JPH0616444B2 - Method for manufacturing magnetic microspheres - Google Patents

Method for manufacturing magnetic microspheres

Info

Publication number
JPH0616444B2
JPH0616444B2 JP61046423A JP4642386A JPH0616444B2 JP H0616444 B2 JPH0616444 B2 JP H0616444B2 JP 61046423 A JP61046423 A JP 61046423A JP 4642386 A JP4642386 A JP 4642386A JP H0616444 B2 JPH0616444 B2 JP H0616444B2
Authority
JP
Japan
Prior art keywords
microspheres
monomer
magnetic
polymerization
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61046423A
Other languages
Japanese (ja)
Other versions
JPS62204501A (en
Inventor
明治 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kashima Oil Co Ltd
Original Assignee
Kashima Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kashima Oil Co Ltd filed Critical Kashima Oil Co Ltd
Priority to JP61046423A priority Critical patent/JPH0616444B2/en
Publication of JPS62204501A publication Critical patent/JPS62204501A/en
Publication of JPH0616444B2 publication Critical patent/JPH0616444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高分子ミクロスフエアの内部に強磁性体微粒子
を包含させた磁性ミクロスフエアの製造方法に関するも
のである。さらに詳しくいえば、磁気による溶液中の有
用物質の分離、精製のためのカラム充てん剤として、あ
るいは磁気による診断試薬の判定操作のための検査試薬
用担体とて好適な、各種水溶液に対する分散性や化学的
安定性に優れ、かつ磁気応答性に優れた磁性ミクロスフ
エアを効果的に製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a magnetic microsphere in which ferromagnetic fine particles are contained in a polymeric microsphere. More specifically, it is suitable for use as a column packing material for separating and purifying useful substances in a solution by magnetism, or as a carrier for a test reagent for magnetically determining a diagnostic reagent. The present invention relates to a method for effectively producing magnetic microspheres having excellent chemical stability and magnetic responsiveness.

従来の技術 従来、各種の天然高分子や合成高分子から製造される高
分子ミクロスフエアは、各種フイラー、着色剤、スペー
サー、トナー、医療用担体、物質分離用充てん剤などと
して広く用いられている。
2. Description of the Related Art Conventionally, polymer microspheres produced from various natural polymers and synthetic polymers have been widely used as various fillers, colorants, spacers, toners, medical carriers, substance separation fillers, and the like.

特にポリスチレンをはじめとする各種合成高分子ミクロ
スフエアは化学的安定性及び寸法安定性に優れているた
め、例えば液体クロマトグラフイー用充てん剤、酵素や
タンパク質の分離精製剤、診断試薬用担体などとして、
その需要は急速に伸びている。
In particular, various synthetic polymer microspheres such as polystyrene are excellent in chemical stability and dimensional stability, and therefore, for example, as a packing material for liquid chromatography, a separating and purifying agent for enzymes and proteins, a carrier for diagnostic reagents, etc.
The demand is growing rapidly.

また、最近では、これらミクロス内部にCaCO3、Fe3O4
TiO2などの無機粉末、染料、あるいは各種薬品を配合し
て機能化した複合ミクロスフエアが注目されており、例
えば導電性塗料、電磁波遮へい塗料、医療用磁性担体、
分離機能を向上させた磁性充てん剤などへの応用が試み
られている。
Recently, CaCO 3 , Fe 3 O 4 , and
Inorganic powders such as TiO 2 , dyes, or composite microspheres that have been functionalized by blending various chemicals are attracting attention, such as conductive paints, electromagnetic wave shield paints, medical magnetic carriers,
Attempts have been made to apply it to magnetic fillers with improved separation function.

