JPS62216310A - Magneto-optical crystal growth method - Google Patents

Magneto-optical crystal growth method

Info

Publication number
JPS62216310A
JPS62216310A JP5821586A JP5821586A JPS62216310A JP S62216310 A JPS62216310 A JP S62216310A JP 5821586 A JP5821586 A JP 5821586A JP 5821586 A JP5821586 A JP 5821586A JP S62216310 A JPS62216310 A JP S62216310A
Authority
JP
Japan
Prior art keywords
magneto
temperature
crystal
substrate
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5821586A
Other languages
Japanese (ja)
Inventor
Junji Mada
間田 潤二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5821586A priority Critical patent/JPS62216310A/en
Publication of JPS62216310A publication Critical patent/JPS62216310A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow a magneto-optical crystal having less variation in characteristics in a film thickness direction by holding the melting of a melt at high temperature for a predetermined time, then reducing the temperature, holding it for a predetermined time, melting it, then further decreasing the temperature and the crystal is formed on a substrate by liquid growth. CONSTITUTION:When a thick film of Bi-substituted garnet crystal is formed on a nonmagnetic garnet substrate by liquid growth, the melting of a melt is held at high temperature T1 from t1 to t2, then held at temperature T2 from t3 to t4 to melt it at two stages, then further the temperature is reduced to T3 to form a crystal on the substrate by liquid growth. In this case, T1 is 1,100+ or -40 deg.C, T2 is 850+ or -50 deg.C and T3 is 730 deg.C. Thus, a magneto-optical crystal having less variation in characteristics in a film thicknesswise direction is grown by an extremely simple method.

Description

【発明の詳細な説明】 〔概 要〕 磁気光学効果の大きいBi置換型ガーネット結晶の育成
法であって、メルトの溶解を2段階の温度で行った後、
温度を下げ基板に結晶を液相成長させることにより、膜
厚方向に特性変化の少ない磁気光学結晶を得ることを可
能とする。
[Detailed Description of the Invention] [Summary] A method for growing Bi-substituted garnet crystals with a large magneto-optical effect, in which melting is performed at two temperatures, and then
By lowering the temperature and growing the crystal in a liquid phase on the substrate, it is possible to obtain a magneto-optic crystal with little change in characteristics in the film thickness direction.

〔産業上の利用分野〕[Industrial application field]

本発明は磁気光学効果を有するBi置換型ガーネット結
晶の育成法に関するものである。
The present invention relates to a method for growing Bi-substituted garnet crystals having magneto-optic effects.

液相成長Bi置換ガーネット結晶は、磁気光学効果が大
きいため、光アイソレーター等の磁気光学素子へ使用す
ることを目指し、現在その厚膜の育成法が研究されてい
る。
Since liquid-phase grown Bi-substituted garnet crystals have a large magneto-optic effect, methods for growing thick films are currently being researched with the aim of using them in magneto-optic elements such as optical isolators.

〔従来の技術〕[Conventional technology]

従来は、Bi置換型ガーネット結晶のW、膜を育成する
際は溶解温度を一通りに採り育成を行っている。
Conventionally, when growing W films of Bi-substituted garnet crystals, the same melting temperature is used for growth.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の方法では、結晶育成時間の経過に伴ない結晶
特性が変化して、厚膜の特性が膜厚方向に変化する欠点
があった。
The conventional method described above has the disadvantage that the crystal properties change with the passage of crystal growth time, and the properties of the thick film change in the film thickness direction.

本発明はこのような点に鑑みて創作されたもので、簡易
な方法で膜厚方向に特性の変化が少ない磁気光学結晶の
育成法を提供することを目的としく2) ている。
The present invention was created in view of these points, and its purpose is to provide a simple method for growing a magneto-optic crystal with little change in properties in the film thickness direction2).

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の詳細な説明するための図である。同図
において、縦軸には温度を、横軸には時間をとり、曲線
へで本発明の処理温度一時間曲線を示した。本発明は、
BiW換型ガーネット結晶の厚膜を非磁性ガーネット基
板上に液相成長させる場合、メルトの溶解を第1図に示
すようにt、がらt2までは高温のT、を保持し、その
後t3がらt4まではT2の温度を保持して2段階の溶
解を行い、その後さらに温度をT3に下げて基板に結晶
を液相成長させるのである。
FIG. 1 is a diagram for explaining the present invention in detail. In the figure, the vertical axis represents temperature, the horizontal axis represents time, and the curve represents the treatment temperature per hour curve of the present invention. The present invention
When a thick film of BiW-type garnet crystal is grown in liquid phase on a non-magnetic garnet substrate, the melt is maintained at a high temperature T from t to t2 as shown in Fig. 1, and then from t3 to t4. Two steps of melting are performed while maintaining the temperature at T2, and then the temperature is further lowered to T3 to grow crystals on the substrate in a liquid phase.

