JPS62204223A - Spatially light separating photometer - Google Patents

Spatially light separating photometer

Info

Publication number
JPS62204223A
JPS62204223A JP4619686A JP4619686A JPS62204223A JP S62204223 A JPS62204223 A JP S62204223A JP 4619686 A JP4619686 A JP 4619686A JP 4619686 A JP4619686 A JP 4619686A JP S62204223 A JPS62204223 A JP S62204223A
Authority
JP
Japan
Prior art keywords
light
incident
mirror
rotating mirror
optical systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4619686A
Other languages
Japanese (ja)
Other versions
JPH0695175B2 (en
Inventor
Yuzuru Neyatani
閨谷 譲
Katsu Inoue
井上 克
Masayoshi Kawakami
正義 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Ltd
Priority to JP4619686A priority Critical patent/JPH0695175B2/en
Publication of JPS62204223A publication Critical patent/JPS62204223A/en
Publication of JPH0695175B2 publication Critical patent/JPH0695175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to supply equal light beams to two photometric optical systems through different courses without using a semitransparent mirror by irradiating light to be measured to two adjacent faces of a rotary polygon mirror and reflecting equal beams in two direction. CONSTITUTION:Noticing that an inclined angle formed by two adjacent faces of the rotary polygon mirror 20 having N faces in 3604o/N and an angle (light guiding angle) formed by two reflected light beams of incident light made incident from the same direction on the two adjacent faces in 720 deg./N, equal spatially separated scanning light beams are simultaneously led into two optical systems. A light beam 15 radiated from a light emitting point is made incident upon an incident slit 41 at first in accordance with the rotation 26 of the rotary polygon mirror 20, and finally a light beam 16 radiated from a light emitting point 12 is made incident upon an incident slit 41 along a circular arc 19 passing the center of a light emitting source. Light is similarly made incident also to an incident slit 46. Consequently, the quantity of light to be used can be increased twice without increasing the size of the rotary polygon mirror 20 and a semi-transparent mirror or a light dividing means which may generate the loss of light can be omitted because equal light can be supplied to the two photometric means through different courses.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は測光装置に係り特に多面回転鏡の2面を用いる
空間分解測光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a photometric device, and more particularly to a spatially resolved photometric device using two surfaces of a polygonal rotating mirror.

〔発明の背景〕[Background of the invention]

従来の空間分解測光装置は、多数の測光光学系を空間分
解能に対応させて並置するか、多面回転鏡を用いて空間
走査を行なった光を1個の測光光学系に導入するもので
あった。しかるに前者に於ては空間分解能が例えば10
以上とか高くなるに従い測光光学系の個数が増大し複雑
高価とならざるを得す、測光系の検出感度差が発生する
と云う欠点が有った。又、後者に於ては同時測光で無い
為め原理的に微弱エネルギー光の測定には適していす、
特に走査光を同時に相異なる測光手段例えば波長範囲の
異なる2個の分光計に導入する際に、半透鏡までで2分
すると更に明るさは半減した。
Conventional spatially resolved photometry devices either arrange multiple photometric optical systems in parallel according to their spatial resolution, or use a multifaceted rotating mirror to spatially scan light and introduce it into a single photometric optical system. . However, in the former case, the spatial resolution is, for example, 10
As the price increases, the number of photometric optical systems increases, making them complicated and expensive, and there are disadvantages in that differences in detection sensitivity of the photometric systems occur. In addition, since the latter method does not perform simultaneous photometry, it is in principle suitable for measuring weak energy light.
In particular, when the scanning light was simultaneously introduced into different photometric means, for example, two spectrometers with different wavelength ranges, the brightness was further halved if the scanning light was divided into two by a half-transparent mirror.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、かかる従来技術の欠点を除くため、多
面回転鏡の相隣接する2面に被測定光を照射し、2方向
に等量の光を反射させる事により、半透鏡を用いる事な
く2個の測光光学系に導入する明るい空間分解測光装置
の提供にある。
An object of the present invention is to eliminate the drawbacks of the prior art, by irradiating measurement light onto two adjacent surfaces of a multifaceted rotating mirror and reflecting an equal amount of light in two directions, using a semi-transparent mirror. The object of the present invention is to provide a bright spatially resolving photometer that can be introduced into two photometering optical systems.

〔発明の概要〕[Summary of the invention]

本発明は、N面回転鏡の相隣接する2面の間の傾角が3
60°/Nであり、同一方向から入射する光の2面にお
ける2反射光のなす角(導光角)が720°/Nである
事に着目し、2個の光学系に同時に等量の空間分解走査
光を導入する様にしたものである。
In the present invention, the inclination angle between two adjacent surfaces of the N-plane rotating mirror is 3.
60°/N, and the angle formed by the two reflected lights on the two surfaces of the light incident from the same direction (light guiding angle) is 720°/N. It is designed to introduce spatially resolved scanning light.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例の説明図であるが、発光源1
0からの光は、モータ25で駆動される多面回転鏡20
の2面21.22に入射し、集光レンズ30.35に向
う光軸23.24に分割される。集光レンズ30.35
で集光された光31゜36は分光計40.45の入射ス
リット41゜46に入射し、分光計40.45内で測光
される。
FIG. 1 is an explanatory diagram of one embodiment of the present invention.
The light from 0 passes through a polygonal rotating mirror 20 driven by a motor 25.
The light is incident on two surfaces 21.22 and is split into optical axes 23.24 facing a condenser lens 30.35. Condensing lens 30.35
The light 31.degree. 36 focused by the spectrometer 40.45 enters the entrance slit 41.degree. 46 of the spectrometer 40.45, and is photometered within the spectrometer 40.45.

