JPH0782302A - Magnetic particles coated with ferrite and protected with polymer coating, and preparation thereof - Google Patents

Magnetic particles coated with ferrite and protected with polymer coating, and preparation thereof

Info

Publication number
JPH0782302A
JPH0782302A JP6167286A JP16728694A JPH0782302A JP H0782302 A JPH0782302 A JP H0782302A JP 6167286 A JP6167286 A JP 6167286A JP 16728694 A JP16728694 A JP 16728694A JP H0782302 A JPH0782302 A JP H0782302A
Authority
JP
Japan
Prior art keywords
ferrite
particles
coated
polymer
polymerizable unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6167286A
Other languages
Japanese (ja)
Inventor
Motohiro Sasaki
基寛 佐々木
Katsuaki Yoshioka
克昭 吉岡
Katsutoshi Nagai
勝利 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP6167286A priority Critical patent/JPH0782302A/en
Publication of JPH0782302A publication Critical patent/JPH0782302A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/111Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a non-magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin

Abstract

PURPOSE:To produce a material highly suited for medical and other fields by protecting, by polymer coating, the surfaces of resin core particles coated with fine ferrite particles to improve the stability and, in particular the resistance to acid, of the magnetic particles. CONSTITUTION:The magnetic particles are resin core particles coated with fine ferrite particles, which are protected with a polymer of radical- polymerizable unsaturated monomers which may contain a glycidyl group, where the ferrite-coated resin particles are further coated with the polymer of the monomers polymerized over the particle surfaces with the aid of a double salt of a cationic surfactant and a polymerization initiator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体中での移動を制御
できる医療診断薬、薬剤を患者の疾患部に移動させるド
ラッグ・デリバリー・システム、あるいは生体物質の分
離精製や抗原抗体反応等に用いられるポリマーで保護被
覆されたフェライト被覆磁性粒子に関する。
TECHNICAL FIELD The present invention relates to a medical diagnostic agent capable of controlling movement in a living body, a drug delivery system for moving a drug to a diseased part of a patient, separation / purification of a biological substance, an antigen-antibody reaction and the like. It relates to ferrite-coated magnetic particles protectively coated with the polymer used.

【0002】[0002]

【従来の技術】従来より、例えば医薬物質、酵素等の生
体高分子及び触媒用の担体として各種の球状樹脂が提案
されている。この種の樹脂は、素材が有機ポリマーであ
るため、耐熱性、耐有機溶剤性、機械的強度等に問題が
ある。上記欠点を補う方法として特開平5−31080
8号公報には、シリカ、アルミナ、ジルコニア等の無機
微粒子の表面をエポキシ基含有ポリマーで被覆する方法
が開示されている。該粒子は耐熱性、耐有機溶剤性、機
械的強度等に優れているだけでなく、表面に反応性のエ
ポキシ基を有するため、例えば酵素等の生体高分子や抗
原又は抗体を直接結合させることができる特徴を有して
いる。
2. Description of the Related Art Heretofore, various spherical resins have been proposed as carriers for pharmaceutical substances, biopolymers such as enzymes and catalysts. Since this type of resin is made of an organic polymer, it has problems in heat resistance, organic solvent resistance, mechanical strength, and the like. As a method for compensating for the above-mentioned drawbacks, JP-A-5-31080
Japanese Unexamined Patent Publication No. 8 discloses a method of coating the surface of inorganic fine particles such as silica, alumina and zirconia with an epoxy group-containing polymer. The particles not only have excellent heat resistance, organic solvent resistance, mechanical strength, etc., but also have a reactive epoxy group on the surface, so that, for example, a biopolymer such as an enzyme or an antigen or an antibody can be directly bonded. It has the feature that

【0003】しかしながら、上記粒子の粒子径は1μm
〜1cmと大きいため、浮遊性が悪く、反応効率が低いこ
とや、粒子の表面積が小さいため、抗原又は抗体の結合
量が限られ、測定感度が悪いことが予想される。また、
反応物と未反応物とを分離(B/F分離)するのに遠心
分離を用いるか、あるいはフィルターによる濾過を行わ
なければならず、取り扱いが難しい。
However, the particle size of the above particles is 1 μm.
Since it is as large as ~ 1 cm, the floating property is poor, the reaction efficiency is low, and since the surface area of the particles is small, the binding amount of the antigen or antibody is limited and the measurement sensitivity is expected to be poor. Also,
Centrifugation must be used to separate the reaction product and unreacted product (B / F separation), or filtration with a filter must be performed, which is difficult to handle.

【0004】一方、アクリル樹脂もしくはスチレン−ア
クリル樹脂粒子を核として、その表面にフェライト微粒
子を被覆する方法は、特開平3−115862号公報に
記載されている。この粒子の粒径は0.1〜0.3μm
と微細なため、抗原又は抗体の結合量を多くすることが
できる。また、被覆するフェライト微粒子量を任意にコ
ントロールできるため、粒子全体の比重を小さくするこ
とができ、フェライト粒子単独に比べて浮遊性が良く、
抗原又は抗体との反応効率が高い。更にその磁気特性を
利用してB/F分離を行うことができるため、測定時間
の短縮と精度の向上に寄与する。
On the other hand, a method in which ferrite particles are coated on the surface of acrylic resin or styrene-acrylic resin particles as a core is described in JP-A-3-1155862. The particle size of this particle is 0.1-0.3 μm
Since it is fine, the amount of antigen or antibody bound can be increased. Further, since the amount of ferrite fine particles to be coated can be arbitrarily controlled, the specific gravity of the whole particles can be reduced, and the floating property is better than that of the ferrite particles alone,
High reaction efficiency with antigen or antibody. Further, since B / F separation can be performed by utilizing the magnetic characteristic, it contributes to shortening of measurement time and improvement of accuracy.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
フェライト被覆粒子は耐酸性が悪く、酸性条件下でFe
イオンが溶出したり、ポリマー核粒子からフェライト微
粒子が脱離しやすいなどの欠点があった。そのため、医
療診断用粒子としての感度の低下や、感作可能な抗原又
は抗体が限定されるという問題があった。また、抗原や
抗体を粒子表面に結合させる際にシランカップリング剤
等で処理して反応活性基を導入する必要があり、工程が
複雑になる欠点があった。
However, the above-mentioned ferrite-coated particles have poor acid resistance, and the Fe-coated particles under acidic conditions cannot be used.
There are drawbacks such as the elution of ions and the easy release of ferrite fine particles from the polymer core particles. Therefore, there have been problems that the sensitivity as particles for medical diagnosis is lowered and that the antigens or antibodies that can be sensitized are limited. In addition, when binding an antigen or an antibody to the surface of a particle, it is necessary to treat with a silane coupling agent or the like to introduce a reactive group, which has a drawback of complicating the process.

