JPS60240942A - Controller of air conditioner - Google Patents

Controller of air conditioner

Info

Publication number
JPS60240942A
JPS60240942A JP59098030A JP9803084A JPS60240942A JP S60240942 A JPS60240942 A JP S60240942A JP 59098030 A JP59098030 A JP 59098030A JP 9803084 A JP9803084 A JP 9803084A JP S60240942 A JPS60240942 A JP S60240942A
Authority
JP
Japan
Prior art keywords
indoor
control circuit
heat exchanger
blower
indoor blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59098030A
Other languages
Japanese (ja)
Inventor
Noboru Kubota
久保田 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59098030A priority Critical patent/JPS60240942A/en
Publication of JPS60240942A publication Critical patent/JPS60240942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve comfortability by making a range of an air quantity identical even if power source frequency differs, by varying a current-interupting phase angle of an indoor blower according to the frequency. CONSTITUTION:The number of revolutions of an indoor blower 6 is made identical by varying an interrupting phase angle even with commercial power sources whose frequencies (50Hz and 60Hz) are different from each other. In other words, on account of a matter that when a resisting value of a resistor 36 (50Hz) is made larger than that of a resistor 37 (60Hz) in a phase control circuit 20, though charging time for the 50Hz becomes longer than that for the 60Hz and build-up time of a wave form V (+) of voltage to be applied to a plus input terminal of a comparator 31 becomes long, as a wavelength for the 50Hz of a current wave form of a blower 6 in its branch chamber becomes long also, an identical quantity of an electric current can be supplied to the indoor blower 6 even if generating time of a trigger signal lags and an air quantiy can be made to fall within a constant air quantity range even if the frequencies differ from each other.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、熱媒圧縮サイクルを有する空気調和機の制御
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a control device for an air conditioner having a heat medium compression cycle.

〈従来技術〉 従来、熱媒を吐出する圧縮機と、該圧縮機に流路切換弁
を介して接続された室外熱交換器と、−側が室外熱交換
器に接続され他側か流路切換弁を介して前記圧縮機に接
続された室内熱交換器とから熱媒圧縮サイクルが構成さ
れ、前記室内熱交換器に強制的に送風するための室内送
風機を有し流路切換弁の切換により暖房−冷房一除霜運
転力呵能な空気調和機において、室内送風機用の電動機
は単相誘導電動機を使用しでおり、周波数により回転数
が異なる。従って第5図に示す様な特性をもつ電動機を
図中の負荷曲線で使用した場合、例えば電源周波数とし
て6(’)H2を基準にすれば、50Hzではし強1で
回転数、エネルギー消費効率(EERも)が低下し、逆
にIllでは回転数が上がりすぎる。この回転数の上が
りすぎを防止するために5(’3Hzを下げれば、6(
’lHzが下がりすぎ、冷房時の霜付等の問題か発生す
る。そのため、冷房時に冷えすぎたり、暖房時に風量が
多すぎるため冷たく感じたりする。即ち周波数が5(’
)Hzと61’)I−1zでの使用風量幅の違いによる
不快感、EERの低下をたたしている。
<Prior art> Conventionally, a compressor that discharges a heat medium, an outdoor heat exchanger connected to the compressor via a flow path switching valve, and a negative side connected to the outdoor heat exchanger and the other side connected to the outdoor heat exchanger and the other side connected to the outdoor heat exchanger through a flow path switching valve have been used. A heat medium compression cycle is constituted by an indoor heat exchanger connected to the compressor via a valve, and includes an indoor blower for forcibly blowing air to the indoor heat exchanger, and by switching a flow path switching valve. In air conditioners capable of heating, cooling, and defrosting, a single-phase induction motor is used as the motor for the indoor blower, and the number of revolutions varies depending on the frequency. Therefore, when a motor with the characteristics shown in Figure 5 is used with the load curve shown in the figure, for example, if the power supply frequency is 6 (') H2, the rotation speed and energy consumption efficiency will decrease at 50 Hz and 1 at high power. (EER also) decreases, and conversely, the rotation speed increases too much in Ill. In order to prevent this rotation speed from increasing too much, if you lower the frequency by 5('3Hz), it will reduce to 6(
If the lHz drops too much, problems such as frost formation may occur during cooling. As a result, the air gets too cold when cooling, or feels cold when heating because the air volume is too high. That is, the frequency is 5('
) Hz and 61') I-1z, the difference in air volume used caused discomfort and decreased EER.

