JPS62244438A - Preparation of magnetic microsphere - Google Patents

Preparation of magnetic microsphere

Info

Publication number
JPS62244438A
JPS62244438A JP61087045A JP8704586A JPS62244438A JP S62244438 A JPS62244438 A JP S62244438A JP 61087045 A JP61087045 A JP 61087045A JP 8704586 A JP8704586 A JP 8704586A JP S62244438 A JPS62244438 A JP S62244438A
Authority
JP
Japan
Prior art keywords
microspheres
monomer
fine particles
polymer
adsorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61087045A
Other languages
Japanese (ja)
Other versions
JPH0563220B2 (en
Inventor
Meiji Tsuruta
明治 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kashima Oil Co Ltd
Original Assignee
Kashima Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kashima Oil Co Ltd filed Critical Kashima Oil Co Ltd
Priority to JP61087045A priority Critical patent/JPS62244438A/en
Publication of JPS62244438A publication Critical patent/JPS62244438A/en
Publication of JPH0563220B2 publication Critical patent/JPH0563220B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polymerisation Methods In General (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prepare a chemically stable magnetic microsphere, by uniformly dispersing a solid composite prepared by adsorbing a polymer by ferromagnetic fine articles in a monomer, and dispersing and suspending the obtained dispersion in an aqueous medium to perform polymerization. CONSTITUTION:Ferromagnetic fine particles are subjected to hydrophobic treatment by a method for adsorbing unsaturated fatty acid such as oleic acid by the surfaces of said particles or a method for further adsorbing a surfactant by the adsorbing layer of unsaturated fatty acid. The ferromagnetic fine particles subjected to hydrophobic treatment are uniformly dispersed in a non- polar solvent and a coating grade polymer is dissolved therein under heating to be adsorbed by fine particles and the solvent is distilled off to obtain a solid composite. This solid composite is uniformly dispersed in a second layer forming monomer and the resulting dispersion is dispersed and suspended in an aqueous medium and polymerized to form the second layer to obtain a desired magnetic microsphere.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高分子ミクロスフェアの内部に強磁性体微粒子
を包含させた磁性ミクロスフェアの製造法に関するもの
である。さらに詳しくいえば、磁気による溶液中のM出
物質の分離、精製のためのカラム充てん剤として、ある
いは磁気による診断試薬の判定操作のための検査試薬用
担体として好適な、各種水溶液に対する分散性や化学的
安定性、特に酸性水溶液中における金属イオンの耐溶出
性に優n、かつ磁気応答性の良好な磁性ミクロスフェア
を効率的に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing magnetic microspheres in which fine ferromagnetic particles are included inside polymeric microspheres. More specifically, it has excellent dispersibility in various aqueous solutions and is suitable as a column packing material for magnetic separation and purification of M-extracted substances in solutions, or as a test reagent carrier for magnetic diagnosis of diagnostic reagents. The present invention relates to a method for efficiently producing magnetic microspheres that have excellent chemical stability, particularly resistance to elution of metal ions in acidic aqueous solutions, and good magnetic responsiveness.

従来の技術 従来、各種の天然高分子や合成高分子から製造される高
分子ミクロスフェアは、各種フィラー。
Conventional technology Conventionally, polymer microspheres manufactured from various natural polymers and synthetic polymers are filled with various fillers.

着色剤、スペーサー、トナー、医療用担体、物質分離用
光てん剤などとして広く用いられている。
It is widely used as colorants, spacers, toners, medical carriers, photochromic agents for substance separation, etc.

特にポリスチレンをはじめとする各種合成高分了ミクロ
スフェアは化学的安定性及び寸法安定性に優汎ているた
め、例えば液体クロマトグラフィー周光てん剤、酵素や
タンパク質の分離精製剤、診断試薬用担体々どとして、
その需要は急速に伸びている。
In particular, various synthetic high-resolution microspheres, including polystyrene, have excellent chemical stability and dimensional stability, so they can be used, for example, as liquid chromatography reagents, separation and purification agents for enzymes and proteins, and carriers for diagnostic reagents. As usual,
Demand for it is growing rapidly.

丑だ、最近では、これらミクロスフェア内部に0aO0
3、Fe3O4、TiO2などの無機粉末、染料、ある
いは各種薬品を配合して機能化1〜だ複合ミクロスフェ
アが注目さ汎ており1例えば導電性塗料。
Unfortunately, recently, 0aO0 is inside these microspheres.
3. Composite microspheres that have been functionalized by blending inorganic powders such as Fe3O4 and TiO2, dyes, or various chemicals have been attracting attention, such as conductive paints.

電磁波速へい塗料、医療用磁性m体、分離機能を向」ニ
させた磁性光てん剤などへの応用が試みらnている。
Attempts are being made to apply it to electromagnetic wave-resistant paints, medical magnetic materials, and magnetic photoresists with improved separation functions.

ところで、各種カラムの充てん剤や医療用担体として用
いられる磁性ミクロスフェアは、これ丑で乳化重合法あ
るいは懸l蜀重合法によって製造さfl、ている。例え
ば乳化重合においては、界面活性剤含有水溶液とモノマ
ーとを混合し、かき甘ぜながら一定温朋4で加熱し、重
合開始剤の水溶液を加えて重合することに」=す、ミク
ロスフェアを得るという方法が行われている。このよう
な方法で製造したミク「」スフェア仁J21重合条件を
変えることにより、カラノ、充てん剤や診断試薬用担体
として適した、0.1〜I(10μ■1の大きさとなる
が1強磁性体粉末全配合させて磁性ミクロスフェアを製
造する場合は、重合過程で強磁性体粉末がミクロスフェ
ア内部に入りにくいなどの欠点を伴う。
By the way, magnetic microspheres used as fillers for various columns and medical carriers are generally produced by emulsion polymerization or suspended polymerization. For example, in emulsion polymerization, a surfactant-containing aqueous solution and a monomer are mixed, heated at a constant temperature while stirring, and then polymerized by adding an aqueous solution of a polymerization initiator. This method is being used. By changing the polymerization conditions of the Miku Sphere Jin J21 produced in this way, it is possible to make it suitable as a filler or a carrier for diagnostic reagents. When producing magnetic microspheres by blending all the ferromagnetic powders, there are drawbacks such as difficulty in getting the ferromagnetic powder inside the microspheres during the polymerization process.