【0006】[0006]

【課題を解決するための手段】本発明では、樹脂核粒子
表面のフェライト粒子を保護するために、カチオン系界
面活性剤と重合開始剤を用いた開始剤沈着重合法によ
り、ラジカル重合性不飽和モノマーをフェライト被覆粒
子の表面上で重合させ、ポリマーで保護被覆することに
よってFeイオンの溶出を低下させることが可能になっ
た。更にポリマー層にグリシジル基を導入したものは抗
体又は抗原との直接結合が可能となる。
In the present invention, in order to protect the ferrite particles on the surface of the resin core particles, a radical polymerizable unsaturated is prepared by an initiator deposition polymerization method using a cationic surfactant and a polymerization initiator. It was possible to reduce Fe ion elution by polymerizing the monomers on the surface of the ferrite coated particles and protective coating with the polymer. Further, a polymer layer having a glycidyl group introduced therein can be directly bound to an antibody or an antigen.

【0007】即ち、本発明のポリマーで保護被覆された
フェライト被覆磁性粒子は、樹脂核粒子をフェライト微
粒子で被覆したフェライト被覆粒子が、さらにカチオン
系界面活性剤と重合開始剤との複塩を介してラジカル重
合性不飽和モノマーの重合体で被覆されていることを特
徴とする。
That is, the ferrite-coated magnetic particles protectively coated with the polymer of the present invention are the ferrite-coated particles obtained by coating the resin core particles with the ferrite fine particles, and further via the double salt of the cationic surfactant and the polymerization initiator. And is coated with a polymer of a radically polymerizable unsaturated monomer.

【0008】このようなポリマーで保護被覆されたフェ
ライト被覆磁性粒子は、下記(1)〜(4)の工程を順
次経ることによって製造される。 (1)樹脂核粒子をフェライト微粒子で被覆する工程 (2)該フェライト被覆粒子を、媒体中でカチオン系界
面活性剤と混合し吸着層を形成する工程 (3)ラジカル重合性不飽和モノマー及び/又はグリシ
ジル基を有するラジカル重合性不飽和モノマーと重合開
始剤を任意の順序で添加し、フェライト被覆粒子の表面
にカチオン系界面活性剤と重合開始剤との複塩を吸着層
に形成し、ラジカル重合性不飽和モノマーを可溶化する
工程 (4)該モノマーを重合させてフェライト被覆粒子を保
護被覆する工程。
The ferrite-coated magnetic particles protectively coated with such a polymer are manufactured by sequentially performing the following steps (1) to (4). (1) A step of coating resin core particles with ferrite fine particles (2) A step of mixing the ferrite coated particles with a cationic surfactant in a medium to form an adsorption layer (3) A radically polymerizable unsaturated monomer and / Alternatively, a radically polymerizable unsaturated monomer having a glycidyl group and a polymerization initiator are added in any order, and a double salt of a cationic surfactant and a polymerization initiator is formed on the surface of the ferrite-coated particles in the adsorption layer to form a radical. Step of solubilizing the polymerizable unsaturated monomer (4) Step of polymerizing the monomer to protect and coat the ferrite-coated particles.

【0009】第一工程に用いられる樹脂核粒子として
は、ポリスチレン、ポリ(メタ)アクリル酸メチル、ポ
リ(メタ)アクリル酸n−ブチル等の粒径30〜800
nmの粒子が用いられ、形状は球形でも変形したものであ
っても適宜用いられる。核粒子はそのまま用いてもよい
が、例えば樹脂核粒子にプラズマ処理、アルカリ処理、
酸処理又は物理的処理を行ってもよい。これらの処理を
行うことによって水溶液に対するぬれ性が改善され、フ
ェライト微粒子によるより均一な被覆ができる。
The resin core particles used in the first step are polystyrene, poly (meth) acrylate, n-butyl poly (meth) acrylate, etc., and have a particle size of 30 to 800.
Particles with a particle size of nm are used, and the shape may be spherical or modified. The core particles may be used as they are, for example, plasma treatment, alkali treatment, resin core particles,
Acid treatment or physical treatment may be performed. By performing these treatments, the wettability with respect to the aqueous solution is improved, and more uniform coating with the ferrite fine particles can be performed.

【0010】核粒子をフェライト微粒子で被覆するに
は、特開平3−237019号、特開平3−11586
2号の方法で行うことができ、核粒子を水又は水溶液に
分散させ、この液のpHを6〜11に設定し、第一鉄イオ
ン水溶液及び亜硝酸塩や過酸化水素のような酸化剤水溶
液を、図1に示すpH−酸化還元電位図におけるpHと酸化
還元電位の関係がA(6,−440mV),B(6,−1
30mV)、C(11,−430mV)及びD(11,−7
40mV)の範囲内に維持されるように添加し、かつ酸化
剤水溶液と第一鉄イオン水溶液の供給速度比率を0.1
〜15×10-3で行う。これによりフェライト微粒子の
粒径が4〜50nmであり、核粒子とフェライト微粒子の
粒径比が8/1〜80/1であるフェライト被覆粒子が
得られる。
To coat the core particles with ferrite fine particles, Japanese Patent Laid-Open No. 237019/1993 and 11586/1993.
No. 2 method, the core particles are dispersed in water or an aqueous solution, the pH of this solution is set to 6 to 11, and an aqueous ferrous ion solution and an aqueous oxidizer solution such as nitrite or hydrogen peroxide are used. In the pH-redox potential diagram shown in FIG. 1, the relationship between pH and redox potential is A (6, -440 mV), B (6, -1).
30 mV), C (11, -430 mV) and D (11, -7)
40 mV), and the feed rate ratio of the oxidant aqueous solution and the ferrous ion aqueous solution is 0.1.
~ 15 x 10 -3 . As a result, ferrite-coated particles in which the particle size of the ferrite particles is 4 to 50 nm and the particle size ratio of the core particles to the ferrite particles is 8/1 to 80/1 are obtained.