ところで、各種カラムの充てん剤や医療用担体として用
いられる磁性ミクロスフエアは、これまで乳化重合法あ
るいは懸濁重合法によつて製造されている。例えば乳化
重合においては、界面活性剤含有水溶液とモノマーとを
混合し、かきまぜながら一定温度まで加熱し、重合開始
剤の水溶液を加えて重合することにより、ミクロスフエ
アを得るという方法が行われている。このような方法で
製造したミクロスフエアは、重合条件を変えることによ
り、カラム充てん剤や診断試薬用担体として適した、
0.1〜100μmの大きさとなるが、強磁性体粉末を配
合させて磁性ミクロスフエアを製造する場合は、重合過
程で強磁性体粉末がミクロスフエア内部に入りにくいな
どの欠点を伴う。
By the way, magnetic microspheres used as fillers for various columns and medical carriers have been produced by emulsion polymerization or suspension polymerization. For example, in emulsion polymerization, a method has been performed in which a surfactant-containing aqueous solution and a monomer are mixed, heated to a constant temperature while stirring, and an aqueous solution of a polymerization initiator is added to carry out polymerization to obtain microspheres. Microspheres produced by such a method are suitable as column packings and carriers for diagnostic reagents by changing the polymerization conditions,
Although the size is from 0.1 to 100 μm, when the magnetic powder is mixed with the ferromagnetic powder, the ferromagnetic powder is difficult to enter the inside of the microfiber during the polymerization process.

他方、懸濁重合では分散剤を溶解した水系あるいは非水
系溶液中に重合開始剤を溶解したモノマーを混合し、か
きまぜながら一定温度まで加熱し、ミクロスフエアを得
る方法が知られている。この場合は、強磁性体粉末を疎
水化して、非水系溶液中に分散し、モノマーを吸着させ
たのち重合することによつて磁性ミクロスフエアを製造
できるが、強磁性体粉末がミクロスフエア表面に露出す
るために化学的安定性が悪いなどの問題がある。さら
に、水系の懸濁重合により得られるミクロスフエアの大
きさは、03〜1.5mmであり診断試薬用担体としては
大きすぎるという欠点がある。
On the other hand, in suspension polymerization, a method is known in which a monomer in which a polymerization initiator is dissolved is mixed in an aqueous or non-aqueous solution in which a dispersant is dissolved, and the mixture is heated to a constant temperature while stirring to obtain a microsphere. In this case, the magnetic powder can be produced by hydrophobizing the ferromagnetic powder, dispersing it in a non-aqueous solution, adsorbing the monomer, and then polymerizing it, but the ferromagnetic powder is exposed on the surface of the microsphere. Therefore, there are problems such as poor chemical stability. Further, the size of the microspheres obtained by the aqueous suspension polymerization is from 03 to 1.5 mm, which is a drawback that it is too large as a carrier for diagnostic reagents.

また乳化重合や懸濁重合以外の方法で、磁性ミクロスフ
エアを製造する方法としては、例えばゼラチンの水溶液
中にマグネタイトコロイドを分散させたのち、pHを調
整してミクロスフエアとし、さらにアルデヒド系架橋剤
により不溶化する方法(特開昭59−195161号公報)や、
マグネタイトコロイドを水溶性ポリマーあるいは血清ア
ルブミンなどのたんぱくと混合したのち、乳化によりミ
クロスフエアとし、加熱処理により不溶化する方法など
が知られているが、このように被覆ポリマーが親水性の
場合は、水溶液中でミクロスフエアの膨潤が生じ、内部
に含まれるマグネタイトが分散媒溶液と接触するため化
学的安定性に問題がある。さらにマグネタイトコロイド
を直接ポリマーによつて被覆する場合は、マグネタイト
粒子の完全な被覆が難しいという欠点を有する。
As a method of producing magnetic microspheres by a method other than emulsion polymerization or suspension polymerization, for example, a magnetite colloid is dispersed in an aqueous solution of gelatin, pH is adjusted to microspheres, and further insolubilized by an aldehyde crosslinking agent. Method (JP-A-59-195161),
A method is known in which a magnetite colloid is mixed with a water-soluble polymer or a protein such as serum albumin, and then emulsified into microspheres, which is then insolubilized by heat treatment.However, when the coating polymer is hydrophilic in this way, it is used in an aqueous solution. At this point, swelling of microspheres occurs, and the magnetite contained inside comes into contact with the dispersion medium solution, so there is a problem in chemical stability. Further, when the magnetite colloid is directly coated with the polymer, there is a drawback that it is difficult to completely coat the magnetite particles.

したがつて、強磁性体粉末をミクロスフエア内部に完全
に包み込むことによつて、各種水溶液に対する化学的安
定性及び分散性に優れ、かつ磁気応答性に優れた磁性ミ
クロスフエアの開発が望まれていた。
Therefore, it has been desired to develop a magnetic microsphere having excellent chemical stability and dispersibility in various aqueous solutions and excellent magnetic response by completely enclosing the ferromagnetic powder in the microsphere.

