JP2017501023A - Polymer fine capsule containing functional substance and method for producing the same - Google Patents

Polymer fine capsule containing functional substance and method for producing the same Download PDF

Info

Publication number
JP2017501023A
JP2017501023A JP2016536238A JP2016536238A JP2017501023A JP 2017501023 A JP2017501023 A JP 2017501023A JP 2016536238 A JP2016536238 A JP 2016536238A JP 2016536238 A JP2016536238 A JP 2016536238A JP 2017501023 A JP2017501023 A JP 2017501023A
Authority
JP
Japan
Prior art keywords
polymer
weight
capsule
produced
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016536238A
Other languages
Japanese (ja)
Inventor
ソク イ,ヒョン
ソク イ,ヒョン
ヨン チェ,ジン
ヨン チェ,ジン
クァン キム,ミン
クァン キム,ミン
キ キム,ウォン
キ キム,ウォン
Original Assignee
クリーン アンド グリーン カンパニー リミテッド
クリーン アンド グリーン カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリーン アンド グリーン カンパニー リミテッド, クリーン アンド グリーン カンパニー リミテッド filed Critical クリーン アンド グリーン カンパニー リミテッド
Publication of JP2017501023A publication Critical patent/JP2017501023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/31Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本発明は、様々な合成及び天然の機能性物質を直径1〜500nm未満の大きさを有し、且つ、高分子微細カプセルの内部に存在する数多くの微細内部カプセルに含有する構造の微細カプセルを製造し、このようにして製造した微細カプセルの最外郭殻の厚さを架橋剤量、添加される単量体量、反応温度及び反応時間の変化を用いて調節して優れた耐熱性及び耐久性を有する高分子微細カプセルを製造し、これを水溶性バインダと混合したり分散させたりして高分子微細カプセルが有機溶媒に分散された状態の加工剤を繊維に塗布することにより、既存の繊維の加工に際して熱により破壊されて繊維に塗布できない部分を低減させるだけではなく、繊維に塗布された機能性物質を含む高分子微細カプセルがその構造的な安定性により熱、摩擦、洗濯などの刺激によりカプセルに損傷が加えられても一度に内部に含有されている機能性物質が放出されないことから、安定的な徐放性を有する機能性繊維が製造される。The present invention relates to a fine capsule having a structure in which various synthetic and natural functional substances have a diameter of 1 to less than 500 nm and are contained in a number of fine inner capsules existing inside a polymer fine capsule. Excellent heat resistance and durability by adjusting the thickness of the outermost shell of the fine capsules thus produced by using the amount of crosslinking agent, the amount of added monomer, reaction temperature and reaction time By applying a processing agent in a state where the polymer microcapsules are dispersed in an organic solvent by mixing or dispersing the polymer microcapsules with a water-soluble binder, In addition to reducing the portion that cannot be applied to the fiber because it is destroyed by heat during the processing of the fiber, the polymer microcapsule containing the functional substance applied to the fiber is heated and frictioned due to its structural stability. Since the functional substance contained therein at a time even if damage is applied to the capsule by a stimulus such as washing is not released, functional fiber having a stable sustained release is produced.

Description

本発明は、機能性物質を含む高分子微細カプセル及びその製造方法に係り、さらに詳しくは、繊維に塗布されるバインダ層の内部に収容される大きさの高分子微細カプセルの内部に多数の微細内部カプセルを分布させ、前記微細内部カプセルには様々な合成及び天然の機能性物質を含有させ、このような高分子微細カプセルの製造過程において最外郭殻の厚さを架橋剤量、添加される単量体量、開始剤量、反応温度及び反応時間の変化を用いて増加させたマニーコア−シェル(many core−shell)構造の微細カプセルを提供することにより、繊維の加工に際して高分子カプセルの破損を極力抑え、繊維への塗布に際して機能性を長時間に亘って維持する機能性物質を含む微細カプセル及びその製造方法に関する。   The present invention relates to a polymer microcapsule containing a functional substance and a method for producing the same, and more specifically, a large number of microcapsules inside a polymer microcapsule having a size accommodated in a binder layer applied to a fiber. The inner capsule is distributed, the fine inner capsule contains various synthetic and natural functional substances, and the thickness of the outermost shell is added in the amount of the crosslinking agent in the manufacturing process of such a polymer microcapsule. Breakage of polymer capsules during fiber processing by providing fine capsules with many core-shell structure increased using changes in monomer amount, initiator amount, reaction temperature and reaction time The present invention relates to a fine capsule containing a functional substance that suppresses as much as possible and maintains functionality for a long time when applied to a fiber, and a method for producing the same.

これまで、繊維製品の機能性加工は、機能性物質を繊維の表面に接着剤とともに混合して塗布したり機能性物質をマイクロカプセルに含有させたりした後、これを様々な接着剤とともに繊維に処理して、適用された機能性物質が揮発されたり、マイクロカプセルの崩壊による機能性物質の放出により繊維において機能性が発現されるようにすることであった。   Until now, functional processing of textile products has been performed by mixing functional materials with the adhesive on the surface of the fiber and applying them to the microcapsules. The treatment was to volatilize the applied functional material or to develop functionality in the fiber by the release of the functional material due to the collapse of the microcapsules.

中でも、マイクロカプセルを用いた機能性繊維製品は、1〜3μmの厚さを有するバインダ層よりも大きなマイクロカプセルを機能性物質の担持体として用いるため、摩擦、洗濯などのカプセルの耐久性を阻害する様々な要因によりマイクロカプセルが崩壊され易く、製造されたマイクロカプセルの構造が単一壁の構造であるため内部に含有されている機能性物質が一度に且つ急激に放出される特徴を有しているため機能性を与える期間が非常に短くなるという欠点がある。   In particular, functional fiber products using microcapsules use a microcapsule larger than the binder layer having a thickness of 1 to 3 μm as a functional substance carrier, which impairs the durability of capsules such as friction and washing. The microcapsules are easily disintegrated due to various factors, and the structure of the manufactured microcapsules is a single wall structure, so that the functional substance contained therein is released at once and rapidly. Therefore, there is a disadvantage that the period of providing functionality becomes very short.