【0011】第一鉄イオンとしては、第一鉄の塩酸塩、
硫酸塩、酢酸塩等が用いられる。第一鉄イオンのみを含
む場合は、マグネタイト(Fe34 )粒子が形成さ
れ、他の金属イオン、例えばMn、Ni、Zn、Co、
Cu、Mg、Sn、Ca及び/又はCdの金属酸化物を
含む場合は、混晶フェライト粒子が形成される。
As the ferrous ion, ferric chloride,
Sulfate, acetate, etc. are used. In the case of containing only ferrous ions, magnetite (Fe 3 O 4 ) particles are formed and other metal ions such as Mn, Ni, Zn, Co,
In the case of containing a metal oxide of Cu, Mg, Sn, Ca and / or Cd, mixed crystal ferrite particles are formed.

【0012】上記のようにして得られるフェライト被覆
粒子懸濁液を凍結乾燥して、乾燥粒子として保存するこ
とができる。
The ferrite-coated particle suspension obtained as described above can be freeze-dried and stored as dry particles.

【0013】第二工程に用いられるカチオン系界面活性
剤としては、長鎖アルキル基が四級アンモニウム基に置
換している化合物であり、例えば下記式(I)の脂肪族
四級アンモニウム塩、式(II)のベンザルコニウム塩、
式 (III)のピリジニウム塩、式(IV)のイミダゾリニウ
ム塩、式(V)のアンモニウム塩があげられる。
The cationic surfactant used in the second step is a compound in which a long-chain alkyl group is substituted with a quaternary ammonium group, for example, an aliphatic quaternary ammonium salt of the formula (I) below, (II) benzalkonium salt,
Mention may be made of pyridinium salts of formula (III), imidazolinium salts of formula (IV), ammonium salts of formula (V).

【0014】[0014]

【化1】 [Chemical 1]

【0015】(式中、RはC8 〜C18の直鎖アルキル基
を表し、R1 はC1 〜C4 の低級アルキル基を表し、X
は塩素又は臭素原子を表す) 好ましいのは脂肪族四級アンモニウム塩であり、例え
ば、オクチル−、デシル−、ラウリル−、ミリスチル
−、セチル−、又はステアリル−トリメチルアンモニウ
ムブロミドがあげられる。
(Wherein R represents a C 8 to C 18 straight-chain alkyl group, R 1 represents a C 1 to C 4 lower alkyl group, and X represents
Represents a chlorine or bromine atom) Preferred are aliphatic quaternary ammonium salts, such as octyl-, decyl-, lauryl-, myristyl-, cetyl-, or stearyl-trimethylammonium bromide.

【0016】媒体としては、水、メタノール、アセト
ン、N,N−ジメチルホルムアミド、テトラヒドロフラ
ン、酢酸エチル、クロロホルム、ベンゼン等が用いられ
るが、好ましくはイオン交換水である。媒体の添加量は
フェライト被覆粒子の容積に対して10〜2,000
倍、好ましくは50〜1,000倍である。
As the medium, water, methanol, acetone, N, N-dimethylformamide, tetrahydrofuran, ethyl acetate, chloroform, benzene and the like can be used, but ion-exchanged water is preferable. The amount of the medium added is 10 to 2,000 relative to the volume of the ferrite-coated particles.
Times, preferably 50 to 1,000 times.

【0017】媒体にフェライト被覆粒子とカチオン系界
面活性剤を添加し、これを混合し吸着層を形成するには
種々の方法が利用可能であるが、好ましくは超音波照射
をした後、振盪機で振盪する方法を採用するとよい。
Various methods can be used to add the ferrite-coated particles and the cationic surfactant to the medium and mix them to form an adsorption layer. Preferably, ultrasonic waves are applied and then a shaker is used. It is advisable to adopt the method of shaking at.

【0018】カチオン系界面活性剤の作用は、フェライ
ト被覆粒子を媒体中に均一に分散させるだけでなく、負
にチャージしているフェライト被覆粒子表面にカチオン
系界面活性剤の吸着層が形成され、第三工程においてフ
ェライト被覆粒子の表面の吸着層に重合開始剤との難溶
性の複塩を形成し、ラジカル重合性不飽和モノマーを可
溶化する。
The function of the cationic surfactant is not only to uniformly disperse the ferrite-coated particles in the medium but also to form an adsorption layer of the cationic surfactant on the negatively charged surface of the ferrite-coated particles, In the third step, a sparingly soluble double salt with a polymerization initiator is formed in the adsorption layer on the surface of the ferrite-coated particles to solubilize the radically polymerizable unsaturated monomer.

【0019】第三工程で用いられる重合開始剤として
は、上記のカチオン系界面活性剤と複塩を形成する重合
開始能を有する化合物であり、アルカリ金属又はアンモ
ニウムの過硫酸塩、亜硫酸水素塩、亜硫酸塩があげられ
る。好ましくは、過硫酸塩である。このような重合開始
剤は、カチオン系界面活性剤と反応して、例えば過硫酸
ジ(セチルトリメチルアンモニウム)〔C1633+
(CH3)3228 のような複塩をフェライト被覆
粒子表面の吸着層に形成し、ラジカル重合性不飽和モノ
マーの重合開始剤の役割を果す。
The polymerization initiator used in the third step is a compound having a polymerization initiation ability to form a double salt with the above-mentioned cationic surfactant, such as an alkali metal or ammonium persulfate or bisulfite, Examples include sulfite. Persulfate is preferred. Such a polymerization initiator reacts with a cationic surfactant to give, for example, di (cetyltrimethylammonium persulfate) [C 16 H 33 N +
A double salt such as (CH 3 ) 3 ] 2 S 2 O 8 is formed in the adsorption layer on the surface of the ferrite-coated particles, and plays a role of a polymerization initiator of the radically polymerizable unsaturated monomer.