発明が解決しようとする問題点 本発明の目的は、このような要望にこたえ、ミクロスフ
エアの粒径が0.1〜数10μmの範囲で変化でき粒度分
布が比較的狭く、各種水溶液に対する分散性及び化学的
安定性に優れ、かつ磁気応答性の高い磁性ミクロスフエ
アを効果的に製造する方法を提供することにある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The object of the present invention is to meet such a demand, the particle size of microspheres can be varied in the range of 0.1 to several tens of μm, and the particle size distribution is relatively narrow, and the dispersibility in various aqueous solutions and An object of the present invention is to provide a method for effectively producing a magnetic microsphere having excellent chemical stability and high magnetic response.

問題点を解決するための手段 本発明者は鋭意研究を重ねた結果、モノマー中に界面活
性剤などで疎水化処理された強磁性体微粒子を分散し、
重合開始剤を添加したのち、これを分散安定剤を含有す
る水溶液中に分散懸濁させて加熱重合する際に低周波数
の超音波照射を行って生成する粒子の粒径を調節するこ
とにより、前記目的を達成しうることを見出し、この知
見に基づいて本発明を完成するに至つた。
Means for Solving the Problems As a result of intensive studies, the present inventor has dispersed ferromagnetic fine particles that have been hydrophobized with a surfactant in a monomer,
After adding a polymerization initiator, by dispersing and suspending it in an aqueous solution containing a dispersion stabilizer to adjust the particle size of particles to be generated by performing low-frequency ultrasonic irradiation during heat polymerization. The inventors have found that the above objects can be achieved, and have completed the present invention based on this finding.

すなわち、本発明は、モノマー中に疎水化処理を施した
強磁性体微粒子を均一に分散させた混合物に重合開始剤
を加え、これを分散安定剤を含有する水溶液中にかきま
ぜながら分散懸濁させ、加熱重合させるに当り、懸濁過
程又は懸濁過程と重合過程の両方において、低周波数の
超音波照射を行って生成するミクロスフェアの粒径を微
細に調節することを特徴とする、微細粒径をもつ磁性ミ
クロスフェアの製造方法を提供するものである。
That is, the present invention is to add a polymerization initiator to a mixture of uniformly dispersed ferromagnetic fine particles that have been subjected to a hydrophobic treatment in a monomer, and disperse and suspend while stirring this in an aqueous solution containing a dispersion stabilizer. In heating and polymerizing, microparticles characterized by finely controlling the particle size of microspheres generated by performing low-frequency ultrasonic irradiation in the suspension process or both the suspension process and the polymerization process A method for producing magnetic microspheres having a diameter is provided.

本発明方法において用いられる強磁性体微粒子は、共沈
法により作製した粒径150Å程度のものが好ましい。該
微粒子は各種モノマー中に均一に分散するように、疎水
化処理が施されるが、この疎水化処理は、該微粒子の表
面にオレイン酸のような不飽和脂肪酸を吸着させること
により、あるいはこの不飽和脂肪酸の吸着層上に、さら
に界面活性剤を吸着させることにより施される。
The ferromagnetic fine particles used in the method of the present invention preferably have a particle size of about 150Å produced by the coprecipitation method. The fine particles are subjected to a hydrophobizing treatment so as to be uniformly dispersed in various monomers. This hydrophobizing treatment is carried out by adsorbing an unsaturated fatty acid such as oleic acid on the surface of the fine particles, or It is performed by further adsorbing a surfactant on the unsaturated fatty acid adsorption layer.

本発明方法において用いられる重合開始剤については、
例えば過酸化ベンゾイルのような有機過酸化物、アゾビ
スジメチルバレロニトリルやアゾビスイソブチロニトリ
ルのようなアゾ系の開始剤などの油溶性のラジカル重合
開始剤であれば特に制限はない。これらの重合開始剤
は、該強磁性体微粒子を分散させる前に、あらかじめモ
ノマー中に溶解させておいてもよいし、該微粒子をモノ
マー中に分散させたのち、これに溶解させてもよい。
Regarding the polymerization initiator used in the method of the present invention,
There is no particular limitation as long as it is an oil-soluble radical polymerization initiator such as an organic peroxide such as benzoyl peroxide, an azo-based initiator such as azobisdimethylvaleronitrile or azobisisobutyronitrile. These polymerization initiators may be dissolved in the monomer in advance before dispersing the ferromagnetic fine particles, or may be dissolved in the monomer after the fine particles are dispersed in the monomer.

