JPS62204510A - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JPS62204510A
JPS62204510A JP4691486A JP4691486A JPS62204510A JP S62204510 A JPS62204510 A JP S62204510A JP 4691486 A JP4691486 A JP 4691486A JP 4691486 A JP4691486 A JP 4691486A JP S62204510 A JPS62204510 A JP S62204510A
Authority
JP
Japan
Prior art keywords
substrate
film thickness
growing
liquid phase
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4691486A
Other languages
Japanese (ja)
Inventor
Hidema Uchishiba
内柴 秀磨
Yuji Sasaki
祐二 佐々木
Osamu Igata
理 伊形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4691486A priority Critical patent/JPS62204510A/en
Publication of JPS62204510A publication Critical patent/JPS62204510A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an epitaxial crystal of high quality having less film thickness distribution by reversing the rotating direction of a substrate holder for holding a substrate at a special time interval in heated solution at the time of growing the crystal. CONSTITUTION:A crucible base 3 is disposed in a core tube 2 on which a heater 1 is wound, and a crucible 4 is placed on the base. Solution 8 which contains a material solute to be grown and solvent is filled in the crucible 4, and heated by the heater 1 to approx. 1,000 deg.C. A substrate 7 is held in a substrate holder 6 mounted at the lower end of a supporting shaft 5. The shaft 5 is rotatably driven by a growing apparatus to rotate the holder 6 and the substrate 7, thereby growing a thin film on the substrate 7. At this time, the rotating direction of the substrate is reversed at a time interval of 18sec or shorter.

Description

【発明の詳細な説明】 〔概要〕 加熱溶液中で基板を回転させて、液相エピタキシャル成
長法により基板上に結晶を成長させる際に、基板ホルダ
ーを18秒以下の時間間隔で反転させることにより、膜
厚の均一化を図る。
[Detailed Description of the Invention] [Summary] When growing a crystal on the substrate by the liquid phase epitaxial growth method by rotating the substrate in a heated solution, by inverting the substrate holder at time intervals of 18 seconds or less, Aim to make the film thickness uniform.

〔産業上の利用分野〕[Industrial application field]

本発明は、加熱溶液中で基板を回転させて、基板上に結
晶を成長させる液相エピタキシャル成長方法に関する。
The present invention relates to a liquid phase epitaxial growth method for growing crystals on a substrate by rotating the substrate in a heated solution.

〔従来の技術〕[Conventional technology]

バブルメモリは現在4Mビットの記憶容量を持つものが
量産されているが、さらに高密度、低コスト化を目指し
て研究が進められている。このためには記憶媒体である
バブル磁区を小さくしなければならないが、これに伴い
結晶の膜厚も薄(する必要がある。ところが膜厚が薄く
なるほど、膜厚のバラツキの影響が大きくなる。特に膜
厚りとコラプス磁界H0が比例関係にあるため、膜厚が
薄くなるほど、膜厚分布の均一化が必要となる。
Bubble memories with a storage capacity of 4M bits are currently being mass-produced, but research is underway to achieve even higher density and lower costs. To achieve this, the bubble magnetic domain, which is the storage medium, must be made smaller, and along with this the crystal film thickness must also be made thinner. However, the thinner the film thickness, the greater the influence of film thickness variations. In particular, since the film thickness and the collapse magnetic field H0 are in a proportional relationship, the thinner the film thickness is, the more uniform the film thickness distribution becomes.

従来のガーネット膜育成法では、育成中に溶液内で基板
ホルダーを一方向回転または反転する方法が行われてい
るが、特に反転の時間間隔は問題とされていなかった。
In the conventional garnet film growth method, a substrate holder is rotated in one direction or reversed in a solution during growth, but the time interval between reversals has not been considered a particular problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

すなわち従来のバブル結晶では、膜厚が1μm以上と厚
いため、膜厚分布はあまり問題にならなかった。しかし
高密度のバブル結晶では、膜厚が約0.5μmと極めて
薄くなるため、より均一な膜厚が要求されるようになっ
た。
That is, in conventional bubble crystals, the film thickness is as thick as 1 μm or more, so the film thickness distribution did not pose much of a problem. However, with high-density bubble crystals, the film thickness is extremely thin, approximately 0.5 μm, and a more uniform film thickness is now required.

本発明の技術的課題は、従来の液相エピタキシャル成長
方法におけるこのような問題を解消し、膜厚分布の少な
い、より高品質なエピタキシャル結晶を得ることにある
A technical object of the present invention is to eliminate such problems in conventional liquid phase epitaxial growth methods and to obtain higher quality epitaxial crystals with less film thickness distribution.