【0020】保護被覆を形成するためのラジカル重合性
不飽和モノマーとしては、スチレン、α−メチルスチレ
ン、クロロメチルスチレン、ジビニルベンゼンのような
芳香族ビニル化合物;酢酸ビニル、塩化ビニル、ジビニ
ルエーテル、N−ビニルピロリドンのようなビニル化合
物;アクリロニトリル;(メタ)アクリル酸、(メタ)
アクリル酸メチル、(メタ)アクリル酸エチル、(メ
タ)アクリル酸ブチル、(メタ)アクリル酸ヒドロキシ
エチル、エチレングリコールジメタクリレートのような
(メタ)アクリル酸エステル;(メタ)アクリルアミ
ド、N,N−ジメチルアクリルアミド、N−エチル(メ
タ)アクリルアミド、N−プロピル(メタ)アクリルア
ミド、n−ブチル(メタ)アクリルアミド、n−オクチ
ル(メタ)アクリルアミド、のような(メタ)アクリル
アミド化合物;ブタジエン、イソプレン、クロロプレン
のような共役二重結合を有するジエン系化合物が挙げら
れ、これらの単独又は2種以上を用いて、単独重合体又
は共重合体を形成させることができる。好ましくはスチ
レンのような疎水性のモノマーであり、親水性が高くな
ると劣る。
Radical-polymerizable unsaturated monomers for forming the protective coating include aromatic vinyl compounds such as styrene, α-methylstyrene, chloromethylstyrene and divinylbenzene; vinyl acetate, vinyl chloride, divinyl ether, N. Vinyl compounds such as vinylpyrrolidone; acrylonitrile; (meth) acrylic acid, (meth)
(Meth) acrylic acid ester such as methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hydroxyethyl (meth) acrylate, ethylene glycol dimethacrylate; (meth) acrylamide, N, N-dimethyl (Meth) acrylamide compounds such as acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, n-butyl (meth) acrylamide, n-octyl (meth) acrylamide; like butadiene, isoprene, chloroprene Examples thereof include diene compounds having a conjugated double bond, and homopolymers or copolymers can be formed using these homopolymers or two or more thereof. A hydrophobic monomer such as styrene is preferable, and it becomes inferior as the hydrophilicity increases.

【0021】また、グリシジル基を有するラジカル重合
性不飽和モノマーとしては、グリシジル(メタ)アクリ
レートのようなグリシジル基を有するビニル系化合物が
挙げられる。上記グリシジル基を有するビニル系化合物
を含む場合は、ポリマー保護被覆表面にグリシジル基が
露出しているため、例えば抗原又は抗体はグリシジル基
に容易に結合することができる。なお、ポリマー保護被
覆形成時にラテックスの副生を防止するため、例えばク
ペロン(アンモニウム N−ニトロソフェニルヒドロキ
シルアミン)のような重合禁止剤を添加してもよい。上
記重合禁止剤はグリシジル基を有するラジカル重合性不
飽和モノマーに対して0.05〜50wt%、好ましくは
0.1〜10wt%添加することが好ましい。
As the radically polymerizable unsaturated monomer having a glycidyl group, a vinyl compound having a glycidyl group such as glycidyl (meth) acrylate may be mentioned. When the vinyl-based compound having a glycidyl group is included, the glycidyl group is exposed on the surface of the polymer protective coating, so that, for example, an antigen or an antibody can be easily bound to the glycidyl group. A polymerization inhibitor such as cuperone (ammonium N-nitrosophenylhydroxylamine) may be added in order to prevent the latex from being produced during the formation of the polymer protective coating. The above-mentioned polymerization inhibitor is preferably added in an amount of 0.05 to 50% by weight, preferably 0.1 to 10% by weight, based on the radically polymerizable unsaturated monomer having a glycidyl group.

【0022】重合開始剤とカチオン系界面活性剤のモル
比は1:0.5以上、好ましくは1:2〜10である。
重合開始剤が0.5モル未満であるとフェライト被覆粒
子表面での両者の複塩の形成が少なくなる。
The molar ratio of the polymerization initiator to the cationic surfactant is 1: 0.5 or more, preferably 1: 2-10.
When the amount of the polymerization initiator is less than 0.5 mol, the formation of double salts of both of them on the surface of the ferrite-coated particles is reduced.

【0023】フェライト被覆粒子に対するラジカル重合
性不飽和モノマーの添加量は0.05〜1,000wt
%、好ましくは0.1〜500wt%である。モノマーが
0.05wt%未満であると、フェライト被覆粒子表面に
おいて吸着層へのモノマーの可溶化ができない部分が生
じ、1,000wt%を超えると重合時に粒子の凝集が起
りやすくなる。
The amount of radically polymerizable unsaturated monomer added to the ferrite-coated particles is 0.05 to 1,000 wt.
%, Preferably 0.1 to 500 wt%. If the amount of the monomer is less than 0.05 wt%, a portion of the ferrite-coated particle surface where the monomer cannot be solubilized in the adsorption layer is generated, and if the amount exceeds 1,000 wt%, the particles are likely to aggregate during the polymerization.

【0024】また、ラジカル重合性不飽和モノマーに対
する重合開始剤の添加量は0.01〜20wt%、好まし
くは1〜10wt%である。重合開始剤が0.01wt%未
満であると重合しない未反応モノマーが生じ、20wt%
を超えるとポリマーが析出しにくくなるのでポリマー被
覆量が少なくなる。
The amount of the polymerization initiator added to the radically polymerizable unsaturated monomer is 0.01 to 20% by weight, preferably 1 to 10% by weight. If the amount of the polymerization initiator is less than 0.01 wt%, unreacted monomers that do not polymerize are generated, and
When it exceeds, the polymer is less likely to be deposited, so that the polymer coating amount is reduced.