関連する研究の例としては、機能性組成物を芳香剤及び結合剤の混合エマルジョン状にして、カーペットに付加して芳香機能を与える方法(大韓民国特許登録第10−0110057号公報)、アクリル樹脂またはウレタン樹脂により製造されたマイクロカプセルに芳香剤を含有させてバインダ樹脂とともに繊維生地にコーティングして芳香性繊維材料を製造する方法(大韓民国特許出願第10−2000−0086197号公報)、合成防虫性物質を乳化させた後、高分子縮合反応を用いてマイクロカプセルに含有させた後、バインダと混合して繊維生地に噴霧して熱固着させる方法(大韓民国特許出願第10−2002−0079616号公報)などが挙げられる。   Examples of related research include a method in which a functional composition is made into a mixed emulsion of a fragrance and a binder and added to a carpet to give a fragrance function (Korea Patent Registration No. 10-0110057), acrylic resin or A method for producing an aromatic fiber material by adding a fragrance to a microcapsule made of urethane resin and coating the fiber fabric together with a binder resin (Korea Patent Application No. 10-2000-0086197), synthetic insect repellent Is then emulsified and then incorporated into microcapsules using a polymer condensation reaction, and then mixed with a binder and sprayed onto a fiber fabric to thermally fix it (Korea Patent Application No. 10-2002-0079616), etc. Is mentioned.

上記の研究において製造されたマイクロカプセルは、通常の繊維バインダコーティング層の厚さである1〜3μmを超える寸法を有し、マイクロカプセル内の機能性物質が単一壁の構造を有するカプセルに含有されている構造であるため、加工中に熱による破壊及び摩擦、洗濯などの物理的な影響によるカプセルの破壊や損傷が起こる場合に一度に内部物質の放出が行われて機能性物質の持続期間が非常に短くなるため、機能性物質の持続期間及び耐久年限が少なくとも2年以上求められる機能性繊維製品の製造に用いられるには足りないという欠点がある。   The microcapsules manufactured in the above research have a size exceeding 1 to 3 μm which is the thickness of a normal fiber binder coating layer, and the functional substance in the microcapsule is contained in a capsule having a single-wall structure. Because of its structure, when the capsule breaks or is damaged due to physical damage such as heat, friction, and washing during processing, the internal substance is released at once and the duration of the functional substance Is extremely short, and there is a drawback that it is insufficient for use in the production of functional fiber products in which the duration and durability of functional materials are required to be at least 2 years.

また、 既存の方法により製造された機能性物質を含有する高分子粒子の最外郭壁の厚さを十分な耐久性を有するほどに適切に調節できないこともまた、上述した耐久性の問題を引き起こす原因として指摘されている。   Moreover, the fact that the thickness of the outermost wall of the polymer particles containing the functional substance produced by the existing method cannot be adjusted appropriately enough to have sufficient durability also causes the above-mentioned durability problem. It has been pointed out as the cause.

本発明は、従来の問題点として指摘されている、熱、摩擦、洗濯などの様々な原因により起こる高分子カプセルの損傷及び崩壊によりカプセル内に含有されている機能性物質が急激に放出されることを防ぐために、繊維に塗布されるバインダ層の内部に収容される寸法の高分子微細カプセルを作製するが、前記高分子微細カプセルの内部に数多くの微細内部カプセルを分布させて機能性物質をそれぞれの微細内部カプセルに含有させた高分子微細カプセルを製造することにその目的がある。   In the present invention, the functional substance contained in the capsule is abruptly released due to damage and collapse of the polymer capsule caused by various causes such as heat, friction and washing, which have been pointed out as conventional problems. In order to prevent this, polymer fine capsules of a size that can be accommodated inside the binder layer applied to the fiber are prepared. The object is to produce polymer microcapsules contained in each microcapsule.

また、製造された高分子微細カプセルの最外郭壁の厚さを添加される架橋剤量、反応温度及び反応時間などの製造条件の変化を用いて増加させて優れた熱安定性、耐久性、徐放性を有する高分子微細カプセルを製造することに他の目的がある。   In addition, the thickness of the outermost wall of the manufactured polymer microcapsules is increased by using the change in manufacturing conditions such as the amount of crosslinking agent added, reaction temperature and reaction time, excellent thermal stability, durability, Another object is to produce polymer microcapsules having sustained release properties.

上述した問題を解消するための本発明の特徴は、総重量を基準として蒸留水70〜89重量%に乳化剤0.2〜3.0重量%を溶解させて水溶液を製造する過程と、単量体5〜30重量%、機能性物質5〜40重量%、架橋剤0.1〜5重量%及び共乳化剤0.1〜5重量%を投入し且つ混合して単量体溶液を製造する過程と、前記水溶液及び単量体溶液を混合した後、均質化器または超音波破砕器を用いて1〜30分間混合してミセルを形成する過程と、前記ミセルが形成された混合液にラジカル開始剤を98〜99.9:0.1〜2.0の重量比で混合した後、10〜85℃で1〜10時間200〜1000rpmにて攪拌する過程と、を含むことを特徴とする機能性物質を含む高分子微細カプセルの製造方法にある。   The feature of the present invention for solving the above-mentioned problems is that a process for producing an aqueous solution by dissolving 0.2 to 3.0% by weight of an emulsifier in 70 to 89% by weight of distilled water based on the total weight, A process for producing a monomer solution by adding and mixing 5 to 30% by weight of a body, 5 to 40% by weight of a functional substance, 0.1 to 5% by weight of a crosslinking agent and 0.1 to 5% by weight of a coemulsifier And mixing the aqueous solution and the monomer solution and then mixing for 1 to 30 minutes using a homogenizer or an ultrasonic crusher to form micelles, and radical initiation in the mixed solution in which the micelles are formed And mixing the agent at a weight ratio of 98-99.9: 0.1-2.0, followed by stirring at 200-1000 rpm for 1-10 hours at 10-85 ° C. The present invention relates to a method for producing a polymer microcapsule containing an active substance.

また、本発明の他の特徴は、前記製造方法により製造されて高分子微細カプセルの内部に多数の微細内部カプセルが分布し、前記内部カプセル内に機能性物質が含有されて、製造された高分子微細カプセルが繊維に塗布されるバインダ層の内部に挿入される寸法を有する機能性物質を含む高分子微細カプセルにある。   In addition, another feature of the present invention is that a large number of fine inner capsules are distributed in the polymer fine capsules manufactured by the manufacturing method, and a functional substance is contained in the inner capsules. The polymer microcapsule is in a polymer microcapsule containing a functional material having a dimension that is inserted into a binder layer applied to the fiber.

さらに、本発明のさらに他の特徴は、前記高分子微細カプセル及び水溶性アクリルバインダが体積比1:9〜5:5で混合される機能性繊維塗布剤及び前記高分子微細カプセル溶液内の水を取り除いた後、有機溶媒と体積比1:9〜6:4で混合して分散させて製造した繊維用の加工剤にある。   Furthermore, still another feature of the present invention is that a functional fiber coating agent in which the polymer microcapsules and a water-soluble acrylic binder are mixed at a volume ratio of 1: 9 to 5: 5 and water in the polymer microcapsule solution. In the processing agent for fibers produced by mixing and dispersing with an organic solvent at a volume ratio of 1: 9 to 6: 4.