〈1白ν 本発明は、上記に鑑み、周波数に対応して室内送風機の
電流遮断位相角を変えることにより、電源周波数が異な
っても風量幅を同一にし得、快適性を向)−シ得る空気
調和機の制御装置を提供しようとするものである。
In view of the above, the present invention makes it possible to maintain the same air volume range even if the power supply frequency is different by changing the current cut-off phase angle of the indoor blower in accordance with the frequency, thereby improving comfort. The present invention aims to provide a control device for an air conditioner.

〈実施例〉 以下、本発明の一実施例を図面に基いて説明すると、こ
れは、熱媒を吐出する圧縮機1と、該圧縮機1に流路切
換弁2を介して接続された室外熱交換器3と、−側が室
外熱交換器3に接続され他側か流路切換弁2を介して前
記圧縮(幾1に接続された室内熱交換器・1とから熱媒
圧縮サイクル5が構成され、前記室内熱交換器4に強制
的に送風す) るための室内送風(幾6を有し流路切換
弁2の切換により暖房−冷房一除霜運転力呵能な空気調
和機において、前記室内送風機6の回転数を制御する制
御回路8が設けられ、該制御回路8は、電源周波数の違
いに対応して室内送風機6への電流遮断位相角を変える
ことによりその回転数誤差を無くするよう構成されたも
のである。
<Embodiment> An embodiment of the present invention will be described below with reference to the drawings. This includes a compressor 1 that discharges a heat medium, and an outdoor unit connected to the compressor 1 via a flow path switching valve 2. A heat medium compression cycle 5 is connected to the heat exchanger 3 and the indoor heat exchanger 1 whose negative side is connected to the outdoor heat exchanger 3 and whose other side is connected to the compressor 1 through the flow path switching valve 2. In the air conditioner, which has an indoor air blower (forcibly blowing air to the indoor heat exchanger 4), which has a heating-cooling-defrosting operation power by switching the flow path switching valve 2. , a control circuit 8 for controlling the rotation speed of the indoor blower 6 is provided, and the control circuit 8 corrects the rotation speed error by changing the phase angle of current cutoff to the indoor blower 6 in accordance with the difference in power frequency. It is designed to eliminate it.

第1,2図は本発明lこ係る制御装置の回路図で、図中
9は電源、10は室内送風機、1]ai2a+13a、
は夫々圧縮1!1、流路切換弁2、室外送風機1 (l
をONさせるリレー接点である。
1 and 2 are circuit diagrams of a control device according to the present invention, in which 9 is a power supply, 10 is an indoor blower, 1]ai2a+13a,
are respectively compression 1!1, flow path switching valve 2, outdoor blower 1 (l
This is a relay contact that turns ON.

また、第2図中15は室内送風I!6の風量を「強]「
弱」「微」に切換えるための風量スイッチで、該スイッ
チの出力信号が前記制御回路8に入力される。また、第
3図中1(5は減圧器である。
Also, 15 in Figure 2 indicates indoor ventilation I! Set the air volume of 6 to "strong"
This is an air volume switch for switching between "weak" and "fine", and the output signal of this switch is input to the control circuit 8. In addition, 1 (5) in FIG. 3 is a pressure reducer.

そして、制御回路8は、前記風量スイッチ15からの人
力信号により、室内送風機6を冒MilF弱−1「Wi
」とする信号を出力する主制御回路1′:]と、該主側
御回路19からの信号によりトリガー信号を出力する位
相制御回路20と、該位相制御回路20からのトリガー
信号により室内送風(幾6の回転数を制御するtライア
ツク回路2]から構成されている。
Then, the control circuit 8 operates the indoor blower 6 by the manual signal from the air volume switch 15.
A main control circuit 1′: ] outputs a signal that indicates ”; a phase control circuit 20 that outputs a trigger signal based on a signal from the main control circuit 19; It is composed of a t-liack circuit 2 which controls the number of revolutions.