他方、懸濁重合では分散剤を溶解した水系あるいは非水
系m液中に重合開始剤を溶解したモノマーffi混合し
、かき寸ぜながら一定温度寸で加熱し、ミクロスフェア
をイ!Iる方法が知られている。この場合は1強磁性体
粉末を疎水化して、非水系溶液中に分散し、モノマーを
吸着させたのち重合することによって磁性ミクロスフェ
アを製造できるが。
On the other hand, in suspension polymerization, a monomer ffi in which a polymerization initiator is dissolved is mixed in an aqueous or non-aqueous m liquid in which a dispersant is dissolved, and heated at a constant temperature while stirring to form microspheres. There are known methods to do this. In this case, magnetic microspheres can be produced by making the ferromagnetic powder hydrophobic, dispersing it in a non-aqueous solution, adsorbing the monomer, and then polymerizing it.

強磁性体粉末がミクロスフェア表面に露出するために化
学内室′A1で性が悪いなどの問題がある。さらに、水
系の懸濁重合に31:り得られるミクロスフェアの大き
さは、0.3〜3.5mmであり診断試薬用担体として
は大きすぎるという欠点がある。
Since the ferromagnetic powder is exposed on the surface of the microsphere, there are problems such as poor properties in the chemical chamber 'A1. Furthermore, the size of microspheres obtained by aqueous suspension polymerization is 0.3 to 3.5 mm, which is too large to be used as a carrier for diagnostic reagents.

才だ乳fヒ重イ(や懸濁重合以外の方法で、磁性ミクロ
スフェアを製造する方法としては1例えばゼラチンの水
浴液中にマグネタイトコロイドを分散させたのぢ*p”
c調整してミクロスフェアとし、さらにアルテヒド系架
橋剤により不溶化する方法(特開昭59−195161
号公報)や、マグネタイトコロイドを水溶性ポリマーあ
るいは血清アルブミンなどのたんばくと混合したのち、
乳化によシミクロスフェアとし、加熱処理により不溶化
する方法などが知らn、でいるが、このように被覆ポリ
マーが親水性の場合は、水溶液中でミクロスフェアの膨
潤が生じ、内部に含捷れるマグネタイトが分散媒溶液と
接触するため化学的安定性に問題がある。さらにマグネ
タイトコロイドを直接ポリマーによって被覆する場合は
、マグネタイト粒子の完全な被覆が難しいという欠点を
有する。
Methods other than suspension polymerization to produce magnetic microspheres include, for example, dispersing magnetite colloids in a gelatin bath solution.
A method of adjusting c to form microspheres and further insolubilizing them with an altehyde crosslinking agent (Japanese Patent Application Laid-open No. 59-195161
After mixing magnetite colloid with water-soluble polymer or protein such as serum albumin,
There is no known method of forming microspheres by emulsification and making them insolubilized by heat treatment, but if the coating polymer is hydrophilic, the microspheres will swell in an aqueous solution and become saturated inside. Chemical stability is a problem because magnetite comes into contact with the dispersion medium solution. Furthermore, when magnetite colloid is directly coated with a polymer, there is a drawback that it is difficult to completely cover the magnetite particles.

したがって、強磁性体粉末ラミクロスフェア内部に完全
に包み込むことによって、各種水浴液に対する化学的安
定性及び分散性に優扛、かつ磁気応答性に優れた磁性ミ
クロスフェアの開発が望まnでいた。
Therefore, it has been desired to develop magnetic microspheres that have excellent chemical stability and dispersibility in various water bath liquids and have excellent magnetic responsiveness by completely enclosing them inside ferromagnetic powder lamicrospheres.

本発明者らは、このような要望にこたえるぺぐ研究を重
ね、先に、モノマー中に界面活性剤などで疎水化処理さ
ルた強磁性体微粒子を分散し、重合開始剤を添加したの
ち、とf′Lヲ分散安定剤を含有する水溶液中に分散懸
濁させ、加熱重合して磁性ミクロスフェアを製造すると
いう方法を見出した。
The inventors of the present invention have conducted extensive research into pegs to meet these demands, and first disperse ferromagnetic fine particles that have been hydrophobized with a surfactant in a monomer, then add a polymerization initiator. We have found a method in which magnetic microspheres are produced by dispersing and suspending and f'L in an aqueous solution containing a dispersion stabilizer and polymerizing with heating.

しかしながら、このような方法によって得られる磁性ミ
クロスフェアは分散性や磁気応答性には優れているもの
の、化学安定性については必ずしも十分に満足しつると
はいえず、例えば酸性水浴液中においては、酸の押角や
pHによって該ミクロスフェア内部のマグネタイトから
金属イオンが溶出する場合があるという問題を有してい
ることが分かった。
However, although the magnetic microspheres obtained by this method have excellent dispersibility and magnetic responsiveness, their chemical stability is not necessarily satisfactory; for example, in an acidic water bath, It has been found that there is a problem in that metal ions may be eluted from the magnetite inside the microspheres depending on the acid pressure angle and pH.

したがって、この磁性ミクロスフェアを酵素。Therefore, this magnetic microsphere enzymatically.

タンパク質の分離精製剤−や医療用担体として各種酸性
水浴液中で使用する際に、溶出した金属イオンが酵素、
タンパク質などの反応阻害因子として働くことが考えら
扛るため、該磁性ミクロスフェアは酵素・タンパク質の
分離精製剤や医療用相体としでは必ずしも満足しうるも
のではなかった。
When used as a protein separation and purification agent or as a medical carrier in various acidic water baths, the eluted metal ions can be used as enzymes,
Since it is thought that the magnetic microspheres act as a reaction inhibitor for proteins, etc., the magnetic microspheres have not always been satisfactory as agents for separating and purifying enzymes and proteins or as a medical phase.

発明が解決しようとする問題点 本発明の目的は、このような事情のもとで、分散性や磁
気応答性が良好である上に化学安定性、特に各種酸性水
浴液中においても金属イオンの溶出が極めて少ないなど
耐酸性に優れ、かつその粒径が0.1μm〜数朋の範囲
で任意に調節されつる、比l陵内粒度分布の狭い磁性ミ
クロスフェアを提供することにある。
Problems to be Solved by the Invention Under these circumstances, the purpose of the present invention is to provide not only good dispersibility and magnetic response, but also chemical stability, in particular, metal ion resistance even in various acidic water bath solutions. It is an object of the present invention to provide magnetic microspheres which have excellent acid resistance such as extremely little elution, and whose particle size can be arbitrarily adjusted within the range of 0.1 μm to several micrometers, and which have a narrow particle size distribution.