上述した特徴を有する本発明は、繊維に塗布されるバインダ層の内部に収容される寸法の高分子微細カプセルの内部に機能性添加剤が含有された微細内部カプセルが分布されるので、熱、摩擦、洗濯などの様々な刺激及び破壊要因に対して優れた耐久性を有し、且つ、構造的な安定性により高分子微細カプセル及び微細内部カプセルの崩れまたは破壊が徐々に行われるので、内部に含まれている機能性物質の持続時間が安定的に増えるという効果を有する。   In the present invention having the above-described features, since the fine inner capsule containing the functional additive is distributed inside the polymer fine capsule having a size accommodated in the binder layer applied to the fiber, heat, Excellent durability against various irritation and destruction factors such as friction and washing, and because of the structural stability, the polymer fine capsule and the fine inner capsule are gradually broken or broken, It has the effect that the duration of the functional substance contained in is stably increased.

また、作製された高分子微細カプセルの最外郭壁の厚さを架橋剤量、反応温度及び反応時間などの変化を用いて増加させて向上した耐久性を持たせるので、既存のマイクロカプセルに比べて優れた熱安定性及び耐久性を有することはもとより、含有物質の放出速度及び持続期間の調節をも行うことができる。   In addition, the thickness of the outermost wall of the prepared polymer microcapsules is increased by using changes in the amount of cross-linking agent, reaction temperature, reaction time, etc., so as to have improved durability, compared with existing microcapsules. In addition to having excellent thermal stability and durability, it is also possible to adjust the release rate and duration of the contained substances.

さらに、本発明による高分子微細カプセルは、様々な繊維用のバインダ及び有機溶媒に適用可能であるので、様々な織物の製造工程に適用し易い。したがって、優れた耐久性及び機能性の持続時間を有する様々な機能性繊維生地を製造することができるという効果がある。   Furthermore, since the polymer microcapsules according to the present invention can be applied to various fiber binders and organic solvents, they can be easily applied to various textile manufacturing processes. Therefore, there is an effect that various functional fiber fabrics having excellent durability and functional duration can be manufactured.

図1は、本発明において製造された高分子微細カプセルと既存に報告された高分子カプセルとを比較した図である。FIG. 1 is a diagram comparing a polymer microcapsule manufactured in the present invention with a previously reported polymer capsule. 図2は、本発明による高分子微細カプセルの製造過程を示す図である。FIG. 2 is a diagram showing a manufacturing process of a polymer microcapsule according to the present invention. 図3は、実施例1において製造された高分子微細カプセルの電子顕微鏡写真である。FIG. 3 is an electron micrograph of the polymer microcapsules produced in Example 1. 図4は、実施例2において製造された高分子微細カプセルの電子顕微鏡写真である。FIG. 4 is an electron micrograph of the polymer microcapsules produced in Example 2. 図5は、実施例3において製造された高分子微細カプセルの電子顕微鏡写真である。FIG. 5 is an electron micrograph of the polymer microcapsules produced in Example 3. 図6は、実施例1と高分子微細カプセルの最外郭壁の厚さが厚くなった実施例5との間の相違点を示す電子顕微鏡写真である。FIG. 6 is an electron micrograph showing a difference between Example 1 and Example 5 in which the thickness of the outermost wall of the polymer microcapsule was increased. 図7は、実施例5において製造された高分子微細カプセルの電子顕微鏡写真である。FIG. 7 is an electron micrograph of the polymer microcapsules produced in Example 5. 図8は、実施例6において製造された高分子微細カプセルの平均寸法を示す粒度分析図であある。FIG. 8 is a particle size analysis diagram showing the average dimensions of the polymer microcapsules produced in Example 6. 図9は、実施例7において製造された高分子微細カプセルの平均寸法を示す粒度分析図である。FIG. 9 is a particle size analysis diagram showing the average dimensions of the polymer microcapsules produced in Example 7. 図10は、実施例8において製造された水溶性アクリルバインダ及び高分子微細カプセルが混合された繊維用の塗布剤の写真である。FIG. 10 is a photograph of a coating agent for fibers in which the water-soluble acrylic binder and polymer microcapsules produced in Example 8 were mixed. 図11は、実施例9において製造された様々な有機溶媒に分散された状態の繊維用の加工剤のうち、ジメチルホルムアミド(DMF)溶媒に分散された状態の高分子微細カプセル溶液を示す写真である。FIG. 11 is a photograph showing polymer microcapsule solutions dispersed in a dimethylformamide (DMF) solvent among the fiber processing agents dispersed in various organic solvents produced in Example 9. is there. 図12は、実施例8において製造された優れた熱安定性及び高耐久性を有する機能性高分子微細カプセルを水溶性アクリルバインダと混合した後に塗布した織物の接着層及び塗布状態を示す電子顕微鏡写真である。FIG. 12 is an electron microscope showing an adhesive layer of a fabric applied after mixing the functional polymer fine capsules having excellent thermal stability and high durability produced in Example 8 with a water-soluble acrylic binder, and the application state. It is a photograph. 図13は、本発明において製造された高分子微細カプセルを水から分離して回収するためにメタノールを添加して沈殿させたことを示す写真である。FIG. 13 is a photograph showing that methanol was added and precipitated in order to separate and collect the polymer microcapsules produced in the present invention from water. 図14は、本発明において製造された高分子微細カプセルを水から分離して回収するために飽和塩化ナトリウム水溶液を添加して塩析したことを示す写真である。FIG. 14 is a photograph showing salting out by adding a saturated aqueous sodium chloride solution in order to separate and recover the polymer microcapsules produced in the present invention from water.

以下、本発明の実施形態について添付図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本発明による機能性物質を含む高分子微細カプセルは、図1に示すように、繊維に塗布されるバインダ層の内部に収容される寸法の高分子微細カプセルの内部に様々な合成及び天然の機能性物質を含有する多数の微細内部カプセルが分布されるマニーコア−シェル構造を有し、前記高分子微細カプセルの最外郭壁の厚さが調節されて、製造された高分子微細カプセルの耐久性を向上させるものであり、このようにして製造した高分子微細カプセルを様々な水溶性バインダ及び有機溶媒に混合及び分散させて繊維に塗布する。このとき、前記高分子微細カプセルの直径は、50〜500nmとなる。   As shown in FIG. 1, the polymer microcapsule containing the functional substance according to the present invention has various synthetic and natural functions inside the polymer microcapsule having a size accommodated in the binder layer applied to the fiber. The polymer fine capsule has a Manny core-shell structure in which a large number of fine inner capsules containing the active substance are distributed, and the thickness of the outermost wall of the polymer fine capsule is adjusted to improve the durability of the produced polymer fine capsule. The polymer fine capsules thus produced are mixed and dispersed in various water-soluble binders and organic solvents and applied to the fibers. At this time, the polymer fine capsule has a diameter of 50 to 500 nm.