3− なお、第1図中X、Yは夫々第2図中のX、Yに電気的
に接続されており、22はトランス、23はブリッジ形
整流回路(平滑を含む)である。そして、前記主制御回
路]9は、一般的なワンチップマイクロコンピュータで
、内部にプログラムRO卜4、デ゛−タRAM、ALU
および入力ポートIN1〜3、出力ポート0LJTI〜
8を有し、外部発振回路24により駆動されている。そ
して、風量切換スイッチ15からの1強」「弱」「微]
の信号が主制御回路19のIN1〜3に入力される。2
5はドライバ′−アレイで、出力ポートOU T 1〜
3からの出力信号により、リレーコイル11,12.1
3を駆動する。
3- Note that X and Y in FIG. 1 are electrically connected to X and Y in FIG. 2, respectively, 22 is a transformer, and 23 is a bridge type rectifier circuit (including smoothing). The main control circuit] 9 is a general one-chip microcomputer, and internally includes a program RO 4, a data RAM, and an ALU.
and input ports IN1~3, output ports 0LJTI~
8 and is driven by an external oscillation circuit 24. Then, select 1 from the air volume selector switch 15, ``High'', ``Weak'', ``Slight''.
The signals are input to IN1 to IN3 of the main control circuit 19. 2
5 is a driver'-array, and output ports OUT1~
3, relay coils 11, 12.1
Drive 3.

また、主制御回路19から位相制御回路2 (1へは、
出カポ−) OU T 4から室内送風機6の風量信号
「強」を出力し、出カポ−)OUT5からは風量信号1
弱」を出力し、出カポ−) 0 [1T 6からは風量
信号「微」を出力し、出カポ−hou’r7.gからは
夫々電源周波数50 Hz、 6 (l Hzに相応す
る信号を出力する。
In addition, from the main control circuit 19 to the phase control circuit 2 (1),
The air volume signal "strong" of the indoor fan 6 is output from output capo OUT 4, and the air volume signal 1 is output from output capo OUT 5.
0 [1T 6 outputs an air volume signal "weak" and the output capo hou'r7. G outputs signals corresponding to power supply frequencies of 50 Hz and 6 (l Hz), respectively.

4− 一方、前記位相制御回路20は、室内送風機6の電流信
号をトライアック回路21から受け、主制御回路19か
らの風量信号に対応する位相を経過した後、トライアッ
ク回路21のFライデック21AをONするトリが一信
号を出力するものである。即ち、位相制御回路20は、
比較器31を具え、該比較器31のマイナス入力端子に
は、抵抗32と、主制御回路19の出力ポートOU T
 4. 。
4- On the other hand, the phase control circuit 20 receives the current signal of the indoor blower 6 from the triac circuit 21, and after passing the phase corresponding to the air volume signal from the main control circuit 19, turns on the F LIDEC 21A of the triac circuit 21. The bird that outputs one signal. That is, the phase control circuit 20
A comparator 31 is provided, and a negative input terminal of the comparator 31 is connected to a resistor 32 and an output port OUT of the main control circuit 19.
4. .

5.6に接続された抵抗値の異なる抵抗30,33゜3
4とが並列接続され、その並列抵抗と抵抗35とで分圧
されすこ電圧が印加される。また比較器31のプラス入
力端子には、主制御回路19の出力ポートO[I T 
7 、8に接続する抵抗36(50Hz時)、抵抗37
(6(nlz)、抵抗38,41.44、コンデンサ4
0、第一ホトカプラ−42のホトトランジスタ42A、
’)ランジスタ43が接続され、抵抗36(50Hz時
)又は抵抗37(6rlHz時)を通してコンデンサ4
0に充電した電圧が印加される。なお、抵抗36の方が
抵抗37よりも大とい値、すなわt)50Hzの方が充
電時間が長くなる。
Resistors 30, 33°3 with different resistance values connected to 5.6
4 are connected in parallel, and a voltage divided by the parallel resistance and the resistor 35 is applied. Further, the positive input terminal of the comparator 31 is connected to the output port O[I T
Resistor 36 (at 50Hz) and resistor 37 connected to 7 and 8
(6 (nlz), resistance 38, 41.44, capacitor 4
0, phototransistor 42A of first photocoupler 42,
') Transistor 43 is connected, and capacitor 4 is connected through resistor 36 (at 50Hz) or resistor 37 (at 6rlHz).
A voltage charged to 0 is applied. Note that when the resistance 36 has a larger threshold value than the resistance 37, that is, 50 Hz, the charging time becomes longer.