回転鏡20の回転26に従い当初、発光点11から発し
た光線15が入射スリット41に入射し発光源中央を通
る円弧19に沿って、最後には発光点12からの光線1
6が入射スリット41に入射する。入射スリット46に
於ても同様である。
According to the rotation 26 of the rotating mirror 20, the light ray 15 emitted from the light emitting point 11 initially enters the entrance slit 41, follows the arc 19 passing through the center of the light emitting source, and finally the light ray 1 from the light emitting point 12 enters the entrance slit 41.
6 enters the entrance slit 41. The same applies to the entrance slit 46.

第2図は多面を形成する多角形の角数Nと、多角形中心
の分割角θと、相隣接する2面からの2反射光のなす単
光角と、鏡面への入射角θ/2が0°即ち垂直入射で無
い為めに生ずる効率の低下を示した表である。
Figure 2 shows the number of angles N of the polygon forming the polygon, the division angle θ at the center of the polygon, the single light angle formed by two reflected lights from two adjacent surfaces, and the angle of incidence on the mirror surface θ/2. This is a table showing the decrease in efficiency that occurs because the angle of incidence is not 0°, that is, the incidence is not normal.

これからNが小さいと導光角は大きく取れるが効率が低
く、回転鏡1回転当りの空間を走査回数も少ない。逆に
Nが大きいと効率および走査回数用 は高くなるが、導光角が低下して回転鏡へのへ射光の光
学設計が困難となる。
If N is small, the light guide angle can be large, but the efficiency is low, and the number of times the space is scanned per rotation of the rotating mirror is small. On the other hand, if N is large, the efficiency and number of scans will increase, but the light guide angle will decrease, making it difficult to design the optical direction of the light to the rotating mirror.

一方多面回転鏡20の最大寸法は、鏡面研削加工機械の
精度上から制約を受け、面数が多い程、1画商りの有効
面積(開口面積に相当)は低下する。
On the other hand, the maximum dimension of the multifaceted rotating mirror 20 is limited by the precision of the mirror grinding machine, and the larger the number of faces, the lower the effective area (corresponding to the opening area) of one image.

これ等の条件を考えると、導光角が90°で効率も0.
9以上である8面回転鏡(N−8)が有利である事が結
論づけられる。
Considering these conditions, the light guide angle is 90° and the efficiency is 0.
It is concluded that an eight-sided rotating mirror (N-8) with a diameter of 9 or more is advantageous.

本発明によれば加工上の制約から不可能に近い2番の面
積を有する多面回転鏡を用いる代りに、原寸法の回転鏡
の2面を同時に使用する事により効率的に2倍の明るさ
を得る事が出来る。
According to the present invention, instead of using a multi-faceted rotating mirror with an area of 2, which is almost impossible due to processing constraints, the brightness can be effectively doubled by simultaneously using two sides of the original-sized rotating mirror. can be obtained.

又、本実施例で示した様に2個の分光計に導く光路が異
なる為め、2光路を通過する光の波長域を異にする場合
でも別材料による集光レンズを用いる事が可能である。
Furthermore, as shown in this example, since the optical paths guided to the two spectrometers are different, it is possible to use condensing lenses made of different materials even when the wavelength ranges of the light passing through the two optical paths are different. be.

両波長域を共用する従来の半透鏡方式に比べて、色収差
も少なくできる。
Chromatic aberration can also be reduced compared to conventional semi-transparent mirror systems that share both wavelength ranges.

第1図は測光手段として分散形分光器を用いたが、フィ
ルタ分光器と光電検出器の組合せでも問題は無い。
Although a dispersive spectrometer is used as the photometric means in FIG. 1, a combination of a filter spectrometer and a photoelectric detector may also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多面回転鏡の寸法を大きくせずに、利
用光量を2倍にする事ができる。又、2個の測光手段に
等量の光を別経路で供給する事が出来るので光量の損失
を来たす半透鏡や、光分割手段が不要となる。
According to the present invention, the amount of light used can be doubled without increasing the dimensions of the polygonal rotating mirror. Furthermore, since the same amount of light can be supplied to the two photometric means through separate paths, there is no need for a semi-transparent mirror or light splitting means that would cause a loss in the amount of light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の斜視図で、第2図は回転鏡
の面数Nに対する導光角と効率の表である。 10・・・光源、20・・・多面回転鏡、19・・・走
査円弧、25・・・駆動モータ、30,35・・・集光
レンズ、40.45・・・分光計。
FIG. 1 is a perspective view of an embodiment of the present invention, and FIG. 2 is a table of light guiding angle and efficiency with respect to the number of surfaces N of a rotating mirror. DESCRIPTION OF SYMBOLS 10... Light source, 20... Polygonal rotating mirror, 19... Scanning arc, 25... Drive motor, 30, 35... Condensing lens, 40.45... Spectrometer.