〔問題点を解決するための手段〕[Means for solving problems]

液相エピタキシャル成長方法は、原料溶質と溶媒を含む
加熱溶液中に基板を浸漬して、溶液からホモエピタキシ
ャルまたはヘテロエピタキシャルで、基板上に結晶を成
長させる方法である。本発明は、この液相エピタキシャ
ル成長方法によって結晶を育成する際に、基板を保持し
た基板ホルダーを、加熱溶液中で18秒以下の時間間隔
で回転方向を反転させる。
The liquid phase epitaxial growth method is a method in which a substrate is immersed in a heated solution containing a raw material solute and a solvent, and a crystal is grown on the substrate homoepitaxially or heteroepitaxially from the solution. In the present invention, when growing a crystal by this liquid phase epitaxial growth method, the direction of rotation of a substrate holder holding a substrate is reversed at time intervals of 18 seconds or less in a heated solution.

〔作用〕[Effect]

このように本発明によれば、基板の回転方向が18秒以
下の時間間隔で反転する。基板面の各位置と溶液との接
触条件は一定でないため、基板が同じ方向に長時間回転
を続けた場合、膜厚も一定でなくなる。ところが18秒
以下の時間間隔で回転方向を反転させると、反転時に基
板面と接している液面が掻き混ぜらて、基板の各面と液
体との接触条件が変化する。このように18秒以下の短
い周期で、接触条件を新しくすることにより、最終的に
は基板の全面が均一な膜厚となる。反転周期が18秒を
越えると、膜厚のバラツキが大きくなり、実用に耐えら
れないことが実験の結果確認された。
Thus, according to the present invention, the direction of rotation of the substrate is reversed at time intervals of 18 seconds or less. Since the contact conditions between each position on the substrate surface and the solution are not constant, if the substrate continues to rotate in the same direction for a long time, the film thickness will also not be constant. However, if the rotation direction is reversed at a time interval of 18 seconds or less, the liquid surface in contact with the substrate surface at the time of reversal is agitated, changing the contact conditions between each surface of the substrate and the liquid. By renewing the contact conditions at short intervals of 18 seconds or less in this way, the entire surface of the substrate will eventually have a uniform film thickness. As a result of experiments, it was confirmed that when the reversal period exceeds 18 seconds, the variation in film thickness becomes large and the film cannot be put to practical use.

〔実施例〕〔Example〕

次に本発明による液相エピタキシャル成長方法が実際上
どのように具体化されるかを実施例で説明する。第1図
は本発明方法を実施する装置の断面図である。ヒータ1
が巻かれた炉芯管2中に、るつぼ台3が配置され、その
上にるつぼ4が載置されている。るつぼ4中には、育成
しようとする原料溶質と溶媒から成る溶t& 8が入っ
ており、ヒ一り1で1000℃程度に加熱される。支軸
5の下端に取付けられた基板ホルダー6には、基板7が
保持されている。
Next, examples will be used to explain how the liquid phase epitaxial growth method according to the present invention is actually implemented. FIG. 1 is a sectional view of an apparatus for carrying out the method of the invention. Heater 1
A crucible stand 3 is disposed in a furnace core tube 2 wound with a crucible, and a crucible 4 is placed on it. The crucible 4 contains a melt t&8 consisting of a raw material solute to be grown and a solvent, and is heated to about 1000°C in a heat 1. A substrate 7 is held in a substrate holder 6 attached to the lower end of the support shaft 5 .

このような育成装置により、支軸5を回転駆動すること
で、基板ホルダー6および基板7を回転させ、第2図の
ようにGGG基板7上に、薄膜71を成長させる。この
とき、GGG基板7にヘテロエピタキシャルにより、Y
、Fe、O,、系の結晶71を成長させるには、原料溶
質として、Y2O2、Smz03 、Luzos 、C
aCO3、Pez02 、Ge01などが使用され、溶
媒としてはPbO,8203などが使用される。ホモエ
ピタキシャルで育成する場合は、基板7と薄膜71とは
、結晶構造も成分と同じなため、原料溶質としては、G
azOx 、Gd2O2などを用いる。
With such a growth apparatus, by rotationally driving the spindle 5, the substrate holder 6 and the substrate 7 are rotated, and a thin film 71 is grown on the GGG substrate 7 as shown in FIG. At this time, Y is formed on the GGG substrate 7 by heteroepitaxial
, Fe, O,, to grow the crystal 71 of the system, Y2O2, Smz03, Luzos, C
aCO3, Pez02, Ge01, etc. are used, and PbO, 8203, etc. are used as the solvent. In the case of homoepitaxial growth, the substrate 7 and the thin film 71 have the same crystal structure and composition, so G is used as the raw material solute.
azOx, Gd2O2, etc. are used.