そして、該電圧は第4図の如く、トライアック回路21
からの信号で室内送風機6の通電時にはホ))ランジス
タ1I2AはC) F Pとなるため、トランジスタ4
3は抵抗38を通してベース電流が供給されてC) N
 L、抵抗4・1を通してコンデンサ、q、 t:+は
放電している。従ってこの時、比較器31のプラス入力
端子は低レベル電圧となる。そして室内送風機6の電流
かゼロになり、トライアック回路21のトライアック2
11\かOFFになると、トライアック回路21の発光
ダイオード42Bの発光によI)ホ))ランジスタ42
AはONし、トランジスタ43は(−) F Fとな1
)、コンデンサ40は充電を始める。そのため比較器3
1のプラス入力端子の電圧が高くなり、マイナス入力端
子よりも入力電圧か高くなると、比較器31の出力はI
−ルベルとなり、抵抗45、ダイオード46を通してト
ランジスタ43)にベース電流を流す。そのために、ト
ランジスタ4)(かONし、第二ホトカプラー5 f’
lの発光ダイオード50を発光させ、第4図の如くトリ
が一信号を出力し、トライアック回路21のホトトライ
アック5()BをONする。なお、45.4.7.49
は抵抗である。
Then, the voltage is applied to the triac circuit 21 as shown in FIG.
When the indoor blower 6 is energized by the signal from
3 is supplied with base current through resistor 38C) N
L, capacitor, q, t:+ are discharging through resistor 4.1. Therefore, at this time, the plus input terminal of the comparator 31 becomes a low level voltage. Then, the current of the indoor fan 6 becomes zero, and the triac 2 of the triac circuit 21
When 11\ is turned off, the light emitted from the light emitting diode 42B of the triac circuit 21 causes the transistor 42 to
A turns on, and the transistor 43 becomes (-) FF.
), the capacitor 40 starts charging. Therefore, comparator 3
When the voltage at the positive input terminal of No. 1 becomes higher and the input voltage becomes higher than that at the negative input terminal, the output of the comparator 31 becomes I
- the base current flows through the transistor 43) through the resistor 45 and diode 46. For this purpose, the transistor 4) is turned on, and the second photocoupler 5f'
1 light emitting diode 50 is made to emit light, the triac 50 outputs one signal as shown in FIG. In addition, 45.4.7.49
is resistance.

トライアック回路21は、位相制御回路2()からのト
リガー信号によりトライアック21AをONさせ、室内
送風機6をONさせるとともに、第4図の如く室内送風
機6の電流遮断信号を位相制御回路20の第一ホトカプ
ラ−42のホトトランジスタ42Aに出力するものであ
る。即ち、トライアック回路21では第二ホトカプラー
50のホトトライアック50Bぎトライアック21Aの
ゲートに接続され、該ホ))ライアツク5()Bが位相
制御回路20からのトリガー信号により内部のLEI)
か点灯すると、内部トライアックがターンオンし、トラ
イアック2 ] Aに抵抗51、ホトトライアック5 
(l Bを通してゲート電流か流れてターンオンする。
The triac circuit 21 turns on the triac 21A in response to a trigger signal from the phase control circuit 2 (), turns on the indoor blower 6, and sends a current cutoff signal for the indoor blower 6 to the first output of the phase control circuit 20 as shown in FIG. It outputs to the phototransistor 42A of the photocoupler 42. That is, in the triac circuit 21, the phototriac 50B of the second photocoupler 50 is connected to the gate of the triac 21A.
When it lights up, the internal triac turns on, and the resistor 51 is connected to TRIAC 2, and the phototriac 5 is connected to A.
(The gate current flows through lB and turns on.

なお、図中51は抵抗、53はコンデンサである。また
、トライアツク21AOFF時には、交流電源9の電圧
は室内送風機6及び抵抗52、ダイオードブリッヂ54
を通して第一ホトカプラ−42の発光ダイオード42B
に印加=7− して発光させ、位相制御回路2()に室内送風(幾電流
遮断信号を出力する。
In the figure, 51 is a resistor, and 53 is a capacitor. Also, when the triax 21A is OFF, the voltage of the AC power supply 9 is the same as that of the indoor blower 6, the resistor 52, and the diode bridge 54.
Through the light emitting diode 42B of the first photocoupler 42
=7- to emit light and output an indoor ventilation (current cutoff signal) to the phase control circuit 2().