また、前記高分子微細カプセルの製造方法について説明すると、図2に示すように、総重量を基準として水50〜86重量%及び水溶性界面活性剤0.2〜3重量%が溶解された水溶液を製造する水溶液の製造過程と、総重量を基準として単量体5〜20重量%、機能性物質5〜40重量%、架橋剤0.1〜5重量%及び共乳化剤0.1〜5重量%を混合する単量体溶液の製造過程と、前記水溶液及び単量体溶液を混合してミセルを形成する過程と、前記ミセルが形成された混合液を窒素雰囲気下で総重量を基準としてラジカル開始剤0.1〜3重量%を添加して重合する過程と、を含む方法を用いて高分子カプセルを製造する。   Also, the method for producing the polymer fine capsule will be described. As shown in FIG. 2, an aqueous solution in which 50 to 86% by weight of water and 0.2 to 3% by weight of a water-soluble surfactant are dissolved based on the total weight. Manufacturing process of aqueous solution to produce a monomer, 5 to 20% by weight of monomer, 5 to 40% by weight of functional material, 0.1 to 5% by weight of cross-linking agent and 0.1 to 5% by weight of coemulsifier based on the total weight % Of the monomer solution, the process of mixing the aqueous solution and the monomer solution to form micelles, and the mixed solution in which the micelles are formed is radical based on the total weight in a nitrogen atmosphere. A polymer capsule is manufactured using a method including a step of polymerizing by adding 0.1 to 3 wt% of an initiator.

この過程において、最外郭殻の壁の厚さを調節するために、架橋剤を0.2〜5重量%で添加しながら60℃〜95℃の反応温度で反応を行う。なお、反応時間を2時間〜10時間とする。   In this process, in order to adjust the wall thickness of the outermost shell, the reaction is performed at a reaction temperature of 60 ° C. to 95 ° C. while adding a crosslinking agent at 0.2 to 5% by weight. The reaction time is 2 hours to 10 hours.

また、このようにして製造した高分子微細カプセルをアクリルバインダに混合して繊維用の塗布剤を製造して繊維に塗布し且つ熱処理して(100〜300℃)、機能性繊維塗布剤層を有する機能性繊維製品を製造する。   The polymer fine capsules thus produced are mixed with an acrylic binder to produce a fiber coating agent, which is applied to the fiber and heat treated (100-300 ° C.) to form a functional fiber coating layer. The functional fiber product which has is manufactured.

あるいは、前記高分子微細カプセル溶液の水分を減圧処理して取り除くか、あるいは、メタノールまたは様々な塩を添加して沈殿または塩析させて回収した後、これを乾燥させ、有機溶媒に分散させて繊維用の塗布剤を製造する。また、前記繊維用の塗布剤を繊維に塗布し且つ熱処理して機能性繊維塗布剤層を有する機能性繊維製品を製造する。   Alternatively, the polymer fine capsule solution is removed by removing the water by decompression, or recovered by precipitation or salting out by adding methanol or various salts, and then drying and dispersing in an organic solvent. A coating agent for fibers is produced. Also, a functional fiber product having a functional fiber coating agent layer is produced by applying the fiber coating agent to the fiber and heat-treating it.

上記において、有機溶媒は、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、メチルエチルケトン(MEK)、メタノール、エタノール、イソプロピルアルコール及びテトラヒドロフラン(THF)よりなる群から選ばれるいずれか一種である。   In the above, the organic solvent is any one selected from the group consisting of dimethylformamide (DMF), dimethyl sulfoxide (DMSO), methyl ethyl ketone (MEK), methanol, ethanol, isopropyl alcohol, and tetrahydrofuran (THF).

以下、本発明の実施例についてより詳細に説明する。   Hereinafter, examples of the present invention will be described in more detail.

実施例1:フィトンチッド含有高分子微細カプセルの製造
丸底フラスコに蒸留水80mlと乳化剤としてのドデシル硫酸 ナトリウム(SDS)0.2〜3.0gを投入し、これを常温で溶解させて水溶液(水系)を製造した。
Example 1: Production of phytoncide-containing polymer fine capsules A round bottom flask was charged with 80 ml of distilled water and 0.2 to 3.0 g of sodium dodecyl sulfate (SDS) as an emulsifier, and dissolved at room temperature to obtain an aqueous solution (aqueous system). ) Was manufactured.

また、スチレン単量体5〜20gにフィトンチッド油5〜30gと、架橋剤としてのジビニールベンゼン(DVB)0.1〜2.0g及び共乳化剤としてのn−ヘキサデカン(n−HD)0.1〜3.0gを投入し且つ攪拌させて機能性物質含有単量体溶液(油系)を製造した。   Also, 5 to 20 g of styrene monomer, 5 to 30 g of phytoncide oil, 0.1 to 2.0 g of divinylbenzene (DVB) as a crosslinking agent, and 0.1 of n-hexadecane (n-HD) as a co-emulsifier. ˜3.0 g was added and stirred to prepare a functional substance-containing monomer solution (oil system).

次いで、このようにして製造した乳化剤水溶液及び単量体溶液を常温で全て混合した後、均質化器を用いて8000〜24000rpmにて1〜30分間処理してミセルが形成された乳化混合液を製造した。 Next, the emulsifier aqueous solution and the monomer solution thus prepared were all mixed at room temperature, and then treated with a homogenizer at 8000 to 24000 rpm for 1 to 30 minutes to form an emulsified mixed liquid in which micelles were formed. Manufactured.

次いで、機械式攪拌器と、コンデンサと、恒温装置及び窒素注入装置が設けられた反応槽にミセルが形成された前記乳化混合液98g〜99.9gとラジカル開始剤としてのアゾビスイソブチロニトリル(AIBN)0.1〜2.0gを投入し、20〜60℃で1〜10時間300〜1000rpmにて攪拌させて、図3に示すように、平均粒径が200〜400nmの均一な大きさを有するフィトンチッド含有高分子微細カプセルを製造した。   Next, 98 g to 99.9 g of the emulsified mixed solution in which micelles are formed in a reaction tank provided with a mechanical stirrer, a condenser, a constant temperature device, and a nitrogen injection device, and azobisisobutyronitrile as a radical initiator (AIBN) 0.1-2.0 g was charged and stirred at 300-1000 rpm for 1-10 hours at 20-60 ° C., and as shown in FIG. A phytoncide-containing polymer fine capsule having a thickness was produced.