【0025】第三工程において、吸着層へモノマーを可
溶化すると共に、カチオン系界面活性剤と重合開始剤の
複塩をフェライト被覆粒子の表面に形成させるには、特
開昭61−247763号公報、特開平2−48038
号公報に記載されたような開始剤沈着重合法を適用する
ことができ、第二工程を経てフェライト被覆粒子にカチ
オン系界面活性剤を吸着して媒体中に懸濁したものに、
(1)まずラジカル重合性不飽和モノマーを添加し、次
いで重合開始剤を添加するか、(2)重合開始剤を添加
し、次いでラジカル重合性不飽和モノマーを添加するこ
とにより、フェライト被覆粒子表面の吸着層にモノマー
が可溶化された層が形成される。
In the third step, in order to solubilize the monomer in the adsorption layer and form the double salt of the cationic surfactant and the polymerization initiator on the surface of the ferrite-coated particles, JP-A-61-247763 is disclosed. JP-A-2-48038
It is possible to apply the initiator deposition polymerization method as described in Japanese Patent Publication No. JP-A No. 1993-331, to a suspension of a cationic surfactant on the ferrite-coated particles in the medium through the second step,
(1) First, the radical polymerizable unsaturated monomer is added, and then the polymerization initiator is added, or (2) the polymerization initiator is added, and then the radical polymerizable unsaturated monomer is added, whereby the ferrite coated particle surface A layer in which the monomer is solubilized is formed in the adsorption layer of.

【0026】次いで第四工程において、前記可溶化され
たモノマーを重合させることにより、フェライト被覆粒
子表面が形成されたポリマーで均一に保護被覆される。
重合反応温度は適宜選定できるが、好ましくは30〜9
0℃、より好ましくは50〜70℃で、撹拌しながら窒
素雰囲気下で行うのが好ましい。
Then, in the fourth step, the solubilized monomer is polymerized to uniformly coat the surface of the ferrite-coated particles with the polymer thus formed.
The polymerization reaction temperature can be appropriately selected, but is preferably 30 to 9
It is preferably carried out at 0 ° C., more preferably 50 to 70 ° C. under a nitrogen atmosphere with stirring.

【0027】重合反応終了後、遠心分離等の方法で媒体
中の粒子を分離し、沈殿物を濾別してメタノール等で洗
浄し、真空乾燥することにより、目的のポリマーで保護
被覆されたフェライト被覆粒子を得る。
After the completion of the polymerization reaction, the particles in the medium are separated by a method such as centrifugation, the precipitate is separated by filtration, washed with methanol or the like, and vacuum dried to obtain ferrite-coated particles protected by the target polymer. To get

【0028】[0028]

【発明の効果】本発明によれば、フェライト被覆粒子の
表面がポリマーで均一に保護被覆されているので、酸性
条件下でフェライトの溶出を抑制できる。またグリシジ
ル基を有するポリマーで保護被覆した場合には抗原又は
抗体をグリシジル基に直接結合させることができるた
め、医療診断薬としての磁性粒子の形成が容易になる。
EFFECTS OF THE INVENTION According to the present invention, the surface of ferrite-coated particles is uniformly protectively coated with a polymer, so that elution of ferrite can be suppressed under acidic conditions. In addition, when the polymer having a glycidyl group is protectively coated, the antigen or the antibody can be directly bound to the glycidyl group, which facilitates the formation of magnetic particles as a medical diagnostic agent.

【0029】[0029]

【実施例】【Example】

実施例1 水50mlにセチルトリメチルアンモニウムブロミド0.
12mmol及び後記参考例1により製造されたフェライト
被覆磁性粒子A0.1gを入れ、1時間超音波照射して
撹拌した後、スチレン0.20gを添加し、25℃で2
0時間振盪した。次いで、過硫酸カリウム0.04mmol
を加え、60℃で24時間振盪しながら窒素雰囲気下で
重合させた。重合終了後、遠心分離して、沈殿物を濾別
し、これをメタノールで洗浄し、濾過し、真空乾燥し
た。沈殿物を乾燥して秤量したところ0.174gであ
り、被覆ポリマー量は0.074g(収率37%)であ
った。
Example 1 50 ml of water was added with cetyl trimethyl ammonium bromide.
12 mmol and 0.1 g of the ferrite-coated magnetic particles A produced in Reference Example 1 described below were added, and the mixture was irradiated with ultrasonic waves for 1 hour and stirred, then 0.20 g of styrene was added, and the mixture was added at 25 ° C. for 2 hours.
Shake for 0 hours. Then, potassium persulfate 0.04 mmol
Was added and polymerized under a nitrogen atmosphere while shaking at 60 ° C. for 24 hours. After completion of the polymerization, the mixture was centrifuged and the precipitate was filtered off, washed with methanol, filtered and dried under vacuum. When the precipitate was dried and weighed, it was 0.174 g, and the amount of coating polymer was 0.074 g (yield 37%).

【0030】フェライト微粒子が完全にポリマーで保護
被覆されているかどうかを確認するため、保護被覆粒子
を0.01M シュウ酸溶液に入れ、粒子の色の変化によ
って抵抗性を調べた。その結果は第1表に示すように、
特開平3−115862号の方法で製造され、ポリマー
で被覆されていないフェライト被覆粒子が示す抵抗性を
1としたときの、被覆粒子の抵抗性指数は30と著しく
高くなっていることを確認した。
In order to confirm whether or not the ferrite fine particles were completely protective-coated with a polymer, the protective-coated particles were placed in a 0.01 M oxalic acid solution, and the resistance was examined by the change in color of the particles. The results are as shown in Table 1.
It was confirmed that the resistance index of the coated particles, which was produced by the method of JP-A-3-1155862 and was not coated with the polymer, was 1 and the resistance index of the coated particles was 30. .

【0031】実施例2〜16 第1表に示すように、カチオン系界面活性剤としてセチ
ルトリメチルアンモニウムブロミド(CTAB)又はオ
クチルトリメチルアンモニウムブロミド(OTAB)、
重合開始剤として過硫酸カリウム(KPS)及びモノマ
ーとしてスチレン(ST)、メタクリル酸メチル(MM
A)及び/又はアクリル酸ヒドロキシエチル(HEM
A)を用いて、それらの添加量を変え、また後記参考例
1、2又は3のフェライト被覆粒子A、B又はCを用い
た以外は、実施例1と同様にして、フェライト被覆粒子
表面をポリマーで被覆した。得られたポリマーで保護被
覆されたフェライト被覆粒子のシュウ酸に対する抵抗性
を、実施例1と同様に調べ、その結果を第1表に示す。
Examples 2 to 16 As shown in Table 1, cetyl trimethyl ammonium bromide (CTAB) or octyl trimethyl ammonium bromide (OTAB) as a cationic surfactant,
Potassium persulfate (KPS) as a polymerization initiator and styrene (ST) as a monomer, methyl methacrylate (MM
A) and / or hydroxyethyl acrylate (HEM
A) was used to change the addition amount thereof, and the ferrite-coated particles A, B or C of Reference Examples 1, 2 or 3 described later were used, and the surface of the ferrite-coated particles was changed in the same manner as in Example 1. Coated with polymer. The resistance of the obtained ferrite particles coated with the polymer and coated with ferrite to oxalic acid was examined in the same manner as in Example 1, and the results are shown in Table 1.