一1―記構成において、冷暖房運転時に、風量切換スイ
ッチ]5から1強」1弱」「徽」の信号が主制御回路1
5〕に入力されると、それに応じて出力ポートOLI 
T 4 、5 、6から風量信号力咄力する。また出力
ポート0UT718からも電源周波数(50Hz又は6
0Hz)に見合った信号力咄力されている。
In the configuration described in 11- above, during cooling/heating operation, the signals from the air volume selector switch] 5 to 1 high, 1 low, and 1 are sent to the main control circuit 1.
5], the output port OLI is output accordingly.
Air volume signal force is applied from T4, 5, and 6. In addition, the power frequency (50Hz or 6
0Hz).

そして位相制御回路20では、」−述の如く、比較器3
1のプラス入力端子には、周波数(5(’lHz又は6
tiHz)に相応する一定波形の電圧が印加されている
。そして、マイナス入力端子には主制御回路19からの
風量信号により、抵抗3(1,33又は34の抵抗値の
違いで異なるレベルの電圧が印加されることになる。従
って、比較器31の出力がHレベルになる時期が風量信
号により異なり、第二ホトカプラー50の発光ダイオ−
1’ 50 A #−らのトリガー信号の出力時期も風
量信号によって異なってくる。即ち、トライアック回路
21に入力するトリが一信号の時期的制御により室内送
風8− 磯電流が制御され、例えば堅い時点でトリガー信号がホ
))ライアツク50Bに入力されれば電流も多く流れ、
室内送風機6を「強」で・回転させることができ、第4
図の如く遅い時点でトリガー信号が入力されれば電流も
少なく室内送風機6は1弱−1又は「微」で回転する。
In the phase control circuit 20, as described above, the comparator 3
The positive input terminal of 1 has a frequency (5 ('lHz or 6
A voltage with a constant waveform corresponding to the frequency (tiHz) is applied. Then, depending on the air volume signal from the main control circuit 19, voltages of different levels are applied to the negative input terminal depending on the resistance value of the resistor 3 (1, 33, or 34).Therefore, the output of the comparator 31 The timing at which the light becomes H level varies depending on the airflow signal, and the light emitting diode of the second photocoupler 50
The output timing of the trigger signal 1' 50 A #- etc. also differs depending on the air volume signal. That is, the indoor air blower 8-iso current is controlled by the timing control of one signal inputted to the triac circuit 21, and for example, if the trigger signal is inputted to the triac 50B at a hard point, a large amount of current flows,
The indoor fan 6 can be rotated on "strong", and the fourth
If the trigger signal is input at a late time as shown in the figure, the current will be small and the indoor blower 6 will rotate at 1-1 or "slight".

なお、第5図は室内送風機6の電動機のトルク−回転数
の関係を示す図で、その電動機を図中の負荷曲線で使用
して」−記の如く位相制御すれば、60H2のとき微風
で回転数が下がりすぎるのを防止で外、又電動機の速度
切換タップを現行通りとすること力呵能である。
In addition, Fig. 5 is a diagram showing the relationship between the torque and rotation speed of the electric motor of the indoor blower 6. If the motor is used according to the load curve in the figure and the phase is controlled as shown in the figure, it will be possible to obtain a light breeze at 60H2. In order to prevent the rotational speed from dropping too low, it is also possible to keep the speed switching tap of the motor as it is now.