問題点を解決するための手段 本発明者柊は、磁性ミクロスフェアの製造について種々
研究を重ねた結果、先に見出した前記磁性ミクロスフェ
アの製造方法において、疎水化処理さn、た強磁性体微
粒子をモノマー中に分散する前に、あらかじめ該微粒子
の表面にポリマーの被覆層全形成させることにより、前
記目的を達成しうることを見出し、この知見に基づいて
本発明を完成するに至った。
Means for Solving the Problems As a result of various research into the production of magnetic microspheres, the present inventor Hiiragi has previously discovered a method for producing magnetic microspheres that uses hydrophobically treated ferromagnetic materials. The inventors have discovered that the above object can be achieved by forming a complete polymer coating layer on the surface of the fine particles before dispersing them in a monomer, and have completed the present invention based on this finding.

すなわち、本発明は、非極性溶媒中において、疎水化処
理を施した強磁性体微粒子にポリマーを吸着させたのら
、該溶媒を留去1〜2次いでこの固形複合体をモノマー
中に均一に分散させたのち、こtl、(il−水性媒体
中に分散11■濁させて重合することを特徴とする磁1
イl’ ミクrJスフェアの製造法を提供するものであ
る、。
That is, in the present invention, a polymer is adsorbed onto ferromagnetic fine particles subjected to hydrophobization treatment in a non-polar solvent, and then the solvent is distilled off (1 to 2), and then this solid composite is uniformly mixed into a monomer. After being dispersed, the magnetic material 1 is dispersed in an aqueous medium and polymerized by turbidity.
The present invention provides a method for producing Il'miku rJ spheres.

不発明方法において用いら汎る強磁性体微粒子は、共沈
法により作製した粒径150ス程度のものが好捷しい。
The ferromagnetic fine particles commonly used in the uninvented method are preferably those with a particle size of about 150 mm prepared by a coprecipitation method.

該微粒子は各種非極性溶媒中に均一に分散するように、
疎水化処理が施さ几るが、この疎水化処理は、該微粒子
の表「1■にオレイン酸のような不飽和脂肪酸を吸着さ
せることにより、あるいはこの不飽和脂肪酸の吸着層−
にに、さらに界面活性剤を吸着させることにより施さル
る。
The fine particles are dispersed uniformly in various non-polar solvents.
Hydrophobization treatment is performed by adsorbing an unsaturated fatty acid such as oleic acid on the surface of the fine particles, or by forming an adsorption layer of this unsaturated fatty acid.
It is applied by adsorbing a surfactant on the surface of the water.

本発明方法においては、寸ずこのように疎水化処理が施
さ几)也強磁性体微粒子の表面にポリマーの被覆層が設
けら扛た固形層イ1体を形成させることが必要である。
In the method of the present invention, it is necessary to form a solid layer in which a polymer coating layer is provided on the surface of ferromagnetic fine particles which have been subjected to hydrophobization treatment in a similar manner.

この固形複合体は、非極性溶媒中に前記疎水化処理が施
さfl−た強磁性体微粒子を均一に分散させ、と几に被
覆用ポリマーを溶解させて加熱し、該粒子に吸着させた
のち、溶媒を留去することに」:って得らnる。
This solid composite is produced by uniformly dispersing the hydrophobically treated ferromagnetic fine particles in a non-polar solvent, thoroughly dissolving the coating polymer, heating it, and adsorbing it onto the particles. When the solvent is distilled off, the result is obtained.

この際使用さnる非極性溶媒は、該強磁性体微粒子全0
.1μrn以下の微粒子として均一に分散しつるように
、疎水化した該微粒子の極性に合わせて適宜選ばれるが
、このような溶媒としては、通常トルエン、シクロヘキ
サン、クロロベア セフ 。
The non-polar solvent used at this time is 0% of the ferromagnetic fine particles.
.. The solvent is appropriately selected depending on the polarity of the hydrophobicized fine particles so that they can be uniformly dispersed as fine particles of 1 μrn or less, and such solvents are usually toluene, cyclohexane, or Chlorobea Cef.

メチルエチルケトンなどが好1しく用いられる。Methyl ethyl ketone and the like are preferably used.

また、被覆用ポリマーとしては、疎水化した強磁性体微
粒子表面への吸着効果の点から、前記分散溶媒よりも極
性の高い官能基tWし、かつ第2層形成用モノマーと親
和性の高いものが好丑しい。
In addition, from the viewpoint of adsorption effect on the surface of the hydrophobized ferromagnetic fine particles, the coating polymer is one that has a functional group tW that is more polar than the dispersion solvent and has a high affinity with the monomer for forming the second layer. It's disgusting.

したがって、被覆用ポリマーとしては1例えばカルボギ
/ル基含有コポリマーのように極性基を有するコポリマ
ーであって、第2層形成用モノマーと同一のモノマー単
位を含むものが特に好適である。例えば、第2層形成用
モノマーがスチレンである場合には、該被覆用ポリマー
としては、スチレン−無水マレイン酸コポリマー、スチ
レン−メタクリレートコポリマーなどが好ましい。
Therefore, as the coating polymer, a copolymer having a polar group, such as a carbogyl group-containing copolymer, and containing the same monomer units as the monomer for forming the second layer is particularly preferred. For example, when the monomer for forming the second layer is styrene, the coating polymer is preferably a styrene-maleic anhydride copolymer, a styrene-methacrylate copolymer, or the like.

前記非極性溶媒中に疎水化さnた強磁性体微粒子全均一
に分散させ、こ才′1.に前記被覆用ポリマーを同一溶
媒に溶1’J’l’させた溶液を添加し、加熱混合する
ことにより、該微粒−r−表面に該ポリマーが吸着さ几
る。この際、加熱温度は好ましくは50℃力)ら分散媒
の沸点オでの範囲で選ばn、捷た処理時間は通常30分
〜10時間程度である。この吸着処理後の強磁性体微粒
子の分散性は、主として該微粒子表面の極性1分散媒、
ポリマーの種類によって支配さ扛るが、該微粒子とポリ
マーとの比率、ポリマー濃度、かき捷ぜの程度、加熱温
度などによっても左右される。
1. The hydrophobized ferromagnetic fine particles are uniformly dispersed in the non-polar solvent. A solution prepared by dissolving 1'J'l' of the coating polymer in the same solvent is added to the mixture and heated and mixed, so that the polymer is adsorbed onto the surface of the fine particles. At this time, the heating temperature is preferably selected within the range from 50 DEG C. to the boiling point of the dispersion medium, and the kneading treatment time is usually about 30 minutes to 10 hours. The dispersibility of the ferromagnetic fine particles after this adsorption treatment is mainly determined by the polarity 1 dispersion medium on the surface of the fine particles,
Although it is controlled by the type of polymer, it is also influenced by the ratio of the fine particles to the polymer, the polymer concentration, the degree of stirring, the heating temperature, etc.

