is a conventional control flowchart, and FIG. 10 is a control flowchart according to the present invention. 12- 1: Compressor, 2: Flow path switching valve, 3: Outdoor heat exchanger, 4:
Indoor heat exchanger, 5: heat medium compression cycle, 6: outdoor blower, °7: heating load detection device, 8: control circuit, 16: load current detection circuit, 17: heat exchanger thermistor, 19: main control circuit, 20: Phase control circuit, 21: Triac circuit. Application filed Sharp Corporation Agent Tsunehisa Nakamura

Claims (1)

【特許請求の範囲】[Claims] 熱媒を吐出する圧縮機と、該圧縮機に流路切換弁を介し
て接続された室外熱交換器と、−側が室外熱交換器に接
続され他側か流路切換弁を介して圧縮機に接続されtこ
室内熱交換器とから熱媒圧縮サイクルが構成され、前記
室外熱交換器に強制的に送風するための室外送風機を有
し流路切換弁の切換により暖房−冷房−除霜運転が可能
な空気調和機において、暖房負荷を検出する暖房負荷検
出装置が設けられ、前記室外送風機の回転数を制御する
制御回路が設けられ、該制御1回路は、暖房負荷検出装
置からの人力信号−二より暖房過負荷時1こ室外送風機
を微小回転数で回転させるよう構成されたことを特徴と
する空気調和機の制御装置。
A compressor that discharges a heat medium, an outdoor heat exchanger connected to the compressor via a flow path switching valve, and a negative side connected to the outdoor heat exchanger and the other side connected to the compressor via the flow path switching valve. A heat medium compression cycle is constructed from the indoor heat exchanger, which is connected to the outdoor heat exchanger, and has an outdoor blower to forcefully blow air to the outdoor heat exchanger. In an air conditioner that can be operated, a heating load detection device for detecting a heating load is provided, and a control circuit for controlling the rotation speed of the outdoor blower is provided, and the first control circuit is operated by human power from the heating load detection device. 1. A control device for an air conditioner, characterized in that it is configured to rotate one outdoor blower at a minute rotational speed when a heating overload occurs from a second signal.
JP59098032A 1984-05-15 1984-05-15 Controller of air conditioner Pending JPS60240941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098032A JPS60240941A (en) 1984-05-15 1984-05-15 Controller of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098032A JPS60240941A (en) 1984-05-15 1984-05-15 Controller of air conditioner

Publications (1)

Publication Number Publication Date
JPS60240941A true JPS60240941A (en) 1985-11-29

Family

ID=14208668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098032A Pending JPS60240941A (en) 1984-05-15 1984-05-15 Controller of air conditioner

Country Status (1)

Country Link
JP (1) JPS60240941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277098A (en) * 2001-03-21 2002-09-25 Daikin Ind Ltd Refrigerator
JP2003106551A (en) * 2001-09-28 2003-04-09 Matsushita Electric Ind Co Ltd Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174451A (en) * 1974-12-25 1976-06-28 Tokyo Shibaura Electric Co
JPS5520333A (en) * 1978-07-28 1980-02-13 Toshiba Corp Control system for heat-pump type air-conditioning device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174451A (en) * 1974-12-25 1976-06-28 Tokyo Shibaura Electric Co
JPS5520333A (en) * 1978-07-28 1980-02-13 Toshiba Corp Control system for heat-pump type air-conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277098A (en) * 2001-03-21 2002-09-25 Daikin Ind Ltd Refrigerator
JP2003106551A (en) * 2001-09-28 2003-04-09 Matsushita Electric Ind Co Ltd Air conditioner

Similar Documents

Publication Publication Date Title
US9207001B1 (en) Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation
KR970006058B1 (en) Method and apparatus for controlling temperature in airconditioner
JPS594616B2 (en) air conditioner
JPS60144547A (en) Controller of defrosting operation of air conditioner
WO1993006420A1 (en) Device for setting operation mode of air conditioner
JP3176425B2 (en) Current detection method and current detection device for air conditioner
JPS60240941A (en) Controller of air conditioner
JP2000308353A (en) Power unit
JPS6349640Y2 (en)
JPS624618B2 (en)
JPH0544980A (en) Controlling method for air conditioner
JPS6345023B2 (en)
JPS6113544B2 (en)
JPS6029540A (en) Air quantity controlling method for air conditioner
JPS6121343B2 (en)
JP2919597B2 (en) Control device for air conditioner
JPH07190464A (en) Control method of air conditioner driven by solar cell
JPS60240942A (en) Controller of air conditioner
JPH0526426Y2 (en)
JPS58130924A (en) Controller for function of air conditioner
JPH0223779B2 (en)
JPS5816103B2 (en) Automatic fan speed control circuit for air conditioners
JP2001091027A (en) Air conditioner
JPS60133253A (en) Rotating speed controller for exterior blower in air conditioner
JPS6315718Y2 (en)