本発明方法においては、該強磁性体微粒子を分散したモ
ノマーを水溶液中に分散懸濁させるために、分散剤が用
いられるが、この分散剤としては、通常の懸濁重合に使
用されるポリビニルアルコール、カルボキシメチルセル
ロース、ゼラチンなどの水溶性高分子が好ましく挙げら
れる。
In the method of the present invention, a dispersant is used to disperse and suspend the monomer in which the ferromagnetic fine particles are dispersed in an aqueous solution. As the dispersant, polyvinyl alcohol used in ordinary suspension polymerization is used. Preferred examples thereof include water-soluble polymers such as carboxymethyl cellulose and gelatin.

本発明方法において製造される磁性ミクロスフエアの粒
径は、分散剤の添加量、モノマー溶液と分散媒水溶液と
の比率、及び懸濁過程、重合過程におけるモノマーの分
散方法によつて0.1μmから数10μmまで変化させる
ことができる。
The particle size of the magnetic microspheres produced by the method of the present invention varies from 0.1 μm to several μm depending on the amount of the dispersant added, the ratio of the monomer solution and the aqueous dispersion medium solution, and the method of dispersing the monomers in the suspension process and the polymerization process. It can be changed up to 10 μm.

本発明方法においては、懸濁過程のみ、あるいは懸濁過
程と重合過程の両方におけるかきまぜの際、低周波数の
超音波放射を併用して、生成するミクロスフェアの粒径
を調節することが必要である。超音波放射下で生成する
ミクロスフェアの大きさは、超音波の周波数により変化
し、一般に低周波領域の超音波、例えば100KHz以下の場
合に、粒径0.1〜数10μmの微細なミクロスフェアが
得られる。この場合、かきまぜを超音波放射の併用なし
に機械的かきまぜのみで行うと、粒径300μmを越える
大きな粒子が生成する。
In the method of the present invention, it is necessary to control the particle size of the microspheres to be formed by using ultrasonic radiation of low frequency in combination during stirring only in the suspension process or in both the suspension process and the polymerization process. is there. The size of microspheres generated under ultrasonic irradiation changes depending on the frequency of ultrasonic waves. Generally, in the case of ultrasonic waves in the low frequency region, for example, 100 KHz or less, fine microspheres with a particle size of 0.1 to several tens of μm. Is obtained. In this case, if the agitation is performed only by mechanical agitation without the combined use of ultrasonic radiation, large particles having a particle size exceeding 300 μm are generated.

本発明方法においては、超音波放射のほかに機械的かき
まぜが併用されるが、この際のかきまぜ速度としては、
200〜600rpmの範囲が用いられる。
In the method of the present invention, mechanical stirring is used in addition to ultrasonic radiation, and as the stirring speed at this time,
A range of 200-600 rpm is used.

モノマーの重合は、通常60〜80℃の温度において、
4時間以上加熱することによつて行われる。
Polymerization of the monomer is usually carried out at a temperature of 60 to 80 ° C.
It is performed by heating for 4 hours or more.

このようにして得られた磁性ミクロスフエアは、ミクロ
スフエアを形成するポリマーが不溶で、かつモノマーを
溶解するような溶媒で洗浄することにより未反応モノマ
ー、重合開始剤及び余剰の分散剤を除去したのち、水中
に分散させて懸濁液としてもよいし、あるいは乾燥させ
てパウダーとして取り出してもよい。また、粒子径の揃
つたミクロスフエアを得るためには、遠心分離やメツシ
ユを用いたろ過による通常の分級操作を行えばよい。
The magnetic microspheres thus obtained are insoluble in the polymer forming the microspheres, and after removing the unreacted monomer, the polymerization initiator and the excess dispersant by washing with a solvent that dissolves the monomer, It may be dispersed in water to give a suspension, or it may be dried and taken out as a powder. Further, in order to obtain microspheres having a uniform particle size, a normal classification operation by centrifugation or filtration using a mesh may be performed.