また、第6図は室内送風機6の回転数と遮断位相角の関
係を示す図で、遮断位相角を変えることにより、周波数
の異なる商用型′l¥X(50Hzと60)1z)であ
っても室内送風機6の回転数を同一にすることができる
。即ち、位相制御回路20において上記実施例の如く、
抵抗36(5(iHz)の抵抗値を抵抗37(6(lH
z)よりも大きい値とすれば、50Hzの方が充電時間
が長Xなり、比較器31のプラス入力端子に印加される
電圧波形\・“(+)は、第4図で示す場合よりも立」
ニリ時間が長くなるが、その分給4図の」一段に示す室
内送風機6の電流波形も50Hzの方が波長が長くなる
ため、トリが一信号の発生時期が遅れても同量の電流を
室内送風機6に供給することかでト、周波数が異なって
も一定風量幅とすることがで終る。。
Moreover, FIG. 6 is a diagram showing the relationship between the rotation speed and the cut-off phase angle of the indoor fan 6, and by changing the cut-off phase angle, it can be The rotational speed of the indoor blower 6 can also be made the same. That is, in the phase control circuit 20, as in the above embodiment,
The resistance value of resistor 36 (5 (iHz)) is changed to the resistance value of resistor 37 (6 (1H)
z), the charging time will be longer at 50 Hz, and the voltage waveform \・“(+) applied to the positive input terminal of the comparator 31 will be larger than that shown in FIG. Standing
The current waveform of the indoor fan 6 shown in the first row of Figure 4 also has a longer wavelength at 50Hz, so even if the bird generates one signal later, the same amount of current can be generated. By supplying the air to the indoor blower 6, it is possible to maintain a constant air volume range even if the frequency is different. .

〈効果〉 以」―の説明から明らかな通り、本発明は、熱媒を吐出
する圧縮機と、該圧縮機に流路切換弁を介して接続され
た室外熱交換器と、−側が室外熱交換器に接続され他側
か流路切換弁を介して前記圧縮機に接続された室内熱交
換器とから熱媒圧縮サイクルが構成され、前記室内熱交
換器に強制的に送風するための室内送風機を有し流路切
換弁の切換により暖房−冷房一除霜運転力呵能な空気調
和機においで、前記室内送風(代の回転数を制御する制
) 御回路が設けられ、該制御回路は、電源周波数の違
い1こ対応して室内送風機への電流遮断位相角を変える
ことによりその回転数誤差を無くするよう構成されたも
のである。
<Effects> As is clear from the explanation below, the present invention includes a compressor that discharges a heat medium, an outdoor heat exchanger connected to the compressor via a flow path switching valve, and a A heat medium compression cycle is constituted by an indoor heat exchanger connected to the exchanger and connected to the compressor via a flow path switching valve on the other side, and an indoor heat exchanger for forcibly blowing air to the indoor heat exchanger. In an air conditioner having a blower and capable of performing heating/cooling/defrosting operation by switching a flow path switching valve, a control circuit for controlling the rotational speed of the indoor air blower is provided, and the control circuit is configured to eliminate the rotational speed error by changing the current cutoff phase angle to the indoor blower in response to the difference in power supply frequency.

従って本発明によると、周波数に対応して室内送風機の
電流遮断位相角を変えることに上り、電源周波数が異な
っても風量幅を同一にし得、快適性を向上し得るといっ
た優れた効果がある。
Therefore, according to the present invention, the current cutoff phase angle of the indoor blower can be changed in accordance with the frequency, and the air volume width can be made the same even if the power supply frequency is different, thereby providing an excellent effect of improving comfort.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例を示す制御回路図、第2図は同制
御回路の主制御回路と位相制御回路とを示す回路図、第
3図は同空気調和機の構成図、第4図はトライアック回
路及び位相制御回路の各部の主な波形を示す図、第5図
は室内送風機の回転数とトルクの関係図、第6図は室内
送風機の回転数と遮断位相角特性を示す図である。 1:圧縮機、2:流路切換弁、3:室外熱交換器、4:
室内熱交換器、5:熱媒圧縮サイクル、6:室内送風機
、7:暖房負荷検出装置、8:制御回路、15;風量切
換スイッチ、19:主制御回路、21):位相制御回路
、21:トライアック回路。 出 願 入 シャープ株式会社 代理人 中村恒久 第6図 第jりl
Fig. 1 is a control circuit diagram showing an embodiment of the present invention, Fig. 2 is a circuit diagram showing a main control circuit and a phase control circuit of the control circuit, Fig. 3 is a configuration diagram of the air conditioner, and Fig. 4 Figure 5 is a diagram showing the main waveforms of each part of the triac circuit and phase control circuit, Figure 5 is a diagram showing the relationship between the rotation speed and torque of the indoor fan, and Figure 6 is a diagram showing the rotation speed and cutoff phase angle characteristics of the indoor fan. be. 1: Compressor, 2: Flow path switching valve, 3: Outdoor heat exchanger, 4:
Indoor heat exchanger, 5: Heat medium compression cycle, 6: Indoor blower, 7: Heating load detection device, 8: Control circuit, 15; Air volume selection switch, 19: Main control circuit, 21): Phase control circuit, 21: triac circuit. Application filed Sharp Corporation Agent Tsunehisa Nakamura Figure 6, JI