このようにして1強磁性体微粒子にポリマーを吸着させ
る処理を施したのち、溶媒全留去することによって、該
微粒子表面にポリマーの被覆層が設けらf′した固形複
合体がイリらrしる。溶媒を留去する方法については特
に制限に、ないが、通常エノくボレーターを用いて溶媒
全留去する方法が行わ几る。
After the polymer is adsorbed onto the ferromagnetic fine particles in this manner, the solvent is completely distilled off, thereby leaving a solid composite with a polymer coating layer on the surface of the fine particles. Ru. There are no particular restrictions on the method of distilling off the solvent, but a method of completely distilling off the solvent using a volator is usually carried out.

次にこのようにして得らルた固形複合体を、第2層形成
用モノマー中に均一に分散させたのち、こ1.全水性媒
体中に分11ダ懸濁させて重合し、該ボリマー被覆層の
」二に、さらに前記モノマーの重合体から成る第2層全
形成させることにより、所望の磁性ミクロスフェアが得
らnる。
Next, the solid composite thus obtained was uniformly dispersed in the monomer for forming the second layer, and then the following steps were performed. The desired magnetic microspheres are obtained by suspending the microspheres in a completely aqueous medium for 11 minutes and polymerizing them, and further forming a second layer consisting of a polymer of the monomers on top of the polymer coating layer. Ru.

前記モノマーの重合は、モノマー中に重合開始剤を、水
性媒体中に分散剤を添加し、通常60〜80℃の温度に
おいて、4時間以上加熱することによって行われる。
Polymerization of the monomer is carried out by adding a polymerization initiator to the monomer and a dispersant to an aqueous medium, and heating the mixture at a temperature of usually 60 to 80° C. for 4 hours or more.

該重合開始剤については1例えば過酸化ベンゾイルのよ
うな有機過酸化物や、アゾビスイソブチロニトリルのよ
うなアゾ系の開始剤など、油溶性のラジカル重合開始剤
であれば特に制限はない。
The polymerization initiator is not particularly limited as long as it is an oil-soluble radical polymerization initiator, such as an organic peroxide such as benzoyl peroxide or an azo initiator such as azobisisobutyronitrile. .

丑/仏分散剤としては、通常の懸濁重合に使用さ几るポ
リビニルアルコール、カルボキンメチルセルロース、ゼ
ラチンなどの水浴性高分子が好1しく挙げらn、る。
Preferred examples of the dispersant include water bath polymers such as polyvinyl alcohol, carboquine methyl cellulose, and gelatin, which are used in ordinary suspension polymerization.

不発グ1方法において製造される磁性ミクロスフェアの
粒径は、分散剤の添加量、モノマー液と分散媒水浴液と
の比率、及び懸濁過程、重合過程におけるモノマーの分
散方法によって0,1μmから数mmiで変化させるこ
とができる。
The particle size of the magnetic microspheres produced in Method 1 varies from 0.1 μm depending on the amount of dispersant added, the ratio of the monomer liquid to the dispersion medium water bath, and the method of dispersing the monomer during the suspension and polymerization processes. It can be changed by several mm.

モノマーの水浴液中への分11ダを通常の機4戒的かき
址ぜによって行う場合は、かき才ぜ速度200〜60t
)rpmの範囲で前記の諸条件を変えることによす、粒
径0,3〜1’、5+nmのミクロスフェアがイロら扛
る。他方、懸濁過程あるいは重合過程でかき寸ぜと同時
に低周波数の超音波を放射し分散効果を高めてやれば1
粒径0.1〜数+07zmのミクロスフェアを製造でき
る。超音波放射下で生成するミクロスフェアの大きさC
2超音波の周波数により変化し、一般に低周波領域の超
音波、例えば100K、Hz以下の場合に」二記ff1
i!囲の大きさをイアするミクロスフェアが得られる。
When adding 11 d of monomer into a water bath solution using a regular machine, the stirring speed is 200 to 60 tons.
) Microspheres with a particle size of 0.3 to 1', 5+ nm are obtained by changing the above conditions in the rpm range. On the other hand, if the dispersion effect is enhanced by emitting low-frequency ultrasonic waves at the same time as stirring during the suspension or polymerization process, 1
Microspheres with a particle size of 0.1 to several +07 zm can be produced. Size C of microspheres generated under ultrasound radiation
2 Varies depending on the frequency of the ultrasonic wave, generally in the case of ultrasonic waves in the low frequency range, for example 100K, Hz or less'' ff1
i! Microspheres of varying size can be obtained.

このようにしてイ(Iら扛だ磁性ミクロスフェアは、ミ
クロスフェアを形成するポリマーが不mで、かつモノマ
ーを溶解する。I:つな溶碌で洗浄することによシ未反
応モノマー、重合開始剤及び余剰の分散剤を除去したの
ち、水中に分散させて懸濁液としてもよいし、あるいは
乾燥させてパウダーとして取り出してもよい。1だ1粒
子径の揃ったミクロスフェアを得るためには、遠心分離
やメツシュを用いたろ過(でよる通常の分級操作を行え
ばよい。
In this way, the magnetic microspheres prepared by I (I) are free of polymers forming the microspheres and dissolve the monomers. After removing the initiator and excess dispersant, it may be dispersed in water to form a suspension, or it may be dried and taken out as a powder.In order to obtain microspheres with a uniform particle size For this purpose, normal classification operations such as centrifugation or mesh filtration may be performed.