発明の効果 本発明方法によれば、強磁性体微粒子を疎水化してモノ
マー中に分散させるために、該微粒子とポリマー分子鎖
との親和性が高く、その結果ミクロスフエア内部の強磁
性体微粒子が分散溶媒のpHなどによる影響を受けにく
く、化学的に安定な磁性ミクロスフエアを製造すること
ができる。
EFFECTS OF THE INVENTION According to the method of the present invention, since the ferromagnetic fine particles are made hydrophobic and dispersed in the monomer, the affinity between the fine particles and the polymer molecular chain is high, and as a result, the ferromagnetic fine particles inside the microsphere are dispersed. It is possible to manufacture a chemically stable magnetic microsphere that is not easily affected by the pH of the solvent.

また、水溶液へのモノマーの懸濁過程又は重合過程で低
周波数の超音波を放射することにより、従来の懸濁重合
では得られなかつた。0.1〜数10μmの大きさのミ
クロスフエアを得ることができる。
In addition, by irradiating low-frequency ultrasonic waves in the process of suspending the monomer in the aqueous solution or in the process of polymerization, it was not possible to obtain by conventional suspension polymerization. Microspheres having a size of 0.1 to several tens of μm can be obtained.

本発明方法で得られた磁性ミクロスフエアは各種水溶液
に対する分散性に優れ、かつ化学的に安定で、磁気応答
性に優れる上に、その粒径が0.1〜数10μmの微細な
範囲に調節されうるので、各種カラムの磁性充てん剤や
診断試薬用磁性担体として特に有用である。
The magnetic microspheres obtained by the method of the present invention have excellent dispersibility in various aqueous solutions, are chemically stable, and have excellent magnetic responsiveness, and their particle size is adjusted to a fine range of 0.1 to several tens of μm. Therefore, it is particularly useful as a magnetic filler for various columns and a magnetic carrier for diagnostic reagents.

実施例 次に実施例により本発明をさらに詳細に説明する。EXAMPLES Next, the present invention will be described in more detail with reference to examples.

比較例 減圧蒸留により精製したスチレンモノマー30gに、粒
径約150Åの疎水化したマグネタイト微粒子〔フエリコ
ロイドHC−50(商品名、タイホー工業(株)製)をアセト
ンにより洗浄したのち、乾燥してパウダー状にしたも
の〕1gを加え、超音波により1時間分散した。この溶
液に過酸化ベンゾイル0.1gを溶解したモノマー原液
とした。
Comparative Example 30 g of styrene monomer purified by vacuum distillation was used to wash hydrophobic magnetite fine particles [Ferri colloid HC-50 (trade name, manufactured by Taiho Kogyo Co., Ltd.)] having a particle size of about 150Å with acetone, and then dried to obtain a powder. 1 g) was added and dispersed by ultrasonic waves for 1 hour. A monomer stock solution was prepared by dissolving 0.1 g of benzoyl peroxide in this solution.

一方、蒸留水70gにポバールPVA−117(商品名、(株)
クラレ製)0.50gとポパールPVA−217(商品名、
(株)クラレ製)0.02gを溶解し、分散媒水溶液とし
た。
On the other hand, in 70 g of distilled water, Poval PVA-117 (trade name,
Kuraray) 0.50g and Popal PVA-217 (trade name,
0.02 g (manufactured by Kuraray Co., Ltd.) was dissolved to obtain an aqueous dispersion medium solution.

このようにして得られたモノマー原液と分散媒水溶液を
反応容器に入れ、アルゴンガスを吹込みながら400rpmで
2時間かきまぜを行つた。
The monomer stock solution and the aqueous dispersion medium solution thus obtained were placed in a reaction vessel and stirred at 400 rpm for 2 hours while blowing argon gas.

次いで、反応槽を80℃に保ちながら、400rpmで5時間
かきまぜ、その後かきまぜを続けながら室温まで徐冷し
た。次に、得られたミクロスフエアの懸濁液を約600ml
のメタノール中に注ぎ入れ、ゆつくりかきまぜながら一
昼夜放置した。この溶液をろ紙によりろ過し、回収した
ミクロスフエアを蒸留水に分散させたのち、ステンレス
鋼製のメツシユを用いて分級し目的の磁性ミクロスフエ
アを得た。
Next, while the reaction tank was kept at 80 ° C., the mixture was stirred at 400 rpm for 5 hours, and then gradually cooled to room temperature while continuing stirring. Next, about 600 ml of the resulting microsphere suspension
It was poured into methanol and left for a whole day and night while stirring gently. This solution was filtered with a filter paper, the recovered microspheres were dispersed in distilled water, and then classified using a stainless steel mesh to obtain the target magnetic microspheres.