実施例2:シトロネラ油含有高分子微細カプセルの製造
丸底フラスコに蒸留水80ml及び乳化剤としてのドデシルベンゼンスルホン酸ナトリウム(SDBS)0.1〜3.0gを投入し、これを常温で溶解させて乳化剤水溶液を製造した。
Example 2 Production of Citronella Oil-Containing Polymer Microcapsules A round bottom flask was charged with 80 ml of distilled water and 0.1-3.0 g of sodium dodecylbenzenesulfonate (SDBS) as an emulsifier, and dissolved at room temperature. An aqueous emulsifier solution was prepared.

また、スチレン単量体10〜30gにシトロネラ油5〜30gと、架橋剤としてのジビニールベンゼン(DVB)0.1〜1.0g及び共乳化剤としてのセチルアルコール0.1〜5.0gを投入し且つ混合した後、攪拌させてシトロネラ油含有単量体溶液を製造した。   Moreover, 5-30 g of citronella oil, 0.1-1.0 g of divinylbenzene (DVB) as a crosslinking agent and 0.1-5.0 g of cetyl alcohol as a co-emulsifier are added to 10-30 g of styrene monomer. After mixing, the mixture was stirred to produce a citronella oil-containing monomer solution.

次いで、前記乳化剤水溶液及び単量体溶液を常温で全て混合した後、超音波破砕器を用いて1〜30分間処理してミセルが形成された乳化混合液を製造した。 Subsequently, after mixing all the said emulsifier aqueous solution and monomer solution at normal temperature, it processed for 1 to 30 minutes using the ultrasonic crusher, and manufactured the emulsion liquid mixture in which the micelle was formed.

次いで、機械式攪拌器と、コンデンサと、恒温装置及び窒素注入装置が設けられた反応槽にミセルが形成された前記混合物97〜99.9gとラジカル開始剤としての過硫酸カリウム(KPS)0.1〜3.0gを投入し、50〜80℃で1〜10時間200〜1000rpmにて攪拌させて、図4に示すように、粒径が300〜500nmの均一な大きさを有するシトロネラ油含有高分子微細カプセルを製造した。   Next, 97 to 99.9 g of the mixture in which micelles were formed in a reaction vessel provided with a mechanical stirrer, a condenser, a thermostatic device and a nitrogen injecting device, and potassium persulfate (KPS) as a radical initiator in an amount of 0. Citronella oil containing particles having a uniform particle size of 300 to 500 nm as shown in FIG. 4 after being charged with 1 to 3.0 g and stirred at 200 to 1000 rpm for 1 to 10 hours at 50 to 80 ° C. Polymer fine capsules were produced.

実施例3:ジャスミン油含有高分子微細カプセルの製造
フィトンチッドの代わりにジャスミン油を5〜30g投入した以外は、前記実施例1の方法と同様にして高分子微細カプセルを製造した。製造された高分子微細カプセルは、図5に示すように、粒径が200〜400nmであり、均一な分布を示す。
Example 3 Production of Jasmine Oil-Containing Polymer Microcapsules Polymer microcapsules were produced in the same manner as in Example 1 except that 5-30 g of jasmine oil was used instead of phytoncide. The produced polymer microcapsules have a particle size of 200 to 400 nm and a uniform distribution as shown in FIG.

実施例4:粒子の最外郭壁の厚さを増やした高分子微細カプセルの製造
前記実施例1と同じ条件下で、架橋剤としてのジビニールベンゼン(DVB)の量を3.0〜5.0g増やし、反応温度を85℃に上げ、反応時間を2〜10時間にした以外は、 前記実施例1の方法と同様にして高分子微細カプセルを製造した。製造された高分子微細カプセルの最外郭の壁は、図6に示すように、前記実施例1のそれよりも厚くなったことを電子顕微鏡写真により確認した。
Example 4: Production of polymer microcapsules with increased outermost wall thickness of particles Under the same conditions as in Example 1, the amount of divinylbenzene (DVB) as a cross-linking agent was 3.0-5. Polymer fine capsules were produced in the same manner as in Example 1 except that 0 g was increased, the reaction temperature was raised to 85 ° C., and the reaction time was 2 to 10 hours. As shown in FIG. 6, it was confirmed by an electron micrograph that the outermost wall of the manufactured polymer microcapsule was thicker than that of Example 1.

実施例5:フィトンチッド含有高分子微細カプセルの製造
前記実施例1のスチレン単量体の代わりにアクリル単量体を導入した以外は、前記実施例1の方法と同様にして高分子微細カプセルを製造した。製造された高分子微細カプセルの粒径は、図7に示すように、50〜200nmであった。
Example 5: Production of phytoncide-containing polymer microcapsules Polymer microcapsules were produced in the same manner as in Example 1 except that an acrylic monomer was used instead of the styrene monomer of Example 1. did. The produced polymer fine capsules had a particle size of 50 to 200 nm as shown in FIG.

実施例6:ペルメトリン含有高分子微細カプセルの製造
前記実施例1と同じ条件下で合成フレスリン系殺虫剤であるペルメトリンを10〜40g入れた以外は、前記実施例1の方法と同様にして高分子微細カプセルを製造した。製造された高分子微細カプセルの平均粒径を粒度分析器を用いて確認したところ、図8に示すように、200〜300nmであった。
Example 6: Production of permethrin-containing polymer microcapsules A polymer was prepared in the same manner as in Example 1 except that 10 to 40 g of permethrin, a synthetic freslin insecticide, was added under the same conditions as in Example 1. Fine capsules were produced. When the average particle diameter of the manufactured polymer fine capsule was confirmed using a particle size analyzer, it was 200 to 300 nm as shown in FIG.

実施例7:シペルメトリン含有高分子微細カプセルの製造
前記実施例2と同じ条件下で、合成フレスリン系殺虫剤であるシペルメトリンを5〜30g入れ、前記実施例2の方法と同様にして高分子微細カプセルを製造した。製造された高分子微細カプセルの平均粒径は、図9に示すように、200〜300nmであった。
Example 7: Production of cypermethrin-containing polymer microcapsules Under the same conditions as in Example 2, 5-30 g of cypermethrin, which is a synthetic freslin insecticide, was added, and polymer was prepared in the same manner as in Example 2. Fine capsules were produced. The average particle size of the produced polymer fine capsules was 200 to 300 nm as shown in FIG.