Claims (1)

【特許請求の範囲】[Claims] 熱媒を吐出する圧縮機と、該圧縮機に流路切換弁を介し
て接続された室外熱交換器と、−側が室外熱交換器に接
続され他側か流路切換弁を介して前記圧縮機に接続され
た室内熱交換器とから熱媒圧縮サイクルが構成され、前
記室内熱交換器に強制的に送風するための室内送風眠を
有し流路切換弁の切換により暖房−冷房一除霜運転力呵
能な空気調和機において、前記室内送風機の回転数を制
御する制御回路が設けられ、該制御回路は、電源周波数
の違いに対応して室内送風機への電流遮断位相角を変え
ることによりその回転数誤差を無くするよう構成された
ことを特徴とする空気調和機の制御装置。
A compressor that discharges a heat medium, an outdoor heat exchanger connected to the compressor via a flow path switching valve, and a − side connected to the outdoor heat exchanger and the other side connected to the compressor A heat medium compression cycle is constructed from an indoor heat exchanger connected to the indoor heat exchanger, and has an indoor air blower mode to forcefully blow air to the indoor heat exchanger, and can switch between heating and cooling by switching the flow path switching valve. In the air conditioner capable of frost operation, a control circuit is provided for controlling the rotation speed of the indoor blower, and the control circuit is configured to change a current cutoff phase angle to the indoor blower in response to a difference in power supply frequency. A control device for an air conditioner, characterized in that it is configured to eliminate the rotation speed error.
JP59098030A 1984-05-15 1984-05-15 Controller of air conditioner Pending JPS60240942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098030A JPS60240942A (en) 1984-05-15 1984-05-15 Controller of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098030A JPS60240942A (en) 1984-05-15 1984-05-15 Controller of air conditioner

Publications (1)

Publication Number Publication Date
JPS60240942A true JPS60240942A (en) 1985-11-29

Family

ID=14208586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098030A Pending JPS60240942A (en) 1984-05-15 1984-05-15 Controller of air conditioner

Country Status (1)

Country Link
JP (1) JPS60240942A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790724A (en) * 1980-11-28 1982-06-05 Mitsubishi Electric Corp Control circuit of air conditioning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790724A (en) * 1980-11-28 1982-06-05 Mitsubishi Electric Corp Control circuit of air conditioning

Similar Documents

Publication Publication Date Title
KR100946719B1 (en) Apparatus to control a multi programmable constant air flow with speed controllable brushless motor
JPS60249895A (en) Frequency converter
JPH1114124A (en) Air conditioner
JPS6237093A (en) Control method of number of revolution of air conditioner
WO2020181856A1 (en) Air conditioner
JPH02620B2 (en)
JP3176425B2 (en) Current detection method and current detection device for air conditioner
JP4493132B2 (en) Power supply
JPH09266674A (en) Dc power device and air conditioner using dc power device thereof
US6369544B1 (en) Furnace and air conditioner blower motor speed control
JP4289718B2 (en) Power supply
JPS60240942A (en) Controller of air conditioner
JPS60240941A (en) Controller of air conditioner
JP3272260B2 (en) Power control circuit
JPS6029540A (en) Air quantity controlling method for air conditioner
KR100445466B1 (en) Method and device for power factor compensation in inverter airconditioner
KR100540423B1 (en) Inverter air conditioner compressor frequency control method
JP2002089906A (en) Air conditioner
JPH0512670Y2 (en)
JPS6155556A (en) Air conditioner
JPS5816103B2 (en) Automatic fan speed control circuit for air conditioners
JPS61138043A (en) Method of controlling capability variable freezer
KR200383675Y1 (en) energy saving type air handling unit
KR100509019B1 (en) Method for Compressor voltage control in inverter air conditioner
JPS58130924A (en) Controller for function of air conditioner