〔作 用〕[For production]

メルトを2段階の温度で溶解することにより、厚膜の結
晶成長方向への特性の変化を小さくすることが可能とな
る。
By melting the melt at two temperatures, it is possible to reduce changes in the properties of the thick film in the direction of crystal growth.

〔実施例〕〔Example〕

本発明の実施例は、第1図のT、を1100±40℃と
し、T2を850±50°C,T3を730°Cとした
ものである。
In the embodiment of the present invention, T in FIG. 1 is 1100±40°C, T2 is 850±50°C, and T3 is 730°C.

このような方法で形成された磁気光学結晶の特性を第2
図及び第3図に従来例と比較して示す。
The characteristics of the magneto-optic crystal formed by this method are
A comparison with a conventional example is shown in FIG.

第2図は、結晶成長速度Vgの育成時間依存性を示した
もの、第3図は格子定数ミスマツチΔaの育成時間依存
性を示したものである。両図において、育成条件は白丸
印(A)は80φのルツボを用い溶解温度1060℃1
時間保持後900℃2時間保持、黒丸印(B)は55φ
のルツボを用い溶解温度1060℃1時間保持後900
℃で2時間保持、白3角印(C)は55φのルツボを用
い溶解温度1060℃で3時間保持、黒3角印(D)は
55φのルツボを用い溶解温度1060℃で3時間保持
したものである。(以上のA、Bは本実施例、C,Dは
従来例である)第2図をみると、育成時間の経過に伴い
育成速度Vgは減少するが、その減少割合は本発明法の
2段階に溶解を行った方が小さい。
FIG. 2 shows the dependence of the crystal growth rate Vg on the growth time, and FIG. 3 shows the dependence of the lattice constant mismatch Δa on the growth time. In both figures, the growth conditions are indicated by a white circle (A) using an 80φ crucible and a melting temperature of 1060℃1.
After holding for 2 hours at 900℃, the black circle mark (B) is 55φ
After holding the melting temperature at 1060℃ for 1 hour using a crucible of 900℃
℃ for 2 hours, the white triangle mark (C) uses a 55φ crucible and the melting temperature was held at 1060℃ for 3 hours, the black triangle mark (D) uses a 55φ crucible and the melting temperature was held at 1060℃ for 3 hours. It is something. (A and B above are the present example, and C and D are the conventional example.) Looking at Figure 2, it can be seen that the growth speed Vg decreases as the growth time passes, but the rate of decrease is the same as that of the present invention. It is smaller if the dissolution is performed in stages.

特に80φのルツボの場合に顕著である。この育成速度
Vgの減少が少ないことは、ファラデー回転角θFの減
少が少ないことであり、本発明法が有効であることがわ
かる。また第3図の格子定数ミスマツチΔaは基板の格
子定数から膜の格子定数を引いて定義され、このΔaの
増加が大きいと結晶のひび割れ、欠陥等の原因になるた
め小さい方が好ましい。本実施例では育成3時間後にお
いて従来例よりもその増加は小さく本発明法が効果があ
ることがわかる。
This is particularly noticeable in the case of an 80φ crucible. The fact that the growth rate Vg decreases little means that the Faraday rotation angle θF decreases little, and it can be seen that the method of the present invention is effective. Further, the lattice constant mismatch Δa in FIG. 3 is defined by subtracting the lattice constant of the film from the lattice constant of the substrate, and a large increase in Δa causes crystal cracks, defects, etc., so a smaller one is preferable. In this example, the increase after 3 hours of growth was smaller than in the conventional example, indicating that the method of the present invention is effective.

〔発明の効果) 以上述べてきたように、本発明によれば、極めて簡易な
方法で膜厚方向に特性変化が少ない磁気光学結晶を育成
でき、実用的には極めて有用である。
[Effects of the Invention] As described above, according to the present invention, a magneto-optic crystal with little change in characteristics in the film thickness direction can be grown using an extremely simple method, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための図、第2図は結
晶成長速度Vgの育成時間依存性を示す図、 第3図は格子定数ミスマツチΔaの育成時間依存性を示
した図である。
Fig. 1 is a diagram for explaining the present invention in detail, Fig. 2 is a diagram showing the dependence of the crystal growth rate Vg on the growth time, and Fig. 3 is a diagram showing the dependence of the lattice constant mismatch Δa on the growth time. be.