実施例8:水溶性アクリルバインダと混合された高分子微細カプセル溶液の製造
前記実施例4において製造されたフィトンチッド含有高分子微細カプセルを水溶性アクリルバインダに体積比1:9〜5:5で混合して、図10に示すように、優れた熱安定性及び高耐久性を有する機能性繊維塗布剤を製造した。
Example 8: Production of polymer microcapsule solution mixed with water-soluble acrylic binder The phytoncide-containing polymer microcapsules produced in Example 4 were mixed with a water-soluble acrylic binder in a volume ratio of 1: 9 to 5: 5. Then, as shown in FIG. 10, a functional fiber coating agent having excellent thermal stability and high durability was produced.

実施例9:高分子微細カプセルが有機溶媒に分散された繊維用の加工剤の製造
前記実施例1の方法と同様にして製造した高分子微細カプセルを有機溶媒と体積比1:9〜6:4で混合し且つ分散させて繊維用の加工剤を製造するために、高分子微細カプセル溶液内の水を減圧濃縮器、真空ポンプを用いた減圧濃縮装置、凍結乾燥装置及び遠心分離器などを用いて水分を完全に取り除いた状態にした後、様々な有機溶媒に分散させて繊維用の加工剤を製造した
上記において、有機溶媒の例としては、ジメチルホルムアミド(DMF)、メチルエチルケトン(MEK)、ジメチルスルホキシド(DMSO)などが挙げられる。
Example 9: Production of a processing agent for fibers in which polymer fine capsules are dispersed in an organic solvent Polymer fine capsules produced in the same manner as in Example 1 described above were prepared in a volume ratio of 1: 9 to 6: In order to produce a processing agent for fibers by mixing and dispersing in 4, the water in the polymer microcapsule solution is a vacuum concentrator, a vacuum concentration device using a vacuum pump, a freeze-drying device, a centrifuge, etc. After the water was completely removed, the fiber processing agent was prepared by dispersing in various organic solvents. Examples of the organic solvent include dimethylformamide (DMF), methyl ethyl ketone (MEK), Examples thereof include dimethyl sulfoxide (DMSO).

実施例9において製造された繊維用の加工剤のうち、高分子微細カプセルがジメチルホルムアミド(DMF)に分散された状態の繊維用の加工剤の写真を図11に示す。   Of the fiber processing agents produced in Example 9, a photograph of the fiber processing agent in a state in which polymer fine capsules are dispersed in dimethylformamide (DMF) is shown in FIG.

実施例10:実施例8において製造された繊維用の加工剤を適用した機能性繊維の製造
前記実施例8において製造された繊維用の塗布剤をポリエステル/綿混紡交織物に約3μmの厚さ及び300〜800rpmの速度で噴霧して塗布した後、100〜300℃で熱風乾燥して機能性高分子微細カプセルが塗布されたバインダ層を織物の上に形成した。
Example 10: Production of a functional fiber to which the fiber processing agent produced in Example 8 was applied The fiber coating agent produced in Example 8 was applied to a polyester / cotton blend fabric with a thickness of about 3 μm. And after spraying and applying at a speed of 300 to 800 rpm, it was dried with hot air at 100 to 300 ° C. to form a binder layer coated with functional polymer fine capsules on the fabric.

このようにして得た機能性高分子微細カプセルが塗布された繊維を電子顕微鏡を用いて得た写真を図12に示す。   FIG. 12 shows a photograph of the fiber coated with the functional polymer microcapsules obtained in this way, obtained using an electron microscope.

図12に示すように、実施例8において得た機能性繊維塗布剤がコーティングされた繊維におけるバインダ層は、機能性高分子微細カプセルが露出されることのない均一な塗布面を形成した。   As shown in FIG. 12, the binder layer in the fiber coated with the functional fiber coating agent obtained in Example 8 formed a uniform coated surface where the functional polymer microcapsules were not exposed.

実施例11:高分子微細カプセルの最外郭の壁の厚さ差による熱安定性差を比較するためのピックアップ率の比較
実施例1及び実施例4において製造された高分子微細カプセルをそれぞれ繊維用のバインダと混合した後に綿に塗布し、100〜300℃で熱風乾燥させた。次いで、乾燥された綿の重さを測定してピックアップ率による熱安定性の比較実験を行ったところ、表1に示すように、最外郭の壁が厚い実施例4による高分子微細カプセルが混合された繊維用の塗布剤のピックアップ率が、最外郭の壁が薄い実施例1による高分子微細カプセルが混合された繊維用の塗布剤よりも41%高い数値を示す。
Example 11: Comparison of pick-up rates for comparing the difference in thermal stability due to the difference in the thickness of the outermost wall of the polymer microcapsules The polymer microcapsules produced in Example 1 and Example 4 were respectively used for fibers. After mixing with a binder, it was applied to cotton and dried with hot air at 100 to 300 ° C. Next, when the weight of the dried cotton was measured and a comparative experiment of thermal stability according to the pickup rate was performed, as shown in Table 1, the polymer microcapsules according to Example 4 having a thick outermost wall were mixed. The pickup rate of the applied coating agent for fibers shows a value 41% higher than that of the coating agent for fibers mixed with the polymer fine capsules according to Example 1 in which the outermost wall is thin.

Figure 2017501023
Figure 2017501023

実施例12:高分子微細カプセルにメタノールを投入して沈殿させた後、ろ過及び乾燥させて有機溶媒に分散させる方法
実施例1及び実施例4において製造された高分子微細カプセル溶液に様々な分量のメタノールを添加して沈殿させた後、これを減圧ろ過して回収した。次いで、これを乾燥させてメタノールが取り除かれた粉末状の高分子微細カプセルを製造した後、ジメチルホルムアミド(DMF)などの様々な有機溶媒に分散させて有機溶媒の上に分散された高分子微細カプセル溶液を製造した。メタノールに沈殿された高分子微細カプセルの写真を図13に示す。
Example 12: Method of adding methanol to polymer microcapsules and precipitating, then filtering and drying to disperse in an organic solvent Various amounts of the polymer microcapsule solutions prepared in Examples 1 and 4 After methanol was added and precipitated, this was recovered by filtration under reduced pressure. Next, this was dried to produce powdery polymer microcapsules from which methanol had been removed, and then dispersed in various organic solvents such as dimethylformamide (DMF) to disperse the polymer microparticles dispersed on the organic solvent. A capsule solution was produced. A photograph of the polymer microcapsules precipitated in methanol is shown in FIG.