さらに、酸性水溶液中で、磁性ミクロスフェアの金属イ
オンの溶出を完全に防ぐためには、この磁性ミクロスフ
ェアを実際に使用する場合と同様の酸性水溶液中に、−
週間程度分散放置し、被覆の不完全な強磁性体微粒子は
、あらかじめ金属イオンとして溶出除去したのち、水洗
してやnばよい。
Furthermore, in order to completely prevent the elution of metal ions from the magnetic microspheres in an acidic aqueous solution, it is necessary to -
After allowing the dispersion to stand for about a week, incompletely coated ferromagnetic particles may be eluted and removed as metal ions in advance, and then washed with water.

発明の効果 本発明方法によると、寸ず疎水化した強磁性体微粒子の
表面にポリマーの被覆層が設けらnた固形複合体を形成
させ、次いでこの複合体をモノマー中に均一に分散させ
たのち、こ′t″Lを水性媒体中に分散懸濁させて重合
することによシ、該被覆層の」二にさらに前記モノマー
の重合体から成る第2層が形成さ扛るため、強磁性体微
粒子はミクロスフェア内部に完全に被包される割合が高
くなり、その結果各種の酸性水溶液中においても金属イ
オンの溶出がほとんどみらしないようなイヒ学的に極め
て安定な磁性ミクロスフェアを製造することができる。
Effects of the Invention According to the method of the present invention, a solid composite is formed in which a polymer coating layer is provided on the surface of ferromagnetic fine particles that have been made completely hydrophobic, and then this composite is uniformly dispersed in a monomer. Thereafter, by dispersing and suspending this L in an aqueous medium and polymerizing it, a second layer made of a polymer of the monomer is further formed on the second side of the coating layer, so that it is strong. The percentage of magnetic fine particles that are completely encapsulated inside the microspheres is high, resulting in extremely stable magnetic microspheres that hardly elute metal ions even in various acidic aqueous solutions. can be manufactured.

また、水性媒体中へのモノマーの懸濁過程又は重合過程
で低周波数の超音波を放射する仁とにより、従来の懸濁
重合では得ら■なかった0、1〜数10μmの大きさの
ミクロスフェアを得ることができる。
In addition, by suspending the monomer in an aqueous medium or by emitting low-frequency ultrasonic waves during the polymerization process, we are able to produce microspheres with a size of 0, 1 to several tens of micrometers, which could not be obtained by conventional suspension polymerization. You can get fair.

本発明方法で得らnた磁性ミクロスフェアは各種酸性水
@散中で安定であり、また溶液中での分散性及び磁気応
答性に優扛る上に、その粒径が0.1μmから数闘の範
囲に任意に調節さnうるので、各種カラムの磁性光てん
剤や診断試薬用磁+11:。
The magnetic microspheres obtained by the method of the present invention are stable in various acidic water dispersions, have excellent dispersibility in solutions and magnetic responsiveness, and have particle sizes ranging from 0.1 μm to several The magnetic properties of various columns and diagnostic reagents can be adjusted arbitrarily to the desired range.

担体として特にイ1用である。It is particularly suitable for use as a carrier.

実施例 次に実施例により本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1 疎水化したマグネタイト微粒子〔フェリコロイドHa−
so (商品名、タイホーエ業■製)をアセトンにより
洗浄したのち、乾燥してパウダー状にしたもの〕3′?
をトルエン702中に加え、超音波により1時間分散処
理した。
Example 1 Hydrophobized magnetite fine particles [ferricolloid Ha-
so (trade name, manufactured by Taihohe Corporation) washed with acetone and dried into a powder] 3'?
was added to toluene 702, and dispersed by ultrasonic waves for 1 hour.

一方、スチレンー無水マレイン酸コポリマー〔商品名ダ
イラーク、種水化成品工業■製]1ii’をトルエフ3
07中に加え、加熱mmしてポリマー溶液全調製した。
On the other hand, styrene-maleic anhydride copolymer [trade name: DILARK, manufactured by Tanesui Kaseihin Kogyo ■] 1ii' was mixed with Toluev 3.
07 and heated to 100 mm to prepare a total polymer solution.

次に、i)?T 記マグネタイ)9粒子の分散浴液中に
、該ポリマー溶液を加え、80℃で4時間かき寸ぜた。
Next, i)? The polymer solution was added to a dispersion bath containing 9 particles (magnetite) and stirred at 80° C. for 4 hours.

この時点ではマグネタイト微粒子は帆1μm以下の微粒
子として分散している。次いで、この溶液をエバポレー
ターにかけ、トルエンをほぼ完全に留去したのち、と几
に減圧蒸留により精製したスチレンモノマー302を添
加し、該微粒子を均一に分散した。この時点においても
マグネタイト微粒子は0.1μm以下の微粒子として分
散していた。
At this point, the magnetite fine particles are dispersed as fine particles with a diameter of 1 μm or less. Next, this solution was applied to an evaporator to almost completely distill off toluene, and then styrene monomer 302 purified by vacuum distillation was added to the evaporator to uniformly disperse the fine particles. Even at this point, the magnetite fine particles were dispersed as fine particles of 0.1 μm or less.

次に蒸留水909にボッ仁−ルPVA −]、1.7 
[商品名、■クラレ製] 0.649とポバールPVA
 −2]、 7〔商品名、■クラレ製〕、0.03ff
溶解して分散媒水浴液を調製し、この水溶液を反応用三
つロフラスコに入れ、715KH2の超音波を放射しな
がら10Orpmでかき−づ二ぜ、ここへ]−記モノー
マー液11.3 fに重合開始剤としてVO2[商品名
、和光紬薬工業■製] 0.1 ’、/を添力11シた
溶液を力[1え、アルゴンガスを吹き込みながら室温で
4時間分11ダを行った。次いで反応槽を65℃に保ち
、超音波放射を続けながら11(l Orpmで;3.
5時間かき寸ぜ。
Next, add 909% of distilled water and add 1.7
[Product name, ■Made by Kuraray] 0.649 and Poval PVA
-2], 7 [Product name, ■Made by Kuraray], 0.03ff
Dissolve the dispersion medium to prepare a water bath solution, put this aqueous solution in a three-neck flask for reaction, and stir at 10 Orpm while emitting ultrasonic waves of 715KH2. As a polymerization initiator, a solution containing VO2 [trade name, manufactured by Wako Tsumugi Kogyo ■] 0.1', / was added for 11 hours and heated for 4 hours at room temperature while blowing argon gas. . The reaction vessel was then maintained at 65° C. and the ultrasonic radiation was continued at 11 (l Orpm; 3.
Stirred for 5 hours.