【0032】比較例1〜3 比較例1は参考例1のフェライト被覆粒子AをCTAB
の不存在下にスチレン樹脂で被覆を試みた例であるが、
STの油滴が浮遊しており被覆されても酸抵抗性は低か
った。比較例2はフェライト被覆粒子Aを重合開始剤を
用いずにCTABで処理、スチレン樹脂で被覆した例で
あるが、被覆できなかった。比較例3はフェライト被覆
粒子Aをアニオン系界面活性剤であるドデシル硫酸ナト
リウム(SDS)とKPSで処理し、スチレン樹脂で被
覆した例であるが、アニオン系界面活性剤では吸着が不
十分であった。これらのシュウ酸に対する抵抗性も第1
表に示した。
Comparative Examples 1 to 3 In Comparative Example 1, the ferrite-coated particles A of Reference Example 1 were used as CTAB.
It is an example of coating with styrene resin in the absence of
The oil resistance of ST was low even if the oil droplets of ST were floating and covered. Comparative Example 2 is an example in which ferrite-coated particles A were treated with CTAB without using a polymerization initiator and coated with a styrene resin, but could not be coated. Comparative Example 3 is an example in which ferrite-coated particles A are treated with anionic surfactant sodium dodecyl sulfate (SDS) and KPS and coated with a styrene resin, but the adsorption is insufficient with the anionic surfactant. It was Resistance to these oxalic acids is also the first
Shown in the table.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】第1表から明らかなように、本発明のポリ
マーで保護被覆したフェライト被覆粒子は、比較例1〜
3の粒子に比べてシュウ酸に対する抵抗性が著しく高い
ことがわかる。
As is apparent from Table 1, the ferrite-coated particles protectively coated with the polymer of the present invention are the same as Comparative Examples 1 to 1.
It can be seen that the resistance to oxalic acid is significantly higher than that of the particles of No. 3.

【0036】実施例17 水50mlにセチルトリメチルアンモニウムブロミド0.
06mmol及び後記参考例2により製造されたフェライト
被覆磁性粒子0.1gを入れ、1時間超音波照射して撹
拌した後、メタクリル酸グリシジル0.10g、スチレ
ン0.10g及びクペロン0.004gを添加し、25
℃で20時間振盪した。次いで、過硫酸カリウム0.0
27mmolを加え、60℃で24時間振盪しながら窒素雰
囲気下で重合させた。重合終了後、遠心分離して沈殿物
を濾別し、これを水で洗浄し、真空乾燥した。沈殿物を
乾燥して秤量したところ、0.110gであり、被覆ポ
リマー量は0.010g(収率5.2%)であった。
Example 17 Cetyltrimethylammonium bromide 0.
06 mmol and 0.1 g of the ferrite-coated magnetic particles prepared in Reference Example 2 described below were added, and after ultrasonic irradiation for 1 hour and stirring, 0.10 g of glycidyl methacrylate, 0.10 g of styrene and 0.004 g of cuperone were added. , 25
Shake at 20 ° C. for 20 hours. Then potassium persulfate 0.0
27 mmol was added, and the mixture was polymerized under a nitrogen atmosphere while shaking at 60 ° C. for 24 hours. After completion of the polymerization, the mixture was centrifuged to separate the precipitate by filtration, which was washed with water and dried under vacuum. When the precipitate was dried and weighed, it was 0.110 g, and the amount of coating polymer was 0.010 g (yield 5.2%).

【0037】フェライト微粒子が完全にポリマーで保護
被覆されているかどうか確認するため、シュウ酸に対す
る抵抗性を調べた。その結果、ポリマーで被覆されてい
ないフェライト被覆粒子が示す抵抗性を1としたときの
被覆粒子の抵抗性指数は47と著しく高くなっているこ
とを確認した。
The resistance to oxalic acid was investigated in order to confirm whether the fine ferrite particles were completely protectively coated with the polymer. As a result, it was confirmed that the resistance index of the coated particles was 47, which was extremely high when the resistance of the ferrite-coated particles not coated with the polymer was set to 1.

【0038】実施例18〜25 第2表に示すように、カチオン系界面活性剤としてセチ
ルトリメチルアンモニウムブロミド(CTAB)又はオ
クチルトリメチルアンモニウムブロミド(OTAB)、
重合開始剤として過硫酸カリウム(KPS)及びモノマ
ーとしてメタクリル酸グリシジル(GMA)とスチレン
(ST)又はアクリル酸メチル(MMA)を用いて、そ
れらの添加量を変え、また後記参考例1又は2のフェラ
イト被覆粒子A又はBを用いた以外は、実施例17と同
様にして、フェライト被覆粒子表面をポリマーで被覆し
た。得られたポリマーで保護被覆されたフェライト被覆
粒子のシュウ酸に対する抵抗性を、実施例17と同様に
調べ、その結果を第2表に示す。
Examples 18 to 25 As shown in Table 2, as a cationic surfactant, cetyltrimethylammonium bromide (CTAB) or octyltrimethylammonium bromide (OTAB),
Using potassium persulfate (KPS) as the polymerization initiator and glycidyl methacrylate (GMA) and styrene (ST) or methyl acrylate (MMA) as the monomers, the addition amounts thereof were changed, and in Reference Example 1 or 2 below. The surface of the ferrite-coated particles was coated with a polymer in the same manner as in Example 17 except that the ferrite-coated particles A or B were used. The resistance of the obtained polymer-coated ferrite-coated particles to oxalic acid was examined in the same manner as in Example 17, and the results are shown in Table 2.

【0039】[0039]

【表3】 [Table 3]

【0040】参考例1(フェライト被覆粒子Aの製造) 反応容器にイオン交換水0.9L を仕込み、粒径が30
0nmのポリスチレン粒子(日本ペイント(株)製ニッペ
マイクロジェルE−3101)10g を予めイオン交換
水に分散させたもの100g を前記反応容器に投入し
た。この分散液を0.1N NaOHでpH8.0に調整
し、70℃に加温保持した。このものに、予めFeCl
2 ・4H2 Oをイオン交換水に溶解して調製した30wt
%第一鉄イオン水溶液を、60ml/分の供給速度で供給
し、同時にイオン交換水に溶解した15wt%亜硝酸ナト
リウム水溶液を、0.3ml/分の供給速度で供給した。
この間pHを8.0で一定に維持した。またこの溶液の酸
化還元電位を−550mVで一定に維持するように亜硝酸
ナトリウム水溶液と第一鉄イオン水溶液の供給速度比率
を5×10-3に調節した。得られたフェライト被覆粒子
を濾過により分離、水洗を繰り返し行い、フェライト被
覆ポリスチレン粒子を得た。フェライト微粒子の粒径は
20−10nmであった。
Reference Example 1 (Production of Ferrite Coated Particles A) 0.9 L of ion-exchanged water was charged into a reaction vessel, and the particle size was 30.
10 g of 0 nm polystyrene particles (Nippe Microgel E-3101 manufactured by Nippon Paint Co., Ltd.) was previously dispersed in ion-exchanged water, and 100 g was placed in the reaction vessel. The dispersion was adjusted to pH 8.0 with 0.1N NaOH and kept at 70 ° C. by heating. In this, FeCl
30wt the preparation of the 2 · 4H 2 O were dissolved in ion-exchanged water
% Ferrous ion aqueous solution was supplied at a supply rate of 60 ml / min, and at the same time, a 15 wt% sodium nitrite aqueous solution dissolved in ion-exchanged water was supplied at a supply rate of 0.3 ml / min.
During this time, the pH was kept constant at 8.0. Further, the feed rate ratio of the aqueous solution of sodium nitrite and the aqueous solution of ferrous ion was adjusted to 5 × 10 −3 so that the redox potential of this solution was kept constant at −550 mV. The obtained ferrite-coated particles were separated by filtration and repeatedly washed with water to obtain ferrite-coated polystyrene particles. The particle size of the ferrite fine particles was 20-10 nm.

【0041】参考例2(フェライト被覆粒子Bの製造) 参考例1における第一鉄イオン水溶液の代りに、予めF
eCl2 ・4H2 O26.1g とMnCl2 ・4H2
13.0g をイオン交換水60.9g に溶解した30
wt%水溶液を用い、酸化剤水溶液として20wt%過酸化
水素水溶液を用いた以外は、参考例1と同様に行って、
Mnフェライト被覆ポリスチレン粒子を得た。Mnフェ
ライト粒子の粒径は20−10nmであった。
Reference Example 2 (Production of Ferrite Coated Particles B) Instead of the ferrous ion aqueous solution in Reference Example 1, F was previously prepared.
eCl 2 · 4H 2 O26.1g and MnCl 2 · 4H 2 O
13.0 g was dissolved in 60.9 g of deionized water 30
The same procedure as in Reference Example 1 was performed except that a 20 wt% aqueous solution was used and a 20 wt% hydrogen peroxide aqueous solution was used as the oxidant aqueous solution.
Mn ferrite-coated polystyrene particles were obtained. The particle size of the Mn ferrite particles was 20-10 nm.

【0042】参考例3(フェライト被覆粒子Cの製造) 参考例1における亜硝酸ナトリウム水溶液の供給速度を
1ml/分で行った以外は、参考例1と同様に行って、フ
ェライト被覆ポリスチレン微粒子を得た。フェライト微
粒子の粒径は80−70nmであった。
Reference Example 3 (Production of Ferrite-Coated Particles C) Ferrite-coated polystyrene fine particles were obtained in the same manner as in Reference Example 1 except that the supply rate of the sodium nitrite aqueous solution in Reference Example 1 was 1 ml / min. It was The particle size of the ferrite fine particles was 80-70 nm.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一工程でフェライト被覆粒子が好適
に得られるpHと酸化還元電位の範囲を示すグラフであ
る。
FIG. 1 is a graph showing a range of pH and redox potential at which ferrite-coated particles are suitably obtained in the first step of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 13/02 13/14 C01G 49/00 Z G01N 33/553 H01F 1/00 10/20 41/16 H01F 1/00 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01J 13/02 13/14 C01G 49/00 Z G01N 33/553 H01F 1/00 10/20 41 / 16 H01F 1/00 Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 樹脂核粒子をフェライト微粒子で被覆し
たフェライト被覆粒子が、カチオン系界面活性剤と重合
開始剤との複塩を介してラジカル重合性不飽和モノマー
の重合体で被覆されていることを特徴とする、ポリマー
で保護被覆されたフェライト被覆磁性粒子。
1. Ferrite-coated particles obtained by coating resin core particles with ferrite fine particles are coated with a polymer of a radical-polymerizable unsaturated monomer via a double salt of a cationic surfactant and a polymerization initiator. Polymer-protected ferrite-coated magnetic particles comprising:
【請求項2】 ラジカル重合性不飽和モノマーがグリシ
ジル基を有するラジカル重合性不飽和モノマーを含むも
のである請求項1のフェライト被覆磁性粒子。
2. The ferrite-coated magnetic particles according to claim 1, wherein the radically polymerizable unsaturated monomer contains a radically polymerizable unsaturated monomer having a glycidyl group.
【請求項3】 下記(1)〜(4)の工程を順次経るこ
とを特徴とする、ポリマーで保護被覆されたフェライト
被覆磁性粒子の製造法。 (1)樹脂核粒子をフェライト微粒子で被覆する工程 (2)該フェライト被覆粒子を、媒体中でカチオン系界
面活性剤と混合し吸着層を形成する工程 (3)ラジカル重合性不飽和モノマーと重合開始剤を任
意の順序で添加し、フェライト被覆粒子の表面にカチオ
ン系界面活性剤と重合開始剤との複塩を吸着層に形成
し、ラジカル重合性不飽和モノマーを可溶化する工程 (4)該モノマーを重合させてフェライト被覆粒子を保
護被覆する工程
3. A process for producing ferrite-coated magnetic particles protected by a polymer, which comprises sequentially performing the following steps (1) to (4). (1) Step of coating resin core particles with ferrite fine particles (2) Step of mixing the ferrite coated particles with a cationic surfactant in a medium to form an adsorption layer (3) Polymerization with radically polymerizable unsaturated monomer A step of adding an initiator in an arbitrary order to form a double salt of a cationic surfactant and a polymerization initiator in the adsorption layer on the surface of the ferrite-coated particles to solubilize the radically polymerizable unsaturated monomer (4) The step of polymerizing the monomer to protectively coat the ferrite-coated particles
【請求項4】 ラジカル重合性不飽和モノマーが、グリ
シジル基を有するラジカル重合性不飽和モノマーを含む
ものである請求項3のフェライト被覆磁性粒子の製造
法。
4. The method for producing ferrite-coated magnetic particles according to claim 3, wherein the radical-polymerizable unsaturated monomer contains a radical-polymerizable unsaturated monomer having a glycidyl group.
JP6167286A 1993-07-20 1994-07-20 Magnetic particles coated with ferrite and protected with polymer coating, and preparation thereof Pending JPH0782302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6167286A JPH0782302A (en) 1993-07-20 1994-07-20 Magnetic particles coated with ferrite and protected with polymer coating, and preparation thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17891393 1993-07-20
JP5-178913 1993-07-20
JP6167286A JPH0782302A (en) 1993-07-20 1994-07-20 Magnetic particles coated with ferrite and protected with polymer coating, and preparation thereof

Publications (1)

Publication Number Publication Date
JPH0782302A true JPH0782302A (en) 1995-03-28

Family

ID=26491369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6167286A Pending JPH0782302A (en) 1993-07-20 1994-07-20 Magnetic particles coated with ferrite and protected with polymer coating, and preparation thereof

Country Status (1)

Country Link
JP (1) JPH0782302A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266719A (en) * 2005-03-22 2006-10-05 Jsr Corp Particle for diagnostics
JP2006275600A (en) * 2005-03-28 2006-10-12 Jsr Corp Magnetic particle, manufacturing method thereof, and carrier for biochemistry
JP2006307126A (en) * 2005-03-31 2006-11-09 Jsr Corp Magnetic particle with porous surface and method for producing the same, and carrier for biochemical use
JP2007527454A (en) * 2003-07-17 2007-09-27 インヴィトロジェン ダイナル エーエス Method for preparing coated magnetic particles
WO2007125822A1 (en) * 2006-04-28 2007-11-08 Tokyo Institute Of Technology Complex for use in the screening of substance
WO2009067046A2 (en) 2007-11-21 2009-05-28 Emanuel Institute Of Biochemical Physics Of Russian Academy Of Sciences (Ibcp Ras) Method for producing polymer coating on particle surfaces
JP2016184704A (en) * 2015-03-26 2016-10-20 東ソー株式会社 Method of producing magnetic fine particles
JP2016184703A (en) * 2015-03-26 2016-10-20 東ソー株式会社 Method for producing magnetic fine particle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527454A (en) * 2003-07-17 2007-09-27 インヴィトロジェン ダイナル エーエス Method for preparing coated magnetic particles
US8038987B2 (en) 2003-07-17 2011-10-18 Invitrogen Dynal As Process for the preparation of coated polymer particles
JP2006266719A (en) * 2005-03-22 2006-10-05 Jsr Corp Particle for diagnostics
JP2006275600A (en) * 2005-03-28 2006-10-12 Jsr Corp Magnetic particle, manufacturing method thereof, and carrier for biochemistry
JP2006307126A (en) * 2005-03-31 2006-11-09 Jsr Corp Magnetic particle with porous surface and method for producing the same, and carrier for biochemical use
WO2007125822A1 (en) * 2006-04-28 2007-11-08 Tokyo Institute Of Technology Complex for use in the screening of substance
JPWO2007125822A1 (en) * 2006-04-28 2009-09-10 国立大学法人東京工業大学 Complex for drug screening
WO2009067046A2 (en) 2007-11-21 2009-05-28 Emanuel Institute Of Biochemical Physics Of Russian Academy Of Sciences (Ibcp Ras) Method for producing polymer coating on particle surfaces
JP2016184704A (en) * 2015-03-26 2016-10-20 東ソー株式会社 Method of producing magnetic fine particles
JP2016184703A (en) * 2015-03-26 2016-10-20 東ソー株式会社 Method for producing magnetic fine particle

Similar Documents

Publication Publication Date Title
US5814687A (en) Magnetic polymer particle and process for manufacturing the same
KR100422224B1 (en) Polymer beads and methods for making same
JP2003513093A (en) Composite nanospheres and their complexes with biomolecules
US20060058181A1 (en) Ionic material
JP2009300239A (en) Composite particle, method for manufacturing the same, dispersion, magnetic biosensing device and magnetic biosensing method
CN104151764B (en) A kind of magnetic composite microsphere of polymer brush modification and preparation method and application
JP2004205481A (en) Method for manufacturing particle for diagnostic product
EP0466261A1 (en) Improved stabilization of dispersions of metal oxides and/or carbon black in water
JP4593146B2 (en) Method for producing magnetic inclusion particles
JPH0782302A (en) Magnetic particles coated with ferrite and protected with polymer coating, and preparation thereof
JP3646461B2 (en) Magnetic polymer particles and method for producing the same
EA000846B1 (en) Medical powder
US4170685A (en) Polyvinyl pyridine microspheres
EP0097516B1 (en) Filler-containing polymer particles useful as carriers for supporting a biological substance
JP4548598B2 (en) Magnetic particle, method for producing the same, and carrier for biochemistry
JP4426819B2 (en) Method for producing magnetic inclusion particles
JP3743072B2 (en) Method for producing magnetic polymer particles
US4259223A (en) Cross-linked polyvinyl pyridine coated glass particle catalyst support and aqueous composition or polyvinyl pyridine adducted microspheres
JPH11191510A (en) Magnetic polymer article, its manufacturing and diagnostic medicine
JPH0563220B2 (en)
JPH07316466A (en) Particle protected with polymer and its production
JP3413963B2 (en) Method for producing magnetic particles
JP4485823B2 (en) Magnetic inclusion particles and immunoassay particles
JPH08176461A (en) Fine monodisperse particle and its production
JP3902963B2 (en) Metal-containing resin particles