Claims (1)

【特許請求の範囲】 1、多面回転鏡の回転によつて空間を走査する測光装置
において、少なくとも2個の集光光学系を有し、前記多
面回転鏡の相隣接する2面に同時に入射した被測定光を
少なくとも2個の測光光学系に導入することを特徴とす
る空間分解測光装置。 2、特許請求の範囲第1項記載の空間分解測光装置にお
いて、多面回転鏡が8角形柱面(8面)回転鏡であり、
2個の導光方向が大略90°異なつている事を特徴とす
る空間分解測光装置。 3、多面回転鏡の回転によつて空間を走査する測光装置
において、少なくとも2個の集光光学系を有し、前記多
面回転鏡の相隣接する2面に同時に入射した被測定光を
少なくとも2個の分光光学系に導入することを特徴とす
る空間分解測光装置。 4、特許請求の範囲第3項記載の空間分解測光装置にお
いて、2個の分光光学系が可視域多色分光計と、紫外域
多色分光計であるところの空間分解測光装置。
[Claims] 1. A photometric device that scans space by rotating a polygonal rotating mirror, which has at least two condensing optical systems, and has light that is simultaneously incident on two adjacent surfaces of the polygonal rotating mirror. A spatially resolved photometry device characterized in that light to be measured is introduced into at least two photometry optical systems. 2. In the spatially resolved photometry device according to claim 1, the polygonal rotating mirror is an octagonal cylindrical (8-sided) rotating mirror,
A spatially resolved photometry device characterized in that two light guide directions differ by approximately 90 degrees. 3. A photometric device that scans space by rotating a polygonal rotating mirror, which has at least two condensing optical systems, and collects at least two light beams to be measured that are simultaneously incident on two adjacent surfaces of the polygonal rotating mirror. A spatially resolved photometry device characterized by being introduced into a spectroscopic optical system. 4. The spatially resolved photometric device according to claim 3, wherein the two spectroscopic optical systems are a visible polychromatic spectrometer and an ultraviolet polychromatic spectrometer.
JP4619686A 1986-03-05 1986-03-05 Spatial resolution photometer Expired - Lifetime JPH0695175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4619686A JPH0695175B2 (en) 1986-03-05 1986-03-05 Spatial resolution photometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4619686A JPH0695175B2 (en) 1986-03-05 1986-03-05 Spatial resolution photometer

Publications (2)

Publication Number Publication Date
JPS62204223A true JPS62204223A (en) 1987-09-08
JPH0695175B2 JPH0695175B2 (en) 1994-11-24

Family

ID=12740316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4619686A Expired - Lifetime JPH0695175B2 (en) 1986-03-05 1986-03-05 Spatial resolution photometer

Country Status (1)

Country Link
JP (1) JPH0695175B2 (en)

Also Published As

Publication number Publication date
JPH0695175B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
KR102141127B1 (en) 2D scanning high precision LiDAR using a combination of rotating concave mirror and beam steering devices
JP2789741B2 (en) Laser radar scanning device
US4022529A (en) Feature extraction system for extracting a predetermined feature from a signal
JPS63200040A (en) Diffuse reflectance measuring device for noncontact measurement
JPS6223250B2 (en)
JP2000171300A (en) Semiconductor line sensor or double grating coincidence spectrometer including photomultiplier
USRE32598E (en) Feature extraction system for extracting a predetermined feature from a signal
CA1244688A (en) Optical projector
US5646725A (en) Foreign matter inspection apparatus for large-scale substrate
JP2001091848A (en) Scanning type optical microscope
JPS62204223A (en) Spatially light separating photometer
US4797558A (en) Inspection apparatus including photodetection and scanning apparatus
US5473438A (en) Spectroscopic method and apparatus for measuring optical radiation
US20040196460A1 (en) Scatterometric measuring arrangement and measuring method
JPH07209169A (en) Method and device for measuring spatial distribution of concentration and grain size of floating particle group
JP3146629B2 (en) Emitter and receiver for pearl color selection
KR102626449B1 (en) Broadband spectrum meter
JPH01176932A (en) Fine foreign matter inspection device
JPH01314927A (en) Two-dimensional image spectroscope apparatus
JPS62228124A (en) Spectroscopic apparatus
JP2950226B2 (en) Height measuring device
SU1456794A1 (en) Method of forming light spot on specimen in measurement of indicatrix of diffusion on goniophotometer
US5118188A (en) Illuminating arrangement for illuminating a photomultiplier in a double-beam photometer
JPS5899736A (en) Surface defect detector
JP2003028714A (en) Fast spectrometric observation system