Claims (1)

【特許請求の範囲】 1、磁気光学効果の大きいBi置換型ガーネット結晶(
希土類Bi)_3(FeAlGa)_5O_1_2の厚
膜を非磁性ガーネット基板上に液相成長させる磁気光学
結晶育成法において、 メルトの溶解を高温で一定時間保持し、次いで温度を下
げて一定時間保持して溶解した後、さらに温度を下げて
基板に結晶を液相成長させることを特徴とする磁気光学
結晶育成法。
[Claims] 1. Bi-substituted garnet crystal with large magneto-optical effect (
In the magneto-optic crystal growth method in which a thick film of the rare earth element Bi)_3(FeAlGa)_5O_1_2 is grown in liquid phase on a non-magnetic garnet substrate, the melt is maintained at a high temperature for a certain period of time, then the temperature is lowered and maintained for a certain period of time. A magneto-optical crystal growth method that involves growing crystals on a substrate in a liquid phase by further lowering the temperature after melting.
JP5821586A 1986-03-18 1986-03-18 Magneto-optical crystal growth method Pending JPS62216310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5821586A JPS62216310A (en) 1986-03-18 1986-03-18 Magneto-optical crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5821586A JPS62216310A (en) 1986-03-18 1986-03-18 Magneto-optical crystal growth method

Publications (1)

Publication Number Publication Date
JPS62216310A true JPS62216310A (en) 1987-09-22

Family

ID=13077833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5821586A Pending JPS62216310A (en) 1986-03-18 1986-03-18 Magneto-optical crystal growth method

Country Status (1)

Country Link
JP (1) JPS62216310A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131216A (en) * 1988-11-11 1990-05-21 Fuji Elelctrochem Co Ltd Magneto-optical element material
JPH02232906A (en) * 1989-03-06 1990-09-14 Shin Etsu Chem Co Ltd Garnet single crystal film and manufacture thereof
US5547613A (en) * 1994-07-05 1996-08-20 Fdk Corporation Magneto-optical element material formed of magnetic garnet single crystals
JP2006133775A (en) * 2005-11-02 2006-05-25 Tdk Corp Magnetic garnet single crystal film, its manufacturing method, and faraday rotator using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131216A (en) * 1988-11-11 1990-05-21 Fuji Elelctrochem Co Ltd Magneto-optical element material
JPH02232906A (en) * 1989-03-06 1990-09-14 Shin Etsu Chem Co Ltd Garnet single crystal film and manufacture thereof
US5547613A (en) * 1994-07-05 1996-08-20 Fdk Corporation Magneto-optical element material formed of magnetic garnet single crystals
JP2006133775A (en) * 2005-11-02 2006-05-25 Tdk Corp Magnetic garnet single crystal film, its manufacturing method, and faraday rotator using same
JP4572810B2 (en) * 2005-11-02 2010-11-04 Tdk株式会社 Magnetic garnet single crystal film, manufacturing method thereof, and Faraday rotator using the same

Similar Documents

Publication Publication Date Title
JPS62216310A (en) Magneto-optical crystal growth method
US4293371A (en) Method of making magnetic film-substrate composites
JPS60134404A (en) Magnetooptical material
JPH09202697A (en) Production of bismuth-substituted type garnet
JPS63195198A (en) Production of lithium niobate single crystal thin film
JPS63117998A (en) Process for growing thick film of bismuthgarnet
JPS6199318A (en) Fabrication of magnetic garnet film
JPS63228443A (en) Production of magneto-optical recording material
JP3141121B2 (en) Liquid phase epitaxial growth method
JPH0360499A (en) Method for growing bismuth-substituted garnet crystal
JPS6369718A (en) Magneto-optical crystal
JP2843433B2 (en) Bi-substituted magnetic garnet and magneto-optical element
JPH068239B2 (en) Liquid phase epitaxial growth method
JP2640615B2 (en) Method for manufacturing piezoelectric crystal
JPH03199198A (en) Lanthanum gallate single crystal and production thereof
JPS63233098A (en) Method for growing bismuth garnet crystal
JP2756273B2 (en) Oxide garnet single crystal and method for producing the same
JP3614248B2 (en) Garnet crystal for substrate of magneto-optical element and manufacturing method thereof
JP2794673B2 (en) Oxide garnet single crystal magnetic film and method of manufacturing the same
JPS62200323A (en) Thin film crystal element for magnet-optical device
JPS61222985A (en) Production unit for single crystal
JPH0365598A (en) Growing of bismuth-substituted garnet crystal
JP2742537B2 (en) Magneto-optical thin film and method of manufacturing the same
JPS61151090A (en) Crystal growth of garnet film
JPH0297495A (en) Magnetic film and its production