実施例13:高分子微細カプセルに塩水溶液を投入して塩析処理及びろ過して回収した後、乾燥させて有機溶媒に分散させる方法
実施例1及び実施例4において製造された高分子微細カプセル溶液に塩化ナトリウム、硫酸マグネシウムなどの様々な塩を溶かした水溶液を添加して製造した高分子微細カプセルを塩析した後、これを減圧ろ過して回収した。次いで、これを乾燥させて粉末状の高分子微細カプセルを製造した後、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、メチルエチルケトン(MEK)、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン(THF)のうちのいずれか一種、好ましくは、ジメチルホルムアミド (DMF)に分散させて有機溶媒の上に分散された状態のフィトンチッドがローディングされた高分子微細カプセル溶液を製造した。塩析された高分子微細カプセルの写真を図14に示す。
Example 13: Method of adding salt aqueous solution to polymer fine capsule, recovering by salting-out treatment and filtration, drying and dispersing in organic solvent Polymer fine capsule produced in Example 1 and Example 4 Polymer fine capsules produced by adding aqueous solutions in which various salts such as sodium chloride and magnesium sulfate were dissolved to the solution were salted out, and then recovered by filtration under reduced pressure. Next, this was dried to produce a powdery polymer microcapsule, and then dimethylformamide (DMF), dimethylsulfoxide (DMSO), methyl ethyl ketone (MEK), methanol, ethanol, isopropyl alcohol, tetrahydrofuran (THF) A polymer microcapsule solution loaded with phytoncide in a state of being dispersed in any one, preferably dimethylformamide (DMF) and dispersed on an organic solvent, was prepared. A photograph of the salted out polymer microcapsules is shown in FIG.

本発明は、前記実施例にのみ何ら限定されるものではなく、本発明の請求範囲に記載の範囲内において種々に変形して実施可能であり、これもまた本発明の権利範囲内に属するものであるということはいうまでもない。
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims of the present invention, and these are also within the scope of the right of the present invention. It goes without saying that.

Claims (7)

蒸留水70〜89重量%に乳化剤0.2〜3.0重量%を溶解させて乳化剤水溶液を製造する過程と、
単量体5〜30重量%、機能性物質5〜40重量%、架橋剤0.1〜5重量%及び共乳化剤0.1〜5重量%を投入し且つ混合して単量体溶液を製造する過程と、
前記乳化剤水溶液と単量体溶液を混合した後、均質化器または超音波破砕器を用いて1〜30分間均質化処理してミセルを形成する過程と、
前記ミセルが形成された混合液にラジカル開始剤を98〜99.9:0.1〜2.0の重量比で混合した後、10〜85℃で1〜10時間200〜1000rpmにて攪拌する過程と、
を含むことを特徴とする機能性物質を含む高分子微細カプセルの製造方法。
A process of producing an aqueous emulsifier solution by dissolving 0.2 to 3.0% by weight of an emulsifier in 70 to 89% by weight of distilled water;
Monomer solution is prepared by adding and mixing 5 to 30% by weight of monomer, 5 to 40% by weight of functional substance, 0.1 to 5% by weight of crosslinking agent and 0.1 to 5% by weight of coemulsifier. The process of
After mixing the aqueous emulsifier solution and the monomer solution, a process of forming micelles by homogenizing for 1 to 30 minutes using a homogenizer or an ultrasonic crusher;
A radical initiator is mixed in a weight ratio of 98 to 99.9: 0.1 to 2.0 with the mixed solution in which the micelles are formed, and then stirred at 10 to 85 ° C. for 1 to 10 hours at 200 to 1000 rpm. Process,
The manufacturing method of the polymer microcapsule containing the functional substance characterized by including this.
前記架橋剤を0.2〜5重量%で添加しながら60℃〜85℃の反応温度で2時間〜10時間の反応時間を経て製造されて高分子微細カプセルの最外郭殻の厚さを調節することを特徴とする請求項1に記載の機能性物質を含む高分子微細カプセルの製造方法。   The thickness of the outermost shell of the polymer microcapsule is adjusted by adding the cross-linking agent at 0.2 to 5% by weight at a reaction temperature of 60 to 85 ° C. and a reaction time of 2 to 10 hours. The manufacturing method of the polymer microcapsule containing the functional substance of Claim 1 characterized by the above-mentioned. 高分子微細カプセル内に多数の微細内部カプセルが分布し、前記微細内部カプセル内に機能性物質が含有されて、高分子微細カプセルが50〜500nm寸法を有することを特徴とする機能性物質を含む高分子微細カプセル。   A large number of fine inner capsules are distributed in the polymer fine capsule, the functional substance is contained in the fine inner capsule, and the polymer fine capsule includes a functional substance having a size of 50 to 500 nm. Polymer fine capsule. 請求項3に記載の高分子微細カプセル及び水溶性アクリルバインダが体積比1:9〜5:5で混合されることを特徴とする機能性繊維塗布剤。   A functional fiber coating agent, wherein the polymer microcapsules and the water-soluble acrylic binder according to claim 3 are mixed in a volume ratio of 1: 9 to 5: 5. 請求項1に記載の製造方法により製造された高分子微細カプセル溶液内の水を取り除いた後、有機溶媒と体積比1:9〜6:4で混合して分散させて製造することを特徴とする繊維用の加工剤。   It removes the water in the polymer fine capsule solution manufactured by the manufacturing method of Claim 1, and mixes and disperse | distributes with an organic solvent by volume ratio 1: 9-6: 4, It is characterized by the above-mentioned. A processing agent for fibers. 請求項1に記載の製造方法により製造された高分子微細カプセル溶液にメタノールを添加して沈殿させた後、これを減圧ろ過して回収し、これを乾燥させてメタノールが取り除かれた粉末状の高分子微細カプセルを製造した後、有機溶媒に体積比1:9〜6:4で分散させて製造することを特徴とする繊維用の加工剤。   After adding methanol to the polymer microcapsule solution produced by the production method according to claim 1 and precipitating it, this is recovered by filtration under reduced pressure, and dried to obtain a powdery form from which methanol has been removed. A processing agent for fibers, which is produced by producing polymer fine capsules and then dispersing the mixture in an organic solvent at a volume ratio of 1: 9 to 6: 4. 請求項1に記載の製造方法により製造された高分子微細カプセル溶液に塩化ナトリウム及び硫酸マグネシウムよりなる群から選ばれるいずれか一つの塩を溶かした水溶液を添加して高分子微細カプセルを塩析した後、これを減圧ろ過して回収し、これを乾燥させて粉末状の高分子微細カプセルを製造した後、有機溶媒の上に体積比1:9〜6:4で分散させて製造することを特徴とする繊維用の加工剤。
An aqueous solution in which any one salt selected from the group consisting of sodium chloride and magnesium sulfate is added to the polymer microcapsule solution produced by the production method according to claim 1 to salt out the polymer microcapsules. Thereafter, this is recovered by filtration under reduced pressure, and dried to produce powdery polymer microcapsules, which are then dispersed in an organic solvent at a volume ratio of 1: 9 to 6: 4. Characteristic processing agent for fibers.
JP2016536238A 2013-12-04 2014-12-04 Polymer fine capsule containing functional substance and method for producing the same Pending JP2017501023A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020130150169A KR101691644B1 (en) 2013-12-04 2013-12-04 The functional material containing the Polymeric microcapsules and its manufacturing method
KR10-2013-0150169 2013-12-04
PCT/KR2014/011833 WO2015084074A1 (en) 2013-12-04 2014-12-04 Polymer fine capsule comprising functional materials and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2017501023A true JP2017501023A (en) 2017-01-12