さらに反応槽温度を70℃に保ち300rpmで10時
間反応を行った。このようにして得らn7たミクロスフ
ェアの懸濁液全豹600mj!のメタノール中に注ぎ入
汎、ゆっくりかき寸ぜながら一昼夜放置したのち、この
m液をろ紙によりろ過し、回収したミクロスフエアヲ蒸
留水に分散させ、次いでステンレス製メツシュ及び遠心
分離機により分級して粒径1〜37zmの磁性ミクロス
フェアを得た。
Furthermore, the reaction tank temperature was kept at 70° C. and the reaction was carried out at 300 rpm for 10 hours. The suspension of microspheres thus obtained totaled 600 mj! After pouring it into methanol and leaving it for a day and night while stirring slowly, this m solution was filtered through filter paper, the collected microspheres were dispersed in distilled water, and then classified using a stainless mesh and a centrifuge to determine the particle size. Magnetic microspheres of 1 to 37 zm were obtained.

比較例 疎水化したマグネタイh 、+ !/ ’fスチレンモ
ノマー]O′?中に加え超711波により1時間分散処
理し、−万蒸留水002にPVA −]、]、70.6
49と]、’VA−2170,039を溶解して分散媒
水溶液全調製した。
Comparative Example: Hydrophobized magnetite h, +! / 'f styrene monomer]O'? In addition, dispersion treatment was carried out for 1 hour using ultra-711 waves, and PVA was added to -10,000 distilled water 002 - ], ], 70.6
49], 'VA-2170,039 was dissolved to prepare an aqueous dispersion medium solution.

次に、この分散媒水浴液を反応用三つロフラスコに人7
1.. 45KHzの超音波を放射しながら40Orp
mでかき寸ぜ、ここへ上記モノマー液に■−650、]
?’、(添加した溶液を加え、アルゴンガスを吹き込み
ながら室温で2時間分散を行った。次いで反応槽を65
℃に保ち、超音波放射を続けながら40Orpmで5時
間かきまぜ、その後室温まで徐冷した。
Next, this dispersion medium water bath solution was placed in a three-neck flask for reaction.
1. .. 40Orp while emitting 45KHz ultrasonic waves
Stir with m and add ■-650 to the above monomer solution.]
? ', (The added solution was added, and dispersion was carried out at room temperature for 2 hours while blowing argon gas. Then, the reaction tank was heated to 65°C.
℃ and stirred at 40 rpm for 5 hours while continuing to radiate ultrasonic waves, and then slowly cooled to room temperature.

このようにして得らルたミクロスフェアの懸濁液を約6
001nlのメタノールに注ぎ入n、ゆっくりかき脣ぜ
ながら一昼夜放置したのち、この溶液をろ紙によりろ過
し、回収したミクロスフェアを蒸留水に分散させ、次い
でステンレス製メツシュ及び遠心分離機により分級して
、1〜3μmのミクロスフェアを得た。
The suspension of microspheres thus obtained was
After pouring into 0.001 nl of methanol and leaving it for a day and night while stirring slowly, this solution was filtered through filter paper, the collected microspheres were dispersed in distilled water, and then classified using a stainless steel mesh and a centrifuge. Microspheres of 1-3 μm were obtained.

実施例2〜8 実施例1と同様の方法により、3種類のコポリマーを用
いてマグネタイト微粒子のトルエン中における吸着処理
を行った。吸着用ポリマーとしては、スチレン・無水マ
レイン酸コポリマー〔商品名ダイラーク、積水化成品工
業■製〕、スチレン・ブチルメタクリレ−トコポリマー
(スチレン単位50重量係含有、ザイエンテイフイツク
ボリマーフロダクツ製)、及びエチレンービニルアセテ
ートコホリマー(ビニルアセテート単位33 fijl
i係含M1サイエノアイフイツクボリマーブロダクツ製
)を用いた。
Examples 2 to 8 In the same manner as in Example 1, magnetite fine particles were adsorbed in toluene using three types of copolymers. Examples of adsorption polymers include styrene/maleic anhydride copolymer (trade name: DILARK, manufactured by Sekisui Plastics Co., Ltd.), styrene/butyl methacrylate copolymer (contains 50 styrene units by weight, manufactured by Zyentei Fikku Polymer Products Co., Ltd.). ), and ethylene-vinyl acetate copolymer (vinyl acetate unit 33 fijl
I-containing M1 (manufactured by Scieno Eye Fikku Polymer Products) was used.

第1〜第3表に、混合するマグネタイト及びコポリマー
の濃度を変えて調製したトルエン溶液中でのマグネタイ
トの分散状態を示す。なお表中のマグネタイト及びコポ
リマーの濃度は、  l−ルエ/100重量部中に加え
/ζそ11ぞしの重量部で示した。
Tables 1 to 3 show the dispersion state of magnetite in toluene solutions prepared by varying the concentrations of magnetite and copolymer to be mixed. The concentrations of magnetite and copolymer in the table are expressed in 11 parts by weight per 100 parts by weight.

寸だ、○は、マグネタイトが0.1μmn以下の大きさ
に均一に分散している、 △は、マグネタイトが凝集してJ、ltm程度の液滴を
形成している、 ×は、マグネタイトの凝集味がイr在している、ことを
そ扛ぞれ示す。
○ means magnetite is uniformly dispersed to a size of 0.1 μm or less, △ means magnetite aggregates to form droplets of about J,ltm, × means magnetite aggregates It shows that the taste is present.

次いで、上記調製溶液におけるマグネタイトの分散状態
の結果に基づき、マグネタイ]・/コポリマーの重量比
が3/1.ろ/3,2/6,1/3の溶液についてエバ
ボレークーで溶媒を除去し、得ら几た固形複合体をスチ
レンモノマー30重量部に均一に分散した。
Next, based on the results of the dispersion state of magnetite in the prepared solution, the weight ratio of magnetite]./copolymer was determined to be 3/1. The solvent was removed from the solutions of filtration/3, 2/6, and 1/3 using an evaporator, and the resulting solid composite was uniformly dispersed in 30 parts by weight of styrene monomer.

第4表に、各調製試料のスチレンモノマー中におけるマ
グネタイトの分散状態を示す。
Table 4 shows the state of dispersion of magnetite in the styrene monomer of each prepared sample.