いま支軸5を回転駆動することで、基板ホルダー6およ
び基板7を回転させるとき、基板7は例えば70rpm
程度の回転数で回転させる。この基板回転数で、結晶の
成長速度が決まる。すなわち基板回転数が高いと、結晶
の成長速度が速く、回転数が低いと成長速度も遅くなる
ことが知られている。
When the substrate holder 6 and the substrate 7 are now rotated by rotationally driving the support shaft 5, the substrate 7 is rotated at, for example, 70 rpm.
Rotate at a certain speed. This substrate rotation speed determines the crystal growth rate. That is, it is known that when the substrate rotation speed is high, the crystal growth rate is high, and when the rotation speed is low, the growth rate is slow.

基板回転数7Or pmの時の反転時間間隔Tに対する
膜厚均一性を第3図(a)に示す、横軸は反転時間間隔
、縦軸は標準偏差である。また第3図山)に示したよう
にウェハ内の21点の膜厚を測定し、この分布の標準偏
差σを求めた0例えば反転周期Tが30秒の場合右回転
:30秒間、左回転230秒間を交互に繰返す。このよ
うにして行なった実験結果から、第3図(a)のように
反転周期Tが短いほど膜厚の均一性はよくなることがわ
かった。バブル径の小さい高密度デバイスに耐えうる膜
厚の均一性は、σにして0.025μm以下であればよ
いと考えられるので、Tは18秒以下がよいことがわか
る。
FIG. 3(a) shows the film thickness uniformity with respect to the reversal time interval T when the substrate rotation speed is 7 Orpm, where the horizontal axis is the reversal time interval and the vertical axis is the standard deviation. In addition, as shown in Figure 3, the film thickness was measured at 21 points on the wafer, and the standard deviation σ of this distribution was found. Repeat alternately for 230 seconds. From the results of the experiments conducted in this manner, it was found that the shorter the inversion period T, the better the uniformity of the film thickness, as shown in FIG. 3(a). It is considered that the uniformity of the film thickness that can withstand a high-density device with a small bubble diameter is as long as σ is 0.025 μm or less, so it can be seen that T is preferably 18 seconds or less.

第4図は従来の一方向回転と、本発明による18秒以下
の周期による反転方法との特性を比較する実験結果であ
る。Δ印の特性線は従来方法であり、120rpmで一
方向回転する例である。O印の特性線は本発明の方法で
あり、回転数は?Orpm 、5秒周期で反転する例で
ある。これからも明らかなように、5秒周期で反転した
場合は、特性線の勾配が急で標準偏差が小さく、膜厚バ
ラツキが少ない。
FIG. 4 shows the results of an experiment comparing the characteristics of the conventional unidirectional rotation and the reversal method using a period of 18 seconds or less according to the present invention. The characteristic line marked with Δ is the conventional method, and is an example of rotation in one direction at 120 rpm. The characteristic line marked O is the method of the present invention, and what is the rotation speed? Orpm is an example of reversal at a 5-second period. As is clear from this, when the inversion occurs every 5 seconds, the slope of the characteristic line is steep, the standard deviation is small, and there is little variation in film thickness.

第5図は回転数は同じで、反転周期を変えた場合の実験
結果である。O印の特性線は、反転周期が5秒の例、Δ
印の特性線は、反転周期が15秒の例、口印の特性線は
、反転周期が30秒の例である。
Figure 5 shows the experimental results when the rotational speed was the same but the reversal period was changed. The characteristic line marked O is an example where the reversal period is 5 seconds, Δ
The characteristic line marked with a mark is an example of a reversal period of 15 seconds, and the characteristic line of a mouth seal is an example of a reversal period of 30 seconds.

これらの結果からも明らかなように、反転周期が短いほ
ど、特性線の勾配が急で標準偏差が小さい。
As is clear from these results, the shorter the inversion period, the steeper the slope of the characteristic line and the smaller the standard deviation.

なおバブル用ガーネット膜を育成する場合について説明
したが、本発明は、他の薄膜を育成する場合にも通用で
きることはいうまでもない。
Although the case of growing a garnet film for bubbles has been described, it goes without saying that the present invention can be applied to the case of growing other thin films.