Family

ID=53273753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016536238A Pending JP2017501023A (en) 2013-12-04 2014-12-04 Polymer fine capsule containing functional substance and method for producing the same

Country Status (4)

Country Link
JP (1) JP2017501023A (en)
KR (1) KR101691644B1 (en)
CN (1) CN105793489A (en)
WO (1) WO2015084074A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852870B1 (en) * 2016-07-22 2018-06-11 다이텍연구원 Cosmetotextile containing nano/micro capsule and manufacturing method thereof
KR102000343B1 (en) * 2017-09-05 2019-07-15 충남대학교산학협력단 New thermochromic materials, microencapsulated-thermochromic materials, method for preparing the same, and article
ES2705742B2 (en) * 2017-09-25 2019-09-09 Fund Andaltec I D I ENCAPSULATION METHOD OF ACTIVE FUNCTIONAL COMPOUNDS THROUGH MICROWAVE.
KR101925995B1 (en) * 2018-05-21 2018-12-06 주식회사 타임리치 Composition and fabric comprising functional micro-capsule for sweat absorbing and quick drying knitting properties
KR102505357B1 (en) 2019-12-30 2023-03-03 영남대학교 산학협력단 Manufacturing method of functional materials with core-shell composite structure by dry coating
CN113040167A (en) * 2021-03-24 2021-06-29 重庆智芯为创环保科技有限公司 Microcapsule type hygienic insecticide and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186941A (en) * 1984-10-03 1986-05-02 Japan Synthetic Rubber Co Ltd Preparation of oil-containing microcapsule
JPS62204501A (en) * 1986-03-05 1987-09-09 Kashima Sekiyu Kk Manufacture of magnetic microsphere
JP2007528286A (en) * 2003-07-03 2007-10-11 エルジー・ケム・リミテッド Method for producing microcapsules through miniemulsion polymerization

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2311640T3 (en) * 2001-12-27 2009-02-16 Polychrom Co. Ltd. PROCEDURE FOR PREPARATION OF FUNCTIONAL MICROCAPSULES THAT INCLUDE SILVER NANOPARTICLES.
KR20110112481A (en) * 2002-11-04 2011-10-12 오션 뉴트리션 캐나다 리미티드 Microcapsules having multiple shells and method for the preparation thereof
KR20100134855A (en) * 2009-06-16 2010-12-24 이용인 Microcapsules using a phase change material and printing-processing composition and processes for producing the same
WO2011079209A1 (en) * 2009-12-22 2011-06-30 Isp Investments Inc. Polymerizable lactamic copolymers suitable for the formation of coatings on microencapsulated particles
CN101984185B (en) * 2010-11-05 2012-09-05 北京洁净易超净技术有限公司 Perfume microcapsule dispersed coating solution and perfumed non-woven fabrics prepared thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186941A (en) * 1984-10-03 1986-05-02 Japan Synthetic Rubber Co Ltd Preparation of oil-containing microcapsule
JPS62204501A (en) * 1986-03-05 1987-09-09 Kashima Sekiyu Kk Manufacture of magnetic microsphere
JP2007528286A (en) * 2003-07-03 2007-10-11 エルジー・ケム・リミテッド Method for producing microcapsules through miniemulsion polymerization

Also Published As

Publication number Publication date
KR20150065073A (en) 2015-06-12
CN105793489A (en) 2016-07-20
KR101691644B1 (en) 2017-01-03
WO2015084074A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP2017501023A (en) Polymer fine capsule containing functional substance and method for producing the same
Teixeira et al. Pickering emulsion polymerization using laponite clay as stabilizer to prepare armored “soft” polymer latexes
DE69817896T2 (en) Precipitation polymerization process for the preparation of an oil-absorbent polymer suitable for the inclusion of solid particles and liquids, and products produced by this process
Rao et al. Polymer nanoparticles: Preparation techniques and size-control parameters
JP2614707B2 (en) Method for producing emulsion polymer having hollow structure
KR101774079B1 (en) Hollow polymer particle and method for manufacturing the same
Soppimath et al. Ethyl acetate as a dispersing solvent in the production of poly (DL-lactide-co-glycolide) microspheres: effect of process parameters and polymer type
TW200806848A (en) Capsules
JP2001507059A (en) Particles having surface properties and method for producing the same
JP2014513720A (en) Method for producing polymeric microspheres with reduced initial drug release and polymeric microspheres produced by the method (Method for preparatory microparticulates witnessed primary drug and microparticulate preparation)
CN1423661A (en) Polymeric nano particles including olfactive components
US20050043209A1 (en) Sustained release fragrance matrix and methods
CN111417459A (en) Novel drug-loaded microsphere and preparation method thereof
MXPA06014734A (en) Polymeric particles.
WO2014024971A1 (en) Microcapsule-manufacturing process and microcapsules
JP2012531510A (en) Granular composition
JP5718815B2 (en) Polymer particles prepared from polymerizable alkylene glycol (meth) acrylate monomers
CN102481262A (en) Encapsulation using wax-type substances
Akgün et al. Perspectives of Aerosol‐Photopolymerization: Nanostructured Polymeric Particles
KR101114538B1 (en) Microcapsules containing cores of temperature-/pH-sensitive polymer and the method for production of the said microcapsules
TW200837119A (en) Aggregate particle comprising vinyl chloride resin and process for production thereof
KR101722067B1 (en) The functional material containing the Polymeric microcapsules and its manufacturing method
US10174275B2 (en) Thermally opening stable core/shell microcapsules
Kashyap et al. Copolymer with long chain alkyl group as stabilizer in the preparation of biodegradable polyester particle
JP2022547756A (en) Process for producing microcapsules containing perfume oil, microcapsules containing perfume oil produced by the process, and dispersions containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180130