ここで、○は、マグネタイj・が帆1μm以下の大きさ
に均一に分散している、 ムは、マグネタイトの数It mの凝集塊が存在してい
る、 ※は、スチレンモノマー全体がゲル化[7てイル。
Here, ○ indicates that the magnetite is uniformly dispersed to a size of 1 μm or less, MU indicates that aggregates of several It m of magnetite exist, and ※ indicates that the entire styrene monomer has gelled. [7teil.

ことをそれぞれ示す。Each shows that.

次に、第4表の結果に基づき、スチレン・無水マレイン
酸コポリマー及びスチレン−ブチルメタクリ1/−トコ
ポリマーで吸着処理したマグネタイト微粒子が分散した
8種類のモノマー液について分散重合を行った。すなわ
ち、そルぞ扛のモノマー液の上重隈を秤量採取し、この
溶液にv−650,11/を添加し、実施例1と同様の
条件で分散重合を行い、分級により1〜3μmの磁性ミ
クロスフェアを得た。
Next, based on the results shown in Table 4, dispersion polymerization was carried out using eight types of monomer liquids in which fine magnetite particles adsorbed with styrene/maleic anhydride copolymer and styrene/butyl methacrylate 1/-tocopolymer were dispersed. That is, the top layer of the monomer solution was weighed and collected, v-650,11/ was added to this solution, and dispersion polymerization was carried out under the same conditions as in Example 1. Magnetic microspheres were obtained.

第    1    表 第         表 第    3    表 \、 \、 第    4    表 試験例 実施例1〜8及び比蚊例で(4)ら汎た磁性ミクロスフ
ェア粉末全そf’l−ぞ扛2 o o yng秤量し、
  pI目、5に調整したシュウ酸、塩酸、酢酸及びリ
ン酸水溶液309中で1週間分散処理を行ったのち、イ
オン交換水で洗浄し、原子吸光による鉄分析を行った。
Table 1 Table 3 Table 3 Table 4 Test Examples Examples 1 to 8 and Comparative Example (4) Total weight of magnetic microsphere powder death,
After performing a dispersion treatment for one week in an aqueous solution of oxalic acid, hydrochloric acid, acetic acid, and phosphoric acid 309 adjusted to pI, 5, it was washed with ion-exchanged water, and iron analysis by atomic absorption was performed.

第5表に、−4二記磁性ミクロスフエアのマグネタイト
の仕込率及び酸処理前後のミクロスフェア内マグネタイ
ト含イ1率を示す。
Table 5 shows the magnetite loading ratio of the -4 magnetic microspheres and the magnetite content in the microspheres before and after acid treatment.

次に、  pH1,5のシュウ配水mtj中における磁
性ミクロスフェアからの鉄イオンの溶出度を調べた。す
なわち、スチレン−無水マレイン酸コポリマーで吸着処
理した4種類の磁性ミクロスフェア粉末をそ扛ぞn25
■秤量し、pH1,5の7ユウ酸水溶液5 ml中に一
週間分散し、遠心分〃を後」二澄を採取する。次に、沈
殿したミクロスフェアを水洗し再びpH1,5のシュウ
酸水浴液5 ml中に5日間分散し、遠心分離後上澄を
採取する。さらに沈殿したミクロスフェアを水洗しpI
(1,、50シュウ酸水溶液5−中に5[1間分散し遠
心分離により上澄を採取した。こ汎らの採取した」二澄
3種類と、ブランクとしてイオン交換水5 ml中に」
二記磁性ミクロスフェア25mf’(r17B間分散し
たのち、遠心分離によって得た−に澄中の溶出鉄イオン
濃度を原子吸光により測定した。その結果を第6表に示
す。
Next, the degree of elution of iron ions from magnetic microspheres in water distribution mtj at pH 1.5 was investigated. That is, four types of magnetic microsphere powder adsorbed with styrene-maleic anhydride copolymer were prepared.
(2) Weigh it out, disperse it in 5 ml of aqueous 7-euric acid solution at pH 1.5 for one week, and collect the liquid after centrifugation. Next, the precipitated microspheres are washed with water and dispersed again in 5 ml of an oxalic acid bath solution of pH 1.5 for 5 days, and after centrifugation, the supernatant is collected. Furthermore, the precipitated microspheres were washed with water and pI
(The supernatant was collected by centrifugation after dispersing in 1,50 oxalic acid aqueous solution for 50 minutes.The three kinds of two clear liquids collected by Kohan et al. and 5 ml of ion-exchanged water as a blank.
After dispersing the two magnetic microspheres in 25mf' (r17B), the eluted iron ion concentration in the clear solution obtained by centrifugation was measured by atomic absorption. The results are shown in Table 6.

ここで処理AOはブランクとして交換水に分散し/こ場
合の上澄 処理馬!は1回目のシュウ酸水溶液処理上澄処理属2は
2回目のシュウ酸水溶液処理上澄処理JIFL3は3回
目のシュウ酸水浴液処理上澄をそnぞ扛示す。
Here the treated AO is dispersed in replacement water as a blank/supernatant treated horse in this case! 2 shows the supernatant treated with an oxalic acid aqueous solution for the first time; JIFL3 shows the supernatant treated with the oxalic acid aqueous solution for the third time;

第    6    表Chapter 6 Table

Claims (1)

【特許請求の範囲】 1 非極性溶媒中において、疎水化処理を施した強磁性
体微粒子にポリマーを吸着させたのち、該溶媒を留去し
、次いでこの固形複合体をモノマー中に均一に分散させ
たのち、これを水性媒体中に分散懸濁させて重合するこ
とを特徴とする磁性ミクロスフエアの製造法。 2 固形複合体を分散したモノマーを、水性媒体中に分
散懸濁させる際に、機械的かきまぜと低周波数の超音波
放射とを併用することにより、得られる磁性ミクロスフ
エアの粒径を調節する特許請求の範囲第1項記載の方法
。 3 ポリマーが極性基をもつコポリマーである特許請求
の範囲第1項又は第2項記載の方法。 4 極性基をもつコポリマーが第2層形成用モノマーと
同一のモノマー単位を含むものである特許請求の範囲第
3項記載の方法。
[Claims] 1. After adsorbing a polymer to ferromagnetic particles that have been subjected to hydrophobization treatment in a non-polar solvent, the solvent is distilled off, and then this solid composite is uniformly dispersed in a monomer. A method for producing magnetic microspheres, which comprises dispersing and suspending the microspheres in an aqueous medium and polymerizing them. 2. A patent claim that adjusts the particle size of magnetic microspheres obtained by using mechanical stirring and low-frequency ultrasonic radiation in combination when dispersing and suspending a monomer in which a solid composite is dispersed in an aqueous medium. The method described in item 1. 3. The method according to claim 1 or 2, wherein the polymer is a copolymer having a polar group. 4. The method according to claim 3, wherein the copolymer having a polar group contains the same monomer units as the monomer for forming the second layer.
JP61087045A 1986-04-17 1986-04-17 Preparation of magnetic microsphere Granted JPS62244438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61087045A JPS62244438A (en) 1986-04-17 1986-04-17 Preparation of magnetic microsphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61087045A JPS62244438A (en) 1986-04-17 1986-04-17 Preparation of magnetic microsphere