〔発明の効果〕〔Effect of the invention〕

以上のように、基板ホルダーを18秒以下の周期で反転
させることにより、膜厚分布の少ない高品質な薄膜を育
成することができ、微小バブル用ガーネット膜を育成す
るような場合に極めて有効である。
As described above, by reversing the substrate holder at a cycle of 18 seconds or less, it is possible to grow a high-quality thin film with a small thickness distribution, which is extremely effective when growing garnet films for microbubbles. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による液相エピタキシャル成長方法の基
本原理を説明する断面図、第2図は本発明の方法で作成
されるバブル基板を示す断面図、第3図は反転周期と膜
厚偏差との関係を示す特性図と基板上における膜厚測定
点を示す図、第4図は従来の方法と本発明方法の実験結
果を示す特性図、第5図は回転数を一定にして反転周期
を変えた場合の特性を示す図である。 図において、4はるつぼ、5は支軸、6は基板ホルダー
、7は基板、71は育成薄膜、8は溶液をそれぞれ示す
。 特許出願人     富士通株式会社 代理人 弁理士   青 柳   稔 育水装置の断面f キカ(□) 蝕め方法u1遡乃広−ζ満儀 第4図 犀捧傭虱^シリ
FIG. 1 is a cross-sectional view explaining the basic principle of the liquid phase epitaxial growth method according to the present invention, FIG. 2 is a cross-sectional view showing a bubble substrate produced by the method of the present invention, and FIG. Figure 4 is a characteristic diagram showing the relationship between film thickness measurement points on the substrate, Figure 4 is a characteristic diagram showing the experimental results of the conventional method and the method of the present invention, and Figure 5 is a diagram showing the reversal period at a constant rotation speed. It is a figure which shows the characteristic when changing. In the figure, 4 is a crucible, 5 is a support shaft, 6 is a substrate holder, 7 is a substrate, 71 is a grown thin film, and 8 is a solution. Patent applicant Fujitsu Ltd. agent Patent attorney Aoyagi Cross-section f of the fertility water system

Claims (1)

【特許請求の範囲】[Claims]  原料溶質と溶媒を含む加熱溶液中に基板を浸漬して、
溶液からホモエピタキシャルまたはヘテロエピタキシャ
ルで、基板ホルダーに保持された基板上に結晶を成長さ
せる際に、基板ホルダーの回転方向を18秒以下の時間
間隔で反転させることを特徴とする液相エピタキシャル
成長方法。
The substrate is immersed in a heated solution containing a raw solute and a solvent.
A liquid phase epitaxial growth method characterized by reversing the rotational direction of the substrate holder at time intervals of 18 seconds or less when growing a crystal from a solution by homoepitaxial or heteroepitaxial growth on a substrate held in a substrate holder.
JP4691486A 1986-03-04 1986-03-04 Liquid phase epitaxial growth method Pending JPS62204510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4691486A JPS62204510A (en) 1986-03-04 1986-03-04 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4691486A JPS62204510A (en) 1986-03-04 1986-03-04 Liquid phase epitaxial growth method

Publications (1)

Publication Number Publication Date
JPS62204510A true JPS62204510A (en) 1987-09-09

Family

ID=12760609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4691486A Pending JPS62204510A (en) 1986-03-04 1986-03-04 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS62204510A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294614A (en) * 1988-09-30 1990-04-05 Shin Etsu Chem Co Ltd Oxide garnet single crystal and manufacture thereof
US7077591B2 (en) 2002-07-02 2006-07-18 L'oreal Packaging and applicator device including a coupling member enabling two receptacles to be united

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294614A (en) * 1988-09-30 1990-04-05 Shin Etsu Chem Co Ltd Oxide garnet single crystal and manufacture thereof
US7077591B2 (en) 2002-07-02 2006-07-18 L'oreal Packaging and applicator device including a coupling member enabling two receptacles to be united

Similar Documents

Publication Publication Date Title
Scheel et al. Flux growth of large crystals by accelerated crucible-rotation technique
US4417943A (en) Method for controlling the oxygen level of silicon rods pulled according to the Czochralski technique
US4761202A (en) Process for crystal growth of KTiOPO4 from solution
JPS62204510A (en) Liquid phase epitaxial growth method
US4293371A (en) Method of making magnetic film-substrate composites
US4092208A (en) Method of growing single crystals of rare earth metal iron garnet materials
Holden Growing single crystals from solution
Görnert et al. Preparation and crystal imperfections of yttrium–iron garnet single crystals grown in flux melts by slowly cooling and gradient transport I. Striations
JPS6360195A (en) Liquid phase epitaxy
US3903841A (en) Vacuum holder in epitaxial growth apparatus
JPH06219891A (en) Production of lithium niobate single crystal film
JPH0329037B2 (en)
US3268301A (en) Method of pulling a semiconductor crystal from a melt
JPS6385085A (en) Method for growing silicon single crystal
US4277519A (en) Simultaneous formation of garnet epilayer on a plurality of substrates
JPH0569080B2 (en)
JPS62216310A (en) Magneto-optical crystal growth method
JPS61202411A (en) Liquid-phase epitaxial growth method
JP2967372B2 (en) Substrate holder used in liquid phase epitaxial growth method
JPS61222985A (en) Production unit for single crystal
JPH11171689A (en) Production of oxide single crystal film
JPS61122185A (en) Production of silicon single crystal
JPH0410224Y2 (en)
JPH05155695A (en) Liquid phase epitaxial growth method for single crystal thin film of lithium niobate
Elwell Fundamentals of flux growth