JPS62204501A - Manufacture of magnetic microsphere - Google Patents

Manufacture of magnetic microsphere

Info

Publication number
JPS62204501A
JPS62204501A JP61046423A JP4642386A JPS62204501A JP S62204501 A JPS62204501 A JP S62204501A JP 61046423 A JP61046423 A JP 61046423A JP 4642386 A JP4642386 A JP 4642386A JP S62204501 A JPS62204501 A JP S62204501A
Authority
JP
Japan
Prior art keywords
microspheres
monomer
fine particles
aqueous solution
suspending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61046423A
Other languages
Japanese (ja)
Other versions
JPH0616444B2 (en
Inventor
Meiji Tsuruta
明治 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kashima Oil Co Ltd
Original Assignee
Kashima Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kashima Oil Co Ltd filed Critical Kashima Oil Co Ltd
Priority to JP61046423A priority Critical patent/JPH0616444B2/en
Publication of JPS62204501A publication Critical patent/JPS62204501A/en
Publication of JPH0616444B2 publication Critical patent/JPH0616444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder

Abstract

PURPOSE:To obtain a magnetic microsphere having variable particle diameter, narrow particle size distribution, excellent dispersibility and chemical stability, and high magnetic responsiveness by dispersing ferromagnetic fine particles hydrophobically treated in monomer, dispersively suspending the particles in aqueous solution and thermally polymerizing it. CONSTITUTION:Ferromagnetic fine particles preferably have approx. 150Angstrom of diameter produced by a coprecipitating method. A hydrophobic treatment is performed by adsorbing an unsaturated fatty acid such as oleic acid to the surfaces of the fine particles or further by adsorbing a surfactant thereto. A polymerization initiator is not particularly limited if it is oil soluble radial polymerization initiator. Dispersant for dispersively suspending the monomer in the aqueous solution is preferably aqueous soluble polymer. The suspension is agitated in suspending step or polymerizing step, a low frequency ultrasonic wave is simultaneously irradiated to enhance the dispersing effect. Then, microspheres of 0.1 - several tens mum of diameter can be manufactured, and the size of produced microsphere is varied according to the frequency of the ultrasonic wave.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高分子ミクロスフェアの内部に強磁性体微粒子
を包含させた磁性ミクロスフェアの製造方法に関するも
のである。さらに詳しくいえば、磁気による溶液中の有
用物質の分離、精製のためのカラム充てん剤として、あ
るいは磁気による珍断試薬の判定操作のための検査試薬
用担体として好適な、各種水溶液に対する分散性や化学
的安定性に優れ、かつ磁気応答性に優れた磁性ミクロス
フェアを効果的に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing magnetic microspheres in which fine ferromagnetic particles are included inside polymeric microspheres. More specifically, it has excellent dispersibility in various aqueous solutions and is suitable as a column packing material for magnetic separation and purification of useful substances in solutions, or as a carrier for test reagents for magnetic determination of rare reagents. The present invention relates to a method for effectively producing magnetic microspheres with excellent chemical stability and excellent magnetic responsiveness.

従来の技術 従来、各種の天然高分子や合成高分子から製造さする高
分子ミクロスフェアは、各種フィラー、着色剤、スペー
サー、トナー、医療用担体、物質分離用光てん剤などと
して広く用いら1ている。
Conventional technology In the past, polymer microspheres manufactured from various natural and synthetic polymers have been widely used as various fillers, colorants, spacers, toners, medical carriers, photonic agents for substance separation, etc.1 ing.

特にポリスチレンをはじめとする各種合成高分子ミクロ
スフェアは化学的安定性及び寸法安定性に優扛ているた
め、例えば液体クロマトグラフィー周光てん剤、酵素や
タンパク質の分離精製剤。
In particular, various synthetic polymer microspheres, including polystyrene, have excellent chemical and dimensional stability, so they can be used, for example, as a liquid chromatography agent or as a separation and purification agent for enzymes and proteins.

診断試薬用担体などとして、その需要は急速に伸びてい
る。
Demand for it as a carrier for diagnostic reagents is rapidly increasing.

また、最近では、こnらミクロス内部にCaCO3。Also, recently, CaCO3 has been added inside these micros.

Fe3O4,TiO2などの無機粉末、染料、あるいは
各種薬品を配合して機能化した複合ミクロスフェアが注
目さルておシ、例えば導電性塗料、電磁波速へい塗料、
医療用磁性担体、分離機能を向上させた磁性光てん剤な
どへの応用が試みらnている。
Composite microspheres functionalized by blending inorganic powders such as Fe3O4 and TiO2, dyes, or various chemicals are attracting attention, such as conductive paints, electromagnetic shielding paints,
Attempts are being made to apply it to medical magnetic carriers, magnetic phototransfer agents with improved separation functions, and the like.

ところで、各種カラムの充てん剤や医療用担体として用
いらnる磁性ミクロスフェアは、こ′n、″!!で乳化
重合法あるいは懸濁重合法によって製造さnている。例
えば乳化重合においては、界面活性剤含有水溶液とモノ
マーとを混合し、かきまぜながら一定温度まで加熱し、
重合開始剤の水溶液を加えて重合することによシ、ミク
ロスフェアを得るという方法が行わnでいる。このよう
な方法で製造したミクロスフェアは、重合条件を変える
ことにより、カラム充てん剤や診断試薬用担体として適
した、0.1〜100μmの大きさとなるが、強磁性体
粉末を配合させて磁性ミクロスフェアを製造する場合は
2重合過程で強磁性体粉末がミクロスフェア内部に入シ
にくいなどの欠点を伴う。
By the way, magnetic microspheres used as fillers for various columns and medical carriers are manufactured by emulsion polymerization or suspension polymerization. For example, in emulsion polymerization, A surfactant-containing aqueous solution and monomer are mixed and heated to a constant temperature while stirring.
A method of obtaining microspheres by adding an aqueous solution of a polymerization initiator and polymerizing is carried out. By changing the polymerization conditions, the microspheres produced by this method can have a size of 0.1 to 100 μm, which is suitable as a column packing material or a carrier for diagnostic reagents. When producing microspheres, there are drawbacks such as difficulty in infiltrating the ferromagnetic powder into the microspheres during the double polymerization process.

他方、懸濁重合では分散剤を溶解した水系あるいは非水
系溶液中に重合開始剤を溶解したモノマーを混合し、か
きまぜながら一定温度まで加熱し。
On the other hand, in suspension polymerization, a monomer with a polymerization initiator dissolved in an aqueous or non-aqueous solution containing a dispersant is mixed and heated to a certain temperature while stirring.

ミクロスフェアを得る方法が知らnている。この場合は
、強磁性体粉末を疎水化して、非水系溶液中に分散し、
モノマーを吸着させたのち重合することによって磁性ミ
クロスフェアを製造できるが、強磁性体粉末がミクロス
フェア表面に露出するために化学的安定性が悪いなどの
問題がある。さらに、水系の懸濁重合により得られるミ
クロスフェアの太き、さけ、0.3〜1.5絹であり診
断試薬用担体としては大きすぎるという欠点がある。
It is known how to obtain microspheres. In this case, the ferromagnetic powder is made hydrophobic and dispersed in a non-aqueous solution.
Magnetic microspheres can be produced by adsorbing monomers and then polymerizing them, but there are problems such as poor chemical stability because the ferromagnetic powder is exposed on the surface of the microspheres. Furthermore, the microspheres obtained by aqueous suspension polymerization are too thick, 0.3 to 1.5 silk, and too large to be used as a carrier for diagnostic reagents.

また乳化重合や懸濁重合以外の方法で、磁性ミクロスフ
ェアを製造する方法としては、例えばゼラチンの水溶液
中にマグネタイトコロイドを分散させたのち、pHを調
整してミクロスフェアとし、さらにアルデヒド系架橋剤
によシネ溶化する方法(特開昭59−195161号公
報)や、マグネタイトコロイドを水溶性ポリマーあるい
は血清アルブミンなどのたんばくと混合したのち、乳化
によシミクロスフェアとし、加熱処理によシネ溶化する
方法などが知ら几ているが、このように被覆ポリマーが
親水性の場合は、水溶液中でミクロスフェアの膨潤が生
じ、内部に含まnるマグネタイトが分散媒溶液と接触す
るため化学的安定性に問題がある。さらにマグネタイト
コロイドを直接ポリマーによって被覆する場合は、マグ
ネタイト粒子の完全な被覆が難しいという欠点を有する
In addition, methods other than emulsion polymerization or suspension polymerization to produce magnetic microspheres include, for example, dispersing magnetite colloids in an aqueous solution of gelatin, adjusting the pH to form microspheres, and then using an aldehyde-based crosslinking agent. There is a method of cine-solubilizing (Japanese Unexamined Patent Publication No. 195161/1982), or a method of mixing magnetite colloid with a water-soluble polymer or protein such as serum albumin, emulsifying it into simiospheres, and heat-treating it to cine-solubilize it. However, when the coating polymer is hydrophilic, the microspheres swell in an aqueous solution and the magnetite contained inside comes into contact with the dispersion medium solution, resulting in a chemical stability problem. There is a problem. Furthermore, when magnetite colloid is directly coated with a polymer, there is a drawback that it is difficult to completely cover the magnetite particles.

したがって1強磁性体粉末tミクロスフェア内部に完全
に包み込むことによって、各種水浴液に対する化学的安
定性及び分散性に優n、かつ磁気応答性に優れた磁性ミ
クロスフェアの開発が望まnていた。
Therefore, it has been desired to develop magnetic microspheres that have excellent chemical stability and dispersibility in various water bath liquids and excellent magnetic responsiveness by completely enveloping the ferromagnetic powder inside the microspheres.

発明が解決しようとする問題点 本発明の目的は、このような要望【こたえ、ミクロスフ
ェアの粒径が0.1μm〜数xmの範囲で変化でき粒度
分布が比較的狭く、各種水溶液に対する分散性及び化学
的安定性に優n、かつ磁気応答性の高い磁性ミクロスフ
ェアを効果的に製造する方法を提供することにある。
Problems to be Solved by the Invention The purpose of the present invention is to respond to the above-mentioned needs by providing microspheres whose particle size can vary within the range of 0.1 μm to several x meters, a relatively narrow particle size distribution, and dispersibility in various aqueous solutions. Another object of the present invention is to provide a method for effectively producing magnetic microspheres with excellent chemical stability and high magnetic responsiveness.

問題点を解決するための手段 本発明者は鋭意研究を重ねた結果、モノマー中に界面活
性剤などで疎水化処理さまた強磁性体微粒子を分散し1
重合開始剤を添加したのち、これを分散安定剤を含有す
る水溶液中に分散懸濁させて加熱重合することにより、
前記目的を達成しうろことを見出し、この知見に基づい
て本発明を完成するに至った。
Means for Solving the Problems As a result of extensive research, the inventors of the present invention have developed a solution by dispersing ferromagnetic fine particles that have been hydrophobized with a surfactant or the like in a monomer.
After adding a polymerization initiator, it is dispersed and suspended in an aqueous solution containing a dispersion stabilizer and polymerized by heating.
The inventors have found a way to achieve the above object, and have completed the present invention based on this knowledge.

すなわち、本発明は、モノマー中に、疎水化処理を施し
た強磁性体微粒子を均一に分散させ重合開始剤を添加し
たのち、こf′Lヲ分散安定剤を含有する水溶液中に分
散懸濁させて加熱重合することを特徴とする磁性ミクロ
スフェアの製造方法を提供するものである。
That is, in the present invention, after uniformly dispersing hydrophobically treated ferromagnetic fine particles in a monomer and adding a polymerization initiator, the particles are dispersed and suspended in an aqueous solution containing a dispersion stabilizer. The present invention provides a method for producing magnetic microspheres, which comprises heating and polymerizing the magnetic microspheres.

本発明方法において用いられる強磁性体微粒子は、共沈
法により作製した粒径150人程度のものが好ましい。
The ferromagnetic fine particles used in the method of the present invention preferably have a particle size of about 150 mm, prepared by a coprecipitation method.

該微粒子は各種モノマー中に均一に分散するように、疎
水化処理が施さ汎るが、この疎水化処理は、該微粒子の
表面にオレイン酸のような不飽和脂肪酸を吸着させるこ
とにより、あるいはこの不飽和脂肪酸の吸着層上に、さ
らに界面活性剤を吸着させることにより施さnる。
The fine particles are generally subjected to hydrophobization treatment so that they can be uniformly dispersed in various monomers. It is applied by further adsorbing a surfactant onto the unsaturated fatty acid adsorption layer.

本発明方法において用いられる重合開始剤については、
例えば過酸化ベンゾイルのような有機過酸化物、アゾビ
スジメチルバレロニトリルやアソビスイソプチロニトリ
ルのようなアゾ系の開始剤などの油溶性のラジカル重合
開始剤であ扛ば特に制限はない。こ几らの重合開始剤は
、該強磁性体微粒子を分散させる前に、あらかじめモノ
マー中に溶解させておいてもよいし、該微粒子をモノマ
ー中に分散させたのち、こnに溶解させてもよい。
Regarding the polymerization initiator used in the method of the present invention,
For example, there are no particular limitations as long as it is an oil-soluble radical polymerization initiator such as an organic peroxide such as benzoyl peroxide or an azo initiator such as azobisdimethylvaleronitrile or azobisisobutyronitrile. The polymerization initiator of Kohori et al. may be dissolved in the monomer before dispersing the ferromagnetic fine particles, or it can be dissolved in the monomer after the fine particles are dispersed in the monomer. Good too.

本発明方法においては、該強磁性体微粒子を分散したモ
ノマーを水溶液中に分散懸濁させるために、分散剤が用
いらnるが、この分散剤としては、通常の懸濁重合に使
用さnるポリビニルアルコール、カルボキシメチルセル
ロース、ゼラチンなどの水溶性高分子が好ましく挙げら
nる。
In the method of the present invention, a dispersant is used to disperse and suspend the monomer in which the ferromagnetic fine particles are dispersed in an aqueous solution. Preferred examples include water-soluble polymers such as polyvinyl alcohol, carboxymethyl cellulose, and gelatin.

本発明方法において製造される磁性ミクロスフェアの粒
径は1分散剤の添加量、モノマー溶液と分散媒水溶液と
の比率、及び懸濁過程、重合過程におけるモノマーの分
散方法によって0.1μmから数nまで変化させること
ができる。
The particle size of the magnetic microspheres produced by the method of the present invention varies from 0.1 μm to several nanometers depending on the amount of dispersant added, the ratio of the monomer solution to the dispersion medium aqueous solution, and the method of dispersing the monomer during the suspension and polymerization steps. It can be changed up to.

モノマーの水溶液中への分散を通常の機械的かきまぜに
よって行う場合は、かきまぜ速度200〜600 rp
mの範囲で前記の諸条件を変えることにより、粒径0.
3〜1.5fiのミクロスフェアが得られる。他方、懸
濁過程あるいは重合過程でかきまぜと同時に低周波数の
超音波を放射し分散効果を高めてやnば1粒径0.1〜
数10μmのミクロスフェアを製造できる。超音波放射
下で生成するミクロスフェアの大きさは超音波、の周波
数により変化し、一般に低周波領域の超音波1例えば1
00KHz以下の場合に上記範囲の大きさヲ有するミク
ロスフェアが得られる。
When the monomer is dispersed in the aqueous solution by ordinary mechanical stirring, the stirring speed is 200 to 600 rp.
By changing the above conditions within the range of m, the particle size can be reduced to 0.
Microspheres of 3-1.5 fi are obtained. On the other hand, emitting low-frequency ultrasonic waves at the same time as stirring during the suspension or polymerization process increases the dispersion effect.
Microspheres of several tens of micrometers can be produced. The size of microspheres generated under ultrasonic radiation varies depending on the frequency of the ultrasonic wave, and generally when the ultrasonic wave in the low frequency range is
When the frequency is 00 KHz or less, microspheres having a size within the above range can be obtained.

モノマーの重合は1通常60〜80℃の温度において、
4時間以上加熱することによって行われる。
Polymerization of monomers is carried out at a temperature of usually 60 to 80°C.
This is done by heating for 4 hours or more.

このようにして得られた磁性ミクロスフェアは。The magnetic microspheres obtained in this way.

ミクロスフェアを形成するポリマーが不溶で、かつモノ
マーを溶解するような溶媒で洗浄することにより未反応
モノマー、重合開始剤及び余剰の分散剤を除去したのち
、水中に分散させて懸濁液としてもよいし、あるいは乾
燥させてパウダーとして取り出してもよい。また、粒子
径の揃ったミクロスフェアを得るためには、遠心分離−
やメツシュに用いたろ過による通常の分級操作を行えば
よい。
After removing unreacted monomers, polymerization initiators, and excess dispersant by washing with a solvent in which the polymer forming the microspheres is insoluble and which dissolves the monomers, the polymers forming the microspheres are dispersed in water to form a suspension. Alternatively, it may be dried and taken out as a powder. In addition, in order to obtain microspheres with uniform particle size, centrifugation
Ordinary classification operations such as filtration using a mesh can be performed.

発明の効果 本発明方法によれば1強磁性体微粒子を疎水化してモノ
マー中に分散させるために、該微粒子とポリマー分子鎖
との親和性が高く、その結果ミクロスフェア内部の強磁
性体微粒子が分散溶媒のpHなどによる影響を受けにく
く、化学的に安定な磁性ミクロスフェアを製造すること
ができる。
Effects of the Invention According to the method of the present invention, since the ferromagnetic fine particles are made hydrophobic and dispersed in the monomer, the affinity between the fine particles and the polymer molecular chain is high, and as a result, the ferromagnetic fine particles inside the microspheres are It is possible to produce chemically stable magnetic microspheres that are not easily affected by the pH of the dispersion solvent.

また、水溶液へのモノマーの懸濁過程又は重合過程で低
周波数の超音波を放射することにより、従来の懸濁重合
では得ら1なかった0、1〜数lOμmの大きさのミク
ロスフェアを得ることができる。
In addition, by emitting low-frequency ultrasonic waves during the suspension process of monomers in an aqueous solution or the polymerization process, microspheres with a size of 0.1 to several 10 μm, which could not be obtained with conventional suspension polymerization, can be obtained. be able to.

本発明方法で得らnた磁性ミクロスフェアは各種水溶液
に対する分散性に優n、かつ化学的に安定で、磁気応答
性に優nる上に、その粒径が0.1μmから数龍の範囲
に調節さ1うるので、各種カラムの磁性光てん剤や診断
試薬用磁性担体として特にM用である。
The magnetic microspheres obtained by the method of the present invention have excellent dispersibility in various aqueous solutions, are chemically stable, have excellent magnetic responsiveness, and have particle sizes ranging from 0.1 μm to several micrometers. Since it can be adjusted to 1, it is particularly suitable for M as a magnetic photoresist for various columns and a magnetic carrier for diagnostic reagents.

実施例 次に実施例により本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1 減圧蒸留によシ精製したスチレンモノマー302に1粒
径約150スの疎水化したマグネタイト微粒子〔フェリ
コロイド)(C−50(商品名、タイホー工業■製)を
アセトンにより洗浄したのち、乾燥してパウダー状にし
たもの〕12を加え、超音波により1時間分散した。こ
の溶液て過酸fヒベンジイル0.12を溶解しモノマー
原液とした。
Example 1 Styrene monomer 302 purified by vacuum distillation was mixed with hydrophobized magnetite fine particles (ferricolloid) (C-50 (trade name, manufactured by Taiho Kogyo ■) each having a particle size of about 150 mm, and then washed with acetone. 12 (dried powder) was added and dispersed by ultrasonication for 1 hour. In this solution, 0.12 hbendiyl peracid was dissolved to obtain a monomer stock solution.

−万、蒸留水70りにポバールPVA −117(商品
名、■クラレ製) 0.501とポバールpvA−21
7(商品名、■クラレ製)0゜02ff溶解し、分散媒
水溶液とした。
-10,000, 70 ml of distilled water, Poval PVA-117 (product name, manufactured by Kuraray) 0.501 and Poval pvA-21
7 (trade name, manufactured by Kuraray) was dissolved at 0°02ff to form an aqueous dispersion medium solution.

このようにして得られたモノマー原液と分散媒水溶液を
反応容器に入n、アルゴンガスを吹込みなから400r
pmで2時間かきまぜを行った。
The monomer stock solution and dispersion medium aqueous solution obtained in this way were placed in a reaction vessel, and argon gas was blown into the reaction vessel for 400 r.
Stirring was performed for 2 hours at pm.

次いで、反応槽を80℃に保ちながら、400rpmで
5時間かきまぜ、その後かきまぜを続けながら室温まで
徐冷した。次に、得ら往たミクロスフェアの懸濁液を約
600−のメタノール中に注ぎ入n、ゆっくりかきまぜ
ながら一昼夜放置した。
Next, the reaction vessel was stirred at 400 rpm for 5 hours while being kept at 80° C., and then slowly cooled to room temperature while stirring was continued. Next, the obtained suspension of microspheres was poured into about 600 methanol and left overnight while stirring slowly.

この溶液をろ紙によシろ過し1回収したミクロスフェア
を蒸留水に分散させたのち、ステンレス銅調のメツシュ
を用いて分級し目的の磁性ミクロスフェアを得た。
This solution was filtered through a filter paper, and the recovered microspheres were dispersed in distilled water, and then classified using a stainless steel mesh to obtain the desired magnetic microspheres.

実施例2 精製スチレンモノマー309に疎水fヒしたマグネタイ
ト32を加え45KHz超音波により1時間分散した。
Example 2 Hydrophobic magnetite 32 was added to purified styrene monomer 309 and dispersed for 1 hour using 45 KHz ultrasonic waves.

この溶液にアゾビスジメチルバレロニトリル0.32を
溶解して七ツマー原液とし、−万蒸留水70りにポバー
ルPVA −1170,5tとポバールPVA7217
 0.02 ?を溶解し、分散媒水溶液とした。
Dissolve 0.32 of azobisdimethylvaleronitrile in this solution to make a 7-mer stock solution, and add Poval PVA-1170.5t and Poval PVA7217 to 70% of distilled water.
0.02? was dissolved to obtain an aqueous dispersion medium solution.

このようにして得らルた分散媒水溶液を反応槽に入n、
45 KHzの超′音波を放射しながら400rpmで
かきまぜ、この溶液中にモノマー原液を添加して、アル
ゴンガスを吹き込みながら室温で2時間分散を行った。
The dispersion medium aqueous solution obtained in this way was put into a reaction tank,
The solution was stirred at 400 rpm while radiating ultrasonic waves of 45 KHz, and the monomer stock solution was added to this solution, followed by dispersion at room temperature for 2 hours while blowing argon gas.

次いで反応槽を65℃に保ち、超音波放射を続けなから
400 rpmで5時間かきまぜ、その後室温まで徐冷
した。得らnたミクロスフェアの懸濁液を約600td
のメタノール中に注ぎ入n、ゆつくシかきまぜながら一
昼夜放置した。この溶液をろ紙によりろ過し1回収した
ミクロスフェアを蒸留水に分散させたのち、ステンレス
鋼製メツシュ及ヒ遠心分離機によυ分級して目的の磁性
ミクロスフェアを得た。
The reaction vessel was then kept at 65° C. and stirred at 400 rpm for 5 hours while continuing to be irradiated with ultrasonic waves, and then slowly cooled to room temperature. Approximately 600 td of the obtained microsphere suspension
The mixture was poured into methanol and left to stand overnight while stirring gently. This solution was filtered through a filter paper, and the collected microspheres were dispersed in distilled water, and then classified using a stainless steel mesh centrifuge to obtain the desired magnetic microspheres.

実施例3,4 実施例2において、マグネタイト/モノマー仕込率を別
表に示すように変える以外は、実施例2と同様にして磁
性ミクロスフェアを得た。
Examples 3 and 4 Magnetic microspheres were obtained in the same manner as in Example 2, except that the magnetite/monomer charging ratio was changed as shown in the attached table.

実施例5 実施例2においてマグネタイト/モノマー仕込量を1.
!IM’/30に変えてモノマー原液を調製し。
Example 5 In Example 2, the amount of magnetite/monomer charged was changed to 1.
! Prepare a monomer stock solution instead of IM'/30.

また分散媒水溶液中でのかきまぜ速度を200rpmと
して、45 KHzの超音波を放射しながら1時間分散
を行った。次いで、超音波放射を停止し、反応槽温度を
65℃に保ち、200 rpmで5時間かきまぜ、その
後室温まで徐冷した。
Further, dispersion was carried out for 1 hour at a stirring speed of 200 rpm in the dispersion medium aqueous solution while radiating ultrasonic waves of 45 KHz. Next, the ultrasonic radiation was stopped, the reaction tank temperature was kept at 65°C, and the mixture was stirred at 200 rpm for 5 hours, and then slowly cooled to room temperature.

得らnたミクロスフェアを実施例2と同様の方法で洗浄
1分級を行い磁性ミクロスフェアを得た。
The obtained microspheres were washed and classified in the same manner as in Example 2 to obtain magnetic microspheres.

実施例6 アゾビスジメチルバレロニトリル0.1 r i溶解し
た。精製スチレンモノマー109を実施例2と同一濃度
の分散剤を含む水溶液902に加え、45 KHzの超
音波を放射しながらかきまぜ速度400 rpmで2時
間分散を行った。
Example 6 Azobisdimethylvaleronitrile was dissolved in 0.1 ri. Purified styrene monomer 109 was added to aqueous solution 902 containing the same concentration of dispersant as in Example 2, and dispersion was performed for 2 hours at a stirring speed of 400 rpm while radiating 45 KHz ultrasonic waves.

次いで、超音波放射をやめ、反応槽温度’1(i5℃に
保ち、  400 rpmで5時間かきまぜその後室温
まで徐冷した。
Next, the ultrasonic radiation was stopped, the reaction tank temperature was kept at '1 (i5°C), and the mixture was stirred at 400 rpm for 5 hours and then slowly cooled to room temperature.

得らまたミクロスフェアを実施例2と同様の方法で洗浄
1分級を行い、磁性ミクロスフェアを得た。
The obtained microspheres were washed and classified in the same manner as in Example 2 to obtain magnetic microspheres.

実施例7 実施例2において、20KH2の超音波を用い、また、
重合前の分散処理時間を4時間に変える以外は、実施例
2と同様にして磁性ミクロスフェアを得た。
Example 7 In Example 2, 20 KH2 ultrasound was used, and
Magnetic microspheres were obtained in the same manner as in Example 2, except that the dispersion treatment time before polymerization was changed to 4 hours.

実施例8 実施例2において、38KHzの超音波を用いる以外は
、実施例2と同様にして磁性ミクロスフェアを得た。
Example 8 Magnetic microspheres were obtained in the same manner as in Example 2, except that 38 KHz ultrasound was used.

こうして得らnた磁性ミクロスフェアの主な性質を別表
に示す。
The main properties of the magnetic microspheres thus obtained are shown in the attached table.

なお、粒子内マグネタイト含有率は、原子吸光による鉄
分析によって求めた。また、磁気沈降時間は、1200
 Gの磁石上に内径6nの試験管を置き、その中に5%
の磁性ミクロスフェア懸濁水溶液f 5 crsの高さ
まで注入し、すべてのミクロスフェアが沈降するまでの
時間を測定した。ただしかっこ内の値は、磁気がない場
合の自然沈降時間である。
The intraparticle magnetite content was determined by iron analysis using atomic absorption. In addition, the magnetic sedimentation time is 1200
Place a test tube with an inner diameter of 6n on the G magnet and add 5%
An aqueous suspension of magnetic microspheres was injected to a height of f 5 crs, and the time until all the microspheres settled was measured. However, the value in parentheses is the natural settling time in the absence of magnetism.

Claims (3)

【特許請求の範囲】[Claims] 1.モノマー中に疎水化処理を施した強磁性体微粒子を
均一に分散させ重合開始剤を添加したのち、これを分散
安定剤を含有する水溶液中に分散懸濁させて加熱重合す
ることを特徴とする磁性ミクロスフエアの製造方法。
1. It is characterized by uniformly dispersing hydrophobically treated ferromagnetic fine particles in a monomer, adding a polymerization initiator, and then dispersing and suspending them in an aqueous solution containing a dispersion stabilizer, followed by heating polymerization. Method for manufacturing magnetic microspheres.
2.強磁性体微粒子を分散したモノマーを、分散剤を含
有する水溶液中に分散懸濁させる際に、機械的かきまぜ
又は機械的かきまぜと低周波数の超音波放射とを併用す
ることにより、得られる磁性ミクロスフエアの粒径を調
節する特許請求の範囲第1項記載の方法。
2. Magnetic microspheres obtained by using mechanical stirring or a combination of mechanical stirring and low-frequency ultrasonic radiation when dispersing and suspending a monomer in which ferromagnetic fine particles are dispersed in an aqueous solution containing a dispersant. A method according to claim 1 for controlling the particle size of.
3.加熱重合する際に機械的かきまぜ又は機械的かきま
ぜと低周波数の超音波放射とを併用することにより、得
られる磁性ミクロスフエアの粒径を調節する特許請求の
範囲第1項記載の方法。
3. 2. The method according to claim 1, wherein the particle size of the obtained magnetic microspheres is adjusted by using mechanical stirring or a combination of mechanical stirring and low-frequency ultrasonic radiation during heating polymerization.
JP61046423A 1986-03-05 1986-03-05 Method for manufacturing magnetic microspheres Expired - Lifetime JPH0616444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61046423A JPH0616444B2 (en) 1986-03-05 1986-03-05 Method for manufacturing magnetic microspheres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61046423A JPH0616444B2 (en) 1986-03-05 1986-03-05 Method for manufacturing magnetic microspheres

Publications (2)

Publication Number Publication Date
JPS62204501A true JPS62204501A (en) 1987-09-09
JPH0616444B2 JPH0616444B2 (en) 1994-03-02

Family

ID=12746740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61046423A Expired - Lifetime JPH0616444B2 (en) 1986-03-05 1986-03-05 Method for manufacturing magnetic microspheres

Country Status (1)

Country Link
JP (1) JPH0616444B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259064A (en) * 1987-12-18 1989-10-16 Rhone Poulenc Chim Magnetizable composite particle based on crosslinked organopolysiloxane and its production and biological use
WO1992012735A1 (en) * 1991-01-19 1992-08-06 Meito Sangyo Kabushiki Kaisha Composition containing ultrafine particles of magnetic metal oxide
WO2006028129A1 (en) * 2004-09-10 2006-03-16 Toray Industries, Inc. Medicinal preparation
WO2008047738A1 (en) * 2006-10-19 2008-04-24 Sumitomo Chemical Company, Limited Method for production of microcapsule
JP2008119684A (en) * 2006-10-19 2008-05-29 Sumitomo Chemical Co Ltd Microcapsule-manufacturing method and microcapsule composition
CN103599736A (en) * 2013-11-11 2014-02-26 东华大学 Preparation method of magnetic mesoporous zirconium dioxide compound microsphere
JP2017501023A (en) * 2013-12-04 2017-01-12 クリーン アンド グリーン カンパニー リミテッド Polymer fine capsule containing functional substance and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52782A (en) * 1975-06-24 1977-01-06 Junzo Shimoiizaka Process for production of magnetic fluid
JPS5376090A (en) * 1976-12-17 1978-07-06 Shin Nippon Rika Kk Preparating method of magnetic powder for crack detection
JPS56164503A (en) * 1980-04-18 1981-12-17 Rhone Poulenc Ind Magnetic polymer latex and method of producing same
JPS57125203A (en) * 1980-12-15 1982-08-04 Dow Chemical Co Colloidal size hydrophobic polymer granules dispersing indivisually separated particles of inorganic substance inside

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52782A (en) * 1975-06-24 1977-01-06 Junzo Shimoiizaka Process for production of magnetic fluid
JPS5376090A (en) * 1976-12-17 1978-07-06 Shin Nippon Rika Kk Preparating method of magnetic powder for crack detection
JPS56164503A (en) * 1980-04-18 1981-12-17 Rhone Poulenc Ind Magnetic polymer latex and method of producing same
JPS57125203A (en) * 1980-12-15 1982-08-04 Dow Chemical Co Colloidal size hydrophobic polymer granules dispersing indivisually separated particles of inorganic substance inside

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259064A (en) * 1987-12-18 1989-10-16 Rhone Poulenc Chim Magnetizable composite particle based on crosslinked organopolysiloxane and its production and biological use
WO1992012735A1 (en) * 1991-01-19 1992-08-06 Meito Sangyo Kabushiki Kaisha Composition containing ultrafine particles of magnetic metal oxide
WO2006028129A1 (en) * 2004-09-10 2006-03-16 Toray Industries, Inc. Medicinal preparation
WO2008047738A1 (en) * 2006-10-19 2008-04-24 Sumitomo Chemical Company, Limited Method for production of microcapsule
JP2008119684A (en) * 2006-10-19 2008-05-29 Sumitomo Chemical Co Ltd Microcapsule-manufacturing method and microcapsule composition
US9050580B2 (en) 2006-10-19 2015-06-09 Sumitomo Chemical Company, Limited Method for production of microcapsule
CN103599736A (en) * 2013-11-11 2014-02-26 东华大学 Preparation method of magnetic mesoporous zirconium dioxide compound microsphere
JP2017501023A (en) * 2013-12-04 2017-01-12 クリーン アンド グリーン カンパニー リミテッド Polymer fine capsule containing functional substance and method for producing the same

Also Published As

Publication number Publication date
JPH0616444B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US4873102A (en) Magnetic particles
US6423410B1 (en) Ultrasonically generated paramagnetic polymer particles
US4438239A (en) Microsphere coated substrate containing reactive aldehyde groups
US5356713A (en) Magnetizable composite microspheres of hydrophobic crosslinked polymer, process for preparing them and their application in biology
US5814687A (en) Magnetic polymer particle and process for manufacturing the same
Horák Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization
US4678814A (en) Polyacrolein microspheres
US4622362A (en) Polyacrolein microspheres
US4413070A (en) Polyacrolein microspheres
US20090099342A1 (en) Process for Preparing Composite Particles, Composite Particles Obtained, and Their Use in a Diagnostic Test
KR101013679B1 (en) Molecular Identification Materials and Manufacturing Methods Thereof
US20010046602A1 (en) Magnetically-responsive microspheres
IL123061A (en) Process for the preparation of spherical polyvinyl alcohol-based magnetic particles and spherical magnetic polyvinyl alcohol particles prepared thereby
US20090092837A1 (en) Magnetic beads
Piskin et al. Monosize microbeads based on polystyrene and their modified forms for some selected medical and biological applications
JPS62204501A (en) Manufacture of magnetic microsphere
JPH08176212A (en) Method of surface-modifying magnetic particle
US4707523A (en) Magnetic particles
US4170685A (en) Polyvinyl pyridine microspheres
US4534996A (en) Hybrid microspheres
JPS62244438A (en) Preparation of magnetic microsphere
US4259223A (en) Cross-linked polyvinyl pyridine coated glass particle catalyst support and aqueous composition or polyvinyl pyridine adducted microspheres
JPH11191510A (en) Magnetic polymer article, its manufacturing and diagnostic medicine
JP4653652B2 (en) Magnetic inclusion particles, method for producing magnetic inclusion particles, immunoassay particles and immunoassay method
JPH08176461A (en) Fine monodisperse particle and its production