Publications (2)

Publication Number Publication Date
JPS62244438A true JPS62244438A (en) 1987-10-24
JPH0563220B2 JPH0563220B2 (en) 1993-09-10

Family

ID=13903967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61087045A Granted JPS62244438A (en) 1986-04-17 1986-04-17 Preparation of magnetic microsphere

Country Status (1)

Country Link
JP (1) JPS62244438A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300205A (en) * 1989-05-16 1990-12-12 Nippon Shokubai Kagaku Kogyo Co Ltd Magnetic material-containing spherical particle, its production and its use
JP2005200643A (en) * 2003-12-15 2005-07-28 Rikogaku Shinkokai Method for manufacturing polymer-coated minute particles and polymer-coated minute particles
JP2006068694A (en) * 2004-09-06 2006-03-16 Seiko Epson Corp Production method for microencapsulated inorganic colloid
JP2006292721A (en) * 2005-03-15 2006-10-26 Sekisui Chem Co Ltd Magnetic body-containing particle, manufacturing method of magnetic body-containing particle, particle for measuring immunity, and immunity measuring method
WO2007114758A1 (en) * 2006-03-30 2007-10-11 Ge Healthcare Bio-Sciences Ab Magnetic beads
CN104549083A (en) * 2013-10-23 2015-04-29 河海大学 Method for chelating and functionalizing magnetic polyvinyl alcohol microspheres and application of method
JP2015189812A (en) * 2014-03-27 2015-11-02 東ソー株式会社 Method of producing coated fine particle
CN113621112A (en) * 2020-05-06 2021-11-09 N科研中心私人投资有限公司 Monodisperse superparamagnetic particle and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300205A (en) * 1989-05-16 1990-12-12 Nippon Shokubai Kagaku Kogyo Co Ltd Magnetic material-containing spherical particle, its production and its use
JP2005200643A (en) * 2003-12-15 2005-07-28 Rikogaku Shinkokai Method for manufacturing polymer-coated minute particles and polymer-coated minute particles
JP4669951B2 (en) * 2003-12-15 2011-04-13 国立大学法人東京工業大学 Method for producing polymer-coated fine particles and polymer-coated fine particles
JP2006068694A (en) * 2004-09-06 2006-03-16 Seiko Epson Corp Production method for microencapsulated inorganic colloid
JP2006292721A (en) * 2005-03-15 2006-10-26 Sekisui Chem Co Ltd Magnetic body-containing particle, manufacturing method of magnetic body-containing particle, particle for measuring immunity, and immunity measuring method
JP4653652B2 (en) * 2005-03-15 2011-03-16 積水化学工業株式会社 Magnetic inclusion particles, method for producing magnetic inclusion particles, immunoassay particles and immunoassay method
WO2007114758A1 (en) * 2006-03-30 2007-10-11 Ge Healthcare Bio-Sciences Ab Magnetic beads
CN104549083A (en) * 2013-10-23 2015-04-29 河海大学 Method for chelating and functionalizing magnetic polyvinyl alcohol microspheres and application of method
JP2015189812A (en) * 2014-03-27 2015-11-02 東ソー株式会社 Method of producing coated fine particle
CN113621112A (en) * 2020-05-06 2021-11-09 N科研中心私人投资有限公司 Monodisperse superparamagnetic particle and preparation method thereof

Also Published As

Publication number Publication date
JPH0563220B2 (en) 1993-09-10

Similar Documents

Publication Publication Date Title
US4873102A (en) Magnetic particles
JP3627342B2 (en) Magnetic polymer particles and method for producing the same
US6682660B2 (en) Ultrasonically generated paramagnetic polymer particles
US7897257B2 (en) Magnetic beads comprising an outer coating of hydrophilic porous polymer and method of making thereof
US20080283792A1 (en) Separation Medium with Various Functionalities
US4737533A (en) Dry material which can be hydrated into an aqueous gel, containing dispersed polymer particles, process for the preparation thereof and use thereof in biological applications
RU98103394A (en) MAGNETIC POLYMER PARTICLES BASED ON POLYVINYL ALCOHOL, METHODS FOR PRODUCING AND APPLICATION
IL123061A (en) Process for the preparation of spherical polyvinyl alcohol-based magnetic particles and spherical magnetic polyvinyl alcohol particles prepared thereby
JPH10500164A (en) Method for producing particles, and particles that can be produced by the method
US7201962B2 (en) Hemocompatible coated polymer and related one-step methods
US20090092837A1 (en) Magnetic beads
Goto et al. Eudragit RS and RL (acrylic resins) microcapsules as pH insensitive and sustained release preparations of ketoprofen
EP0335703B1 (en) Hydrophilic fine gel particles and process for production thereof
WO2017204209A1 (en) Composite particles, coated particles, method for producing composite particles, ligand-containing solid phase carrier, and method for detecting or separating target substance in sample
Wu et al. A facile strategy for controlling the self-assembly of nanocomposite particles based on colloidal steric stabilization theory
Phutthawong et al. Facile synthesis of magnetic molecularly imprinted polymers for caffeine via ultrasound-assisted precipitation polymerization
JP2004109178A (en) Colloidal crystal and its manufacturing method
JPS62244438A (en) Preparation of magnetic microsphere
JPH0569583B2 (en)
JP4548598B2 (en) Magnetic particle, method for producing the same, and carrier for biochemistry
JPS62204501A (en) Manufacture of magnetic microsphere
Wan et al. MIPs in aqueous environments
JPH07103206B2 (en) Method for producing crosslinked polymer particles
Martin et al. Synthesis of a novel magnetic resin and the study of equilibrium in cation exchange with amino acids
Altıntaş et al. Synthesis and characterization of monosize magnetic poly (glycidyl methacrylate) beads