実施例1 精製スチレンモノマー30gに疎水化したマグネタイト
3gを加え45KHz超音波により1時間分散した。この
溶液にアゾビスジメチルバレロニトリル0.3gを溶解
してモノマー原液とし、一方蒸留水70gにポバールPV
A−1170.5gとポバールPVA−2170.02gを溶解
し、分散媒水溶液とした。
Example 1 3 g of hydrophobized magnetite was added to 30 g of purified styrene monomer and dispersed for 1 hour by ultrasonic waves at 45 KHz. 0.3 g of azobis dimethyl valeronitrile was dissolved in this solution to make a stock solution of monomer, while 70 g of distilled water was added to Poval PV.
A-1170.5 g and Poval PVA-2170.02 g were dissolved to obtain a dispersion medium aqueous solution.

このようにして得られた分散媒水溶液を反応槽に入れ、
45KHzの超音波を放射しながら400rpmでかきまぜ、こ
の溶液中にモノマー原液を添加して、アルゴンガスを吹
き込みながら室温で2時間分散を行つた。
Put the dispersion medium aqueous solution thus obtained in the reaction tank,
The mixture was stirred at 400 rpm while radiating an ultrasonic wave of 45 KHz, the monomer stock solution was added to this solution, and the mixture was dispersed at room temperature for 2 hours while blowing an argon gas.

次いで反応槽を65℃に保ち、超音波放射を続けながら
400rpmで5時間かきまぜ、その後室温まで徐冷した。得
られたミクロスフエアの懸濁液を約600mlのメタノール
中に注ぎ入れ、ゆつくりかきまぜながら一昼夜放置し
た。この溶液をろ紙によりろ過し、回収したミクロスフ
エアを蒸留水に分散させたのち、ステンレス鋼製メツシ
ユ及び遠心分離機により分級して目的の磁性ミクロスフ
エアを得た。
Then keep the reaction vessel at 65 ° C and continue to radiate ultrasonic waves.
The mixture was stirred at 400 rpm for 5 hours and then gradually cooled to room temperature. The obtained suspension of microspheres was poured into about 600 ml of methanol, and the mixture was allowed to stand overnight with agitation. This solution was filtered with a filter paper, the recovered microspheres were dispersed in distilled water, and then classified with a stainless steel mesh and a centrifuge to obtain the target magnetic microspheres.

実施例2 マグネタイト/モノマー仕込率を20%に変えること以外
は、実施例1と同様に処理したのち、生成物を実施例1
と同様にして洗浄、分級を行い磁性ミクロスフェアを得
た。
Example 2 After treating as in Example 1 except that the magnetite / monomer charge was changed to 20%, the product was treated as in Example 1.
Washing and classification were carried out in the same manner as in 1. to obtain magnetic microspheres.

実施例3 マグネタイト/モノマー仕込率を30%に変えること以外
は、実施例1と同様に処理したのち、生成物を実施例1
と同様にして洗浄、分級を行い磁性ミクロスフェアを得
た。
Example 3 After treating in the same manner as in Example 1 except that the magnetite / monomer charging rate was changed to 30%, the product was treated as in Example 1.
Washing and classification were carried out in the same manner as in 1. to obtain magnetic microspheres.

実施例4 実施例1においてマグネタイト/モノマー仕込量を1.
5g/30に変えてモノマー原液を調製し、また分散媒
水溶液中でのかきまぜ速度を200rpmとして、45KHzの
超音波を放射しながら1時間分散を行つた。次いで、超
音波放射を停止し、反応槽温度を65℃に保ち、200rpm
で5時間かきまぜ、後室温まで徐冷した。
Example 4 In Example 1, the magnetite / monomer charge was set to 1.
The monomer stock solution was prepared by changing the amount to 5 g / 30, and the stirring speed in the aqueous dispersion medium solution was set to 200 rpm, and the dispersion was carried out for 1 hour while radiating an ultrasonic wave of 45 KHz. Then, stop the ultrasonic radiation, keep the reactor temperature at 65 ℃, 200rpm
After stirring for 5 hours, the mixture was gradually cooled to room temperature.

得られたミクロスフエアを実施例2と同様の方法で洗
浄、分級を行い磁性ミクロスフエアを得た。
The obtained microspheres were washed and classified in the same manner as in Example 2 to obtain magnetic microspheres.

実施例5 アゾビスジメチルバレロニトリル0.1gを溶解した、
精製スチレンモノマー10gを実施例2と同一濃度の分
散剤を含む水溶液90gに加え、45KHzの超音波を放
射しながらかきまぜ速度400rpmで2時間分散を行つた。
Example 5 0.1 g of azobisdimethylvaleronitrile was dissolved,
10 g of the purified styrene monomer was added to 90 g of an aqueous solution containing the dispersant having the same concentration as in Example 2, and the mixture was dispersed for 2 hours at a stirring speed of 400 rpm while radiating an ultrasonic wave of 45 KHz.

次いで、超音波放射をやめ、反応槽温度を65℃に保
ち、400rpmで5時間かきまぜその後室温まで徐冷した。
Then, the ultrasonic radiation was stopped, the temperature of the reaction vessel was kept at 65 ° C., the mixture was stirred at 400 rpm for 5 hours, and then gradually cooled to room temperature.

得られたミクロスフエアを実施例1と同様の方法で洗
浄、分級を行い、磁性ミクロスフエアを得た。
The obtained microspheres were washed and classified in the same manner as in Example 1 to obtain magnetic microspheres.

実施例6 実施例1において、20KHzの超音波を用い、また、重
合前の分散処理時間を4時間に変える以外は、実施例1
と同様にして磁性ミクロスフエアを得た。
Example 6 Example 1 was repeated except that 20 KHz ultrasonic waves were used and the dispersion treatment time before polymerization was changed to 4 hours.
A magnetic microsphere was obtained in the same manner as in.

実施例7 実施例1において、38KHzの超音波を用いる以外は、
実施例1と同様にして磁性ミクロスフエアを得た。
Example 7 In Example 1, except that the ultrasonic wave of 38 KHz is used,
A magnetic microsphere was obtained in the same manner as in Example 1.

こうして得られた磁性ミクロスフエアの主な性質を別表
に示す。
The main properties of the magnetic microspheres thus obtained are shown in the attached table.

なお、粒子内マグネタイト含有率は、原子吸光による鉄
分析によつて求めた。また、磁気沈降時間は、1200Gの
磁石上に内径6mmの試験管を置き、その中に5%の磁性
ミクロスフエア懸濁水溶液を5cmの高さまで注入し、す
べてのミクロスフエアが沈降するまでの時間を測定し
た。ただしかつこ内の値は、磁気がない場合の自然沈降
時間である。
The content of magnetite in the particles was determined by iron analysis by atomic absorption. For magnetic sedimentation time, place a test tube with an inner diameter of 6 mm on a 1200 G magnet, inject a 5% magnetic microsphere suspension aqueous solution to a height of 5 cm, and measure the time until all microspheres settle. did. However, the value in the table is the spontaneous sedimentation time in the absence of magnetism.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】モノマー中に疎水化処理を施した強磁性体
微粒子を均一に分散させた混合物に重合開始剤を加え、
これを分散安定剤を含有する水溶液中にかきまぜながら
分散懸濁させ、加熱重合させるに当り、懸濁過程又は懸
濁過程と重合過程の両方において、低周波数の超音波照
射を行って生成するミクロスフェアの粒径を微細に調節
することを特徴とする、微細粒径をもつ磁性ミクロスフ
ェアの製造方法。
1. A polymerization initiator is added to a mixture in which ferromagnetic particles which have been subjected to a hydrophobic treatment are uniformly dispersed in a monomer,
This is a microsuspension which is generated by performing low-frequency ultrasonic irradiation in the suspension process or both in the suspension process and the polymerization process in dispersing and suspending it in an aqueous solution containing a dispersion stabilizer while heating and polymerizing it. A method for producing magnetic microspheres having a fine particle size, which comprises finely controlling the particle size of the fair.
JP61046423A 1986-03-05 1986-03-05 Method for manufacturing magnetic microspheres Expired - Lifetime JPH0616444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61046423A JPH0616444B2 (en) 1986-03-05 1986-03-05 Method for manufacturing magnetic microspheres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61046423A JPH0616444B2 (en) 1986-03-05 1986-03-05 Method for manufacturing magnetic microspheres

Publications (2)

Publication Number Publication Date
JPS62204501A JPS62204501A (en) 1987-09-09
JPH0616444B2 true JPH0616444B2 (en) 1994-03-02

Family

ID=12746740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61046423A Expired - Lifetime JPH0616444B2 (en) 1986-03-05 1986-03-05 Method for manufacturing magnetic microspheres

Country Status (1)

Country Link
JP (1) JPH0616444B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2624873B1 (en) * 1987-12-18 1992-01-10 Rhone Poulenc Chimie MAGNETISABLE COMPOSITE PARTICLES BASED ON CROSSLINKED ORGANOPOLYSILOXANE, THEIR PREPARATION PROCESS AND THEIR APPLICATION IN BIOLOGY
WO1992012735A1 (en) * 1991-01-19 1992-08-06 Meito Sangyo Kabushiki Kaisha Composition containing ultrafine particles of magnetic metal oxide
EP1787661A1 (en) * 2004-09-10 2007-05-23 Toray Industries, Inc. Medicinal preparation
EP2090358B1 (en) 2006-10-19 2020-02-19 Sumitomo Chemical Company, Limited Method for production of microcapsule
JP2008119684A (en) * 2006-10-19 2008-05-29 Sumitomo Chemical Co Ltd Microcapsule-manufacturing method and microcapsule composition
CN103599736B (en) * 2013-11-11 2015-08-12 东华大学 A kind of preparation method of magnetic mesoporous zirconium dioxide compound microsphere
KR101691644B1 (en) * 2013-12-04 2017-01-03 주식회사 씨앤지 The functional material containing the Polymeric microcapsules and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52782A (en) * 1975-06-24 1977-01-06 Junzo Shimoiizaka Process for production of magnetic fluid
JPS5376090A (en) * 1976-12-17 1978-07-06 Shin Nippon Rika Kk Preparating method of magnetic powder for crack detection
FR2480764B1 (en) * 1980-04-18 1985-10-04 Rhone Poulenc Spec Chim LATEX OF MAGNETIC POLYMERS AND PREPARATION METHOD
US4421660A (en) * 1980-12-15 1983-12-20 The Dow Chemical Company Colloidal size hydrophobic polymers particulate having discrete particles of an inorganic material dispersed therein

Also Published As

Publication number Publication date
JPS62204501A (en) 1987-09-09

Similar Documents

Publication Publication Date Title
US4732887A (en) Composite porous material, process for production and separation of metallic element
DE60035603T2 (en) NEW MOLECULAR EMBOSSED POLYMERS PUT ON A SOLID CARRIER
US6423410B1 (en) Ultrasonically generated paramagnetic polymer particles
KR100286528B1 (en) Crosslinked Methacrylic Anhydride Copolymers
KR101013679B1 (en) Molecular Identification Materials and Manufacturing Methods Thereof
US20090099342A1 (en) Process for Preparing Composite Particles, Composite Particles Obtained, and Their Use in a Diagnostic Test
US5432210A (en) Polymer particles and method for preparing by polymerization of encapsulated monomers
US20090092837A1 (en) Magnetic beads
Phutthawong et al. Facile synthesis of magnetic molecularly imprinted polymers for caffeine via ultrasound-assisted precipitation polymerization
EP1448621B1 (en) Ionic material
JPH0616444B2 (en) Method for manufacturing magnetic microspheres
US4170685A (en) Polyvinyl pyridine microspheres
EP0097516B1 (en) Filler-containing polymer particles useful as carriers for supporting a biological substance
JPH08176212A (en) Method of surface-modifying magnetic particle
JPH0569583B2 (en)
JPH0563220B2 (en)
US4259223A (en) Cross-linked polyvinyl pyridine coated glass particle catalyst support and aqueous composition or polyvinyl pyridine adducted microspheres
CN111533917A (en) High-critical-dissolution-temperature-type temperature-sensitive zirconium-based metal organic framework material and preparation method thereof
Zou et al. Magnetic and hydrophilic imprinted particles via ATRP at room temperature for selective separation of sulfamethazine
GB2143243A (en) Bead-like polymer
JPH0782302A (en) Magnetic particles coated with ferrite and protected with polymer coating, and preparation thereof
KR100519661B1 (en) Method for Preparing Monodisperse Macro-Porous Polymer Particle
US4224359A (en) Polyvinyl pyridine microspheres
Blondeau et al. Ultrasound suspension polymerization method for preparation of 2-hydroxyethylmethacrylate macroporous copolymers
JP3567269B2 (en) Surface anisotropic